
Evaluation and Metrication of Object Oriented System
Kaur Amandeep, Singh Satwinder and Kahlon K. S

Abstract—This paper presents some advances towards the
quantitative evaluation of design attributes of object oriented
software systems. We believe that these attributes can express
the quality of internal structure, thus being strongly correlated
with quality characteristics like analyzability, changeability,
stability and testabilility, which are important to software
developers and maintainers. In order to measure the Object
Oriented design characteristics, a suite of metrics have been
adopted. A motivation behind the metrics suite is the coverage
of the basic structural mechanisms as encapsulation,
inheritance, polymorphism, reusability, Data hiding and
message-passing. Data was collected from a project based on
object oriented paradigms to calculate the metrics, which was
developed using a sequential life cycle model.

I. INTRODUCTION

IN recent years we have seen the increasing use of the

object oriented paradigm in software development. The use

of object oriented software development techniques

introduces new elements to software complexity both in

software development process and in the final product [4].

The backbone of any software system is its design. It is the

skeleton where the flesh (code) will be supported. The

Object-Oriented (OO) paradigm includes a set of

mechanisms such as inheritance, encapsulation, and

polymorphism and message-passing that is believed to

allow the construction of designs where those features are

enforced. Many object-oriented metrics have been proposed

specifically for the purpose of assessing the design of a

software system. However, most of the existing approaches

for measuring these design metrics involve only some of the

aspects of object oriented paradigms. As a result, it is not

always clear the design quality of code. Realizing the

importance of software metrics, numbers of metrics have

been defined for software [6].

 Amandeep kaur is with Computer Science & Engineering Department,
Govt Polytechnic College, Mohali, Distt. Mohali, Punjab, India (phone:
+91- 94633-94617; e-mail: aman12484@gmail.com).
Satwinder Singh is Lecturer with Baba Banda Singh Bahadur Engineering
College, Fatehgarh Sahib (Punjab)-India.
Dr. K.S.Kahlon is working with Guru Nanak Dev University, Amritsar.

These metrics try to capture different aspects of software

product [5] and its process. Some of the metrics also try to

capture the same aspects of software e.g., there are a number

of metrics to measure the coupling between different

classes. To analyze metrics chosen for this work, their

values are computed for project.

II. OBJECTIVES

The objectives of the paper are

• To find whether each measure is independent or we can

choose a subset of these metrics having equal utility as

the original metric set.

• To analyze a system performance on object oriented

grounds and measure the design and code quality.

• To cover the basic structural mechanisms of the object-

oriented paradigm.

III. METRICS SET AND EMPIRICAL DATA

COLLECTION

The list of metrics chosen for this study is given in

Figure I. Design and code of this project is available on

sourceforge.net. Project is developed in C++ language and

is referred as WinSCP.PROJECT is an open source SFTP

client and FTP client for Windows. Its main function is the

secure file transfer between a local and a remote computer.

Beyond this, WinSCP offers basic file manager

functionality. It uses Secure Shell (SSH) and supports, in

addition to Secure FTP, also legacy SCP protocol. It was the

first ever GUI SCP (and later SFTP) client for Windows.

The metrics chosen for analysis can be divided into 7

categories viz. size, coupling, cohesion, inheritance,

information hiding, polymorphism and reuse metrics.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

FIGURE I: METRICS FOR OBJECT ORIENTED SOFTWARE

IV. METRICS DEFINITIONS AND APPLICATIONS

The increasing importance of software measurement has led

to development of new software measures. Many metrics

have been proposed related to various constructs like class,

coupling, cohesion, inheritance, information hiding and

polymorphism [2] [3]. It is often difficult to determine

which metric is more useful in which area. .A few metrics

are explained using practical applications.

SIZE METRICS

a) Number of Attributes per Class (NOA): It counts the total

number of attributes defined in a class[16]. In figure 1,

Number of Attributes (NOA) for TexternalConsole class is

7. So NOA = 7 for TExternalConsole class

.b) Number of Methods per Class (NOM): It counts number

of methods defined in a class[16]. In fig 1 (NOM) for
TExternalConsole class is 4.

c) Weighted Methods per Class (WMC): WMC is a count of

sum of complexities of all methods in a class[10].

