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Abstract—This paper presents a robust fuzzy control method, 
combining affine Takagi–Sugeno (T–S) fuzzy models and H  

performance constraints, for stability analysis and controller 
design of an inverted pendulum robot to simulate human stance. 
The inverted pendulum robot proposes that it is beneficial for the 
stance leg to behave like a pendulum. As mentioned above, in this 
paper, the T–S fuzzy model is used to describe a nonlinear 
inverted pendulum robot system with perturbations and time 
delays. Moreover, some sufficient conditions are derived on 
robust H  disturbance attenuation in which both robust 

stability and a prescribed performance are achieved, 
simultaneously. Finally, a numerical simulation for the nonlinear 
inverted pendulum robot system is given to show the applications 
of the present design approach.  

Keywords—Fuzzy control, Takagi–Sugeno fuzzy models, 
robust control, time delay, inverted pendulum robot. 

I.   INTRODUCTION 

Human being stance has been investigated in detail for a 
long time [1]. In recent years, the researchers wish to simulate 
human stance on the machine. In this paper, the model is 
constructed based on purely inverted pendulum dynamics and 
on a movable supportive base. This work was based on the 
assumption that the act of maintaining an erect posture could 
be viewed. However, the problems often are a complicated 
nonlinear system. In general, the methods of linear control and 
those of local linearization and moving linearization are not 
well suited for the control problem of inverted pendulums. 
This is due to the fact that inverted pendulums constantly 
move among widely separated regions of their workspace such 
that no linearization valid for all regions can be found. In 
many practical systems, the system plants contain severe 
nonlinear properties.  
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Recently, some authors proposed several control methods to 
control the nonlinear systems by using Takagi–Sugeno (T–S) 
fuzzy system models [2–9]. The affine T–S fuzzy system 
means the fuzzy system of which consequent part is affined 
and which has a constant bias term. It is well known that such 
models can describe or approximate a wide class of nonlinear 
systems. Hence, it is important to study their stability and the 
design of stabilizing controllers. Besides, robust stability also 
has been considered in literatures which have presented robust 
stability analysis and methods for designing robust fuzzy 
controllers to stabilize a class of uncertain fuzzy systems. In 
general, stability analysis and synthesis can be extended to the 
time-delay systems. Time delays often appear in industrial 
systems and information networks. Thus, it is also important to 
analyze time-delay effects for the affine T–S fuzzy systems.  

In this paper, for inverted pendulum robot, we consider 
robust stability and stabilization of uncertain affine T–S fuzzy 
systems with state delays where uncertainties come into the 
state and input matrices. Moreover, the H  control scheme [9] 

is used in this paper to attack the problem of robust 
performance design problems for the perturbed affine T–S 
fuzzy models. It can provide the guaranteed H  performance 

for the attenuation  , which can cope with the worst case 

effect of disturbance on system states. The majority of T-S 
fuzzy controller design was developed by using the concept of 
Parallel Distributed Compensation (PDC) [2–9] and the 
Lyapunov stability criterion. Based on the Linear Matrix 
Inequalities (LMI) technique [2], one can find a suitable 
common positive definite matrix for the stability conditions, 
and then to obtain a stable fuzzy controller for the closed-loop 
T–S fuzzy models. However, the fuzzy controller design of the 
affine T–S fuzzy models is a challenging problem for the 
designers because the closed-loop stability conditions are not 
LMI formulations but Bilinear Matrix Inequalities (BMI) ones. 
The BMI conditions