FIGURE II: CLASS DIAGRAM FOR WinSCP

 For complexities to be unity, the WMC = n, (number of

methods in the class). In Fig 1, WMC for

TExternalConsolet is 4.

d) Response For a Class (RFC): It is number of methods in

the set of all methods that can be invoked in response to a

message sent to an object of a class. It includes all methods

accessible within the class hierarchy. It looks at the

combination of the complexity of a class through the

number of methods and the amount of communication with

S.No Metric Object-Oriented Attribute
1 Response for a Class (RFC) Class
2 Number of Attributes per

Class (NOA)
Class

3 Number of Methods per
Class (NOM)

Class

4 Weighted Methods per Class
(WMC)

Class

5 Coupling between Objects
(CBO)

Coupling

6 Data Abstraction Coupling
(DAC)

Coupling

7 Message Passing Coupling
(MPC)

Coupling

8 Coupling Factor (CF) Coupling
9 Lack of Cohesion (LCOM) Cohesion
10 Tight Class Cohesion (TCC) Cohesion
11 Loose Class Cohesion

(LCC)
Cohesion

12 Information based Cohesion
(ICH)

Cohesion

13 Method Hiding Factor
(MHF)

Information
Hiding

14 Attribute Hiding Factor
(AHF)

Information
Hiding

15 Number of Children (NOC)
[10]

Inheritance

16 Depth of Inheritance (DIT)
[10]

Inheritance

17 Method Inheritance Factor
(MIF)[15]

Inheritance

18 Attribute Inheritance Factor
(AIF)[15]

Inheritance

19 Number of Methods
Overridden by a
subclass (NMO)

Polymorphism

20 Polymorphism Factor (PF) Polymorphism
21 Reuse ratio Reuse
22 Specialization ratio Reuse

TExternalConsole

Print()

 Input()

 choice()

 SetTitle()

bool FPendingAbort;

HANDLE FRequestEvent;

HANDLE FResponseEvent;

HANDLE FCancelEvent;

HANDLE FFileMapping;

bool FLimitedOutput;

static const int PrintTimeout =

5000;

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

other classes. In class TSFTPPacket, there are 79 methods

which can be invoked in response to a message sent to an

object of a class[10].

COUPLING METRICS

e) Coupling Between Objects (CBO): Two classes are

coupled when methods declared in one class use methods or

instance variables defined by the other class [10]. In Fig 2,

TConsole class contains declarations of instances of the

classes TConsoleRunner and TexternalConsole.

The value of metric CBO for class TConsole is 2 and for

class TConsoleRunner and TExternalConsole is zero.

 f) Data Abstraction Coupling (DAC): It provides the ability

to create user-defined data types called Abstract Data Types

(ADTs) [16]. Li and Henry defined Data Abstraction

Coupling (DAC) as:

DAC = no. of ADTs defined in a class

In Fig 2 there is one DAC= ADTs in class TConsoleRunner

(FSynchronizeController)

g) Message passing Coupling (MPC): Li and Henry defined

Message Passing Coupling (MPC) metric as “number of

send statements defined in a class” [16]. So if two different

methods in class A access the same method in class B, then

MPC = 2. In fig 2, MPC value for class TConsole is 4 as

methods in class TConsole call TExternalConsole :: Print()

, TExternalConsole :: Input(), TConsoleRunner:: Print(),

TConsoleRunner:: Input().

h) Coupling Factor (CF): Coupling can be Dynamic

Coupling or Static Coupling among class instances. It is

desirable that classes communicate with as few other classes

and exchange as little information as possible [15]. It is

formally defined as:

Where TC is total number of classes

Couplings due to inheritance are not included in CF,

because a class is heavily coupled via inheritance. If no

classes are coupled, CF = 0 %. If all classes are coupled

with all other classes, CF = 100 %.

COHESION METRICS

i) Lack of Cohesion in Methods (LCOM): LCOM = number

of different methods within a class with reference to a given

instance variable [10]. It measures the degree of similarity

of methods by instance variable or attributes. Consider a

class C1 with n methods M1,…., Mn. Let (Ij) = set of all

instance variables used by method Mi. LCOM = | P | - | Q |,

if | P | > | Q |

= 0 otherwise

In Fig1, there are four methods M1, M2,

M3 and M4 in class Book.

FIGURE III: CLASS DIAGRAM

I1 = {Str, From Beginning},I2 = {Str, Echo, Timer},I3 =

{Option, Cancel, Break, Timeout},I4 = {Title}

I1∩I2 = str,I1∩I3 = null,I1∩I4 = null,I2∩I3 =

timer,I2∩I4 = null,I3∩I4 = null

I1∩I2, I2∩I3 are non null but I1∩I3, I1∩I4, I2∩I4, I3∩I4 are

null sets.

LCOM is 2 if numbers of null intersections are not greater

than number of non-null intersections. Hence LCOM in this

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

case is 0 [|P|= 4 |Q|= 2]. Thus a positive high value of

LCOM implies that classes are less cohesive. So a low value

of LCOM is desirable.

j) Tight Class Cohesion (TCC): The measure TCC is

defined as the percentage of pairs of public methods of the

class with common attribute usage [16]. In Fig.1, methods

defined in class TExternalConsole access the following

attributes:

Print = {Str, FromBegining}

Input = {Str, Echo, Timer}

Choice = {Option, Cancel, Break, Timeout, Timer}

SetTitle = {Title}

All methods in class Book are public. Number of pairs of

methods = 28.

Methods pairs with common attribute usage = {Print,

Input}, and {Input, Choice}

TCC = 2 /28 * 100 = 7.142

k) Loose Class Cohesion (LCC): The measure LCC is

defined as the percentage of pairs of public methods of the

class, which are directly or indirectly connected [16]. In

fig1, LCC for a class TExternalConsole is same as TCC that

is 7.142 % as there is no direct invocation.

l) Information flow based Cohesion (ICH): ICH for a class

is defined as the number of invocations of other methods of

the same class, weighted by the number of parameters of the

invoked method [16]. In Fig1, ICH is zero as no method is

called by function of same class TExternalConsole.

INHERITANCE METRICS

m) Depth of Inheritance Tree (DIT): It is defined as the

maximum length from the node to the root of the tree and

measured by the number of ancestral classes. In Figure 4,

DIT for TSFTPLoadFilesPropertiesQueue class is 2 as it has

2 ancestral classes TSFTPFixedLenQueue and

TSFTPPacket. DIT for is TSFTPFixedLenQueue 1 as it has

one ancestral class TSFTPPacket.

n) Number of Children (NOC): It is defined as the number

of immediate subclasses. In Figure 4, NOC value for class

TSFTPPacket is 2.

o) Method Inheritance Factor (MIF): MIF is defined as the

ratio of the sum of inherited methods in all classes of the

system under consideration to the total number of available

methods for all classes.

Where, Ma(Ci) = Mi(Ci) + Md(Ci)

TC= total number of classes

Md(Ci) = the number of methods declared in a class

Mi(Ci) = the number of methods inherited in a class

p) Attribute Inheritance Factor (AIF): AIF is defined as the

ratio of the sum of inherited attributes in all classes of the

system under consideration to the total number of available

attributes for all classes. AIF is suggested to express the

level of reuse in a system.

TC= total number of classes

Ad (Ci) = number of attribute declared

Ai (Ci) = number of attribute inherited

INFORMATION HIDING METRIC

q) Attribute Hiding Factor (AHF): This metric is the ratio of

hidden (private and protected) attributes to total attributes

and is for the measurement of encapsulation and

information hiding [15].

r) Method Hiding Factor (MHF): This metric is the ratio of

the total inherited methods and total methods defined [15].

POLYMORPHISM METRICS

s) Polymorphism Factor (PF): It measures the degree of

method overriding in the class inheritance tree[15].

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

In this project no method or function is extended from

existing class and function. So PF is zero.

 FIGURE IV: CLASS DIAGRAM

t) Number of Methods Overridden by a subclass

(NMO):When a method in a subclass has the same name

and type signature as in its superclass, then the method in

the superclass is said to be overridden by the method in the

subclass[16]. The value of metric is 2 for class TConsole.

REUSE METRIC

u) Reuse ratio: U, is given by [16]

 U=No. of superclasses/ Total no. classes 13/59 = 0.220

v) Specialization Ratio (S): S = [16]Number of subclasses/

Number of superclasses

46/13 = 3.53

V. RESULTS

In this section Figure V gives results of class level metrics

and Figure VI gives results of system level metrics. The

metrics chosen for analysis can be divided into 7 categories

viz. size, coupling, cohesion, inheritance, information

hiding, polymorphism and reuse metrics.

FIGURE V: CLASS LEVEL METRICS

FIGURE VI: SYSTEM LEVEL METRICS

S.NO. METRIC OBJECT-

ORIENTED

VALUE

1 NOA 5

2 NOM 20

3 WMC 20

4 RFC 79

5 CBO 2

6 DAC 1

7 MPC 4

8 LCOM 2

9 TCC 7.142

10 LCC 7.142

11 ICH 0

12 DIT 2

13 NOC 2

14 NMO 2

S.NO METRICS VALUE

1 CF 50

2 MIF 0.491

3 AIF 0.676

4 MHF 0.305

5 AHF 0.375

6 PF 0

7 U 0.220

 8 S 3.53

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

VI. CONCLUSION AND FUTURE WORK

In this paper, work has been done to explore the quality of

design of commercial software components using object

oriented paradigm. A number of object oriented metrics

have been proposed in the literature for measuring the

design attributes such as inheritance, coupling, cohesion,

polymorphism, reusability etc. In this paper, metrics have

been used to analyze various features of software

component. The number of methods and the complexity of

methods involved is a predictor of how much time and

effort is required to develop and maintain the class. If a

large number of methods can be invoked in response to a

message, the testing and debugging of the class becomes

more complicated since it requires a greater level of

understanding on the part of the tester. This metric set can

be applied on various projects and evaluate and compare the

performance of the code using object oriented paradigm.

VII. REFERENCES

[l] F.B. Abreu and R. Carapuca, ”Candidate Metrics for

Object- Oriented Software within a Taxonomy

Framework,”]. System and Software, vol. 26, no. l, pp.

87-96, Jan. 1994.

[2] L. Briand, S. Morasca, and V. Basili, De$ning and

Vdidating High- Level Design Metrics, Techtucal

Report CS-TR-3301, Univ. of Maryland, Dept. of

Computer Science, College Park, Md., 1994.

[3] L. Briand, S. Morasca, and V. Basili, ”Property Based

Software Engineering Measurement,” IEEE Trans.

Software Eng., vol. 22, no. 1, p. 68-86, Jan. 1996.

[4] I. Brooks, “Object-Oriented Metrics Collection and

Evaluation with a Software Process,” Proc. OOPSLA

’93 Workshop Processes and Metrics for Object-

Oriented Software Development, Washington, D.C.,

1993.

[5] S.R. Chidamber and C.F. Kemerer, “A Metrics Suite for

Object- Oriented Design,” IEEE Trans. Software Eng.,

vol. 20, no. 6, pp. 476493, June 1994.

[6] S.R. Chidamber and C.F. Kemerer, ”Authors Reply,”

lEEE Trans. Software Eng., vol. 21, no. 3, p. 265, Mar.

1995.

[7] L.Briand , W.Daly and J. Wust, Unified Framework for

Cohesion Measurement in Object-Oriented Systems.

Empirical Software Engineering, 3 65-117, 1998.

[8] L.Briand , W.Daly and J. Wust, A Unified Framework

for Coupling Measurement in Object-Oriented Systems.

IEEE Transactions on software Engineering, 25, 91

121,1999.

[9] L.Briand , W.Daly and J. Wust, Exploring the

relationships between design measures and software

quality. Journal of Systems and Software, 5 245-273,

2000.

[10] S.R.Chidamber and C.F.Kamerer, A metrics Suite for

Object-Oriented Design. IEEE Trans. Software

Engineering, vol. SE-20, no.6, 476-493, 1994.

[11] N.Fenton et al, Software Metrics: A Rigorous and

practical approach. International Thomson Computer

Press, 1996.

[12] R.Harrison, S.J.Counsell, and R.V.Nithi, An Evaluation

of MOOD set of ObjectOriented Software Metrics.

IEEE Trans. Software Engineering, vol. SE-24, no.6,

pp. 491-496 June1998.

[13] B.Henderson-sellers, Object-Oriented Metrics,

Measures of Complexity.Prentice Hall, 1996.

[14] Lorenz, Mark & Kidd Jeff, Object-Oriented Software

Metrics, Prentice Hall, 1994.

[15] F.B. Abreu and W. Melo, “Evaluating the Impact of

Object-Oriented Design on Software Quality”,1996

[16] Simple class-level OO metrics
(http://www.aivosto.com/project/help/pm-oo-
misc.html)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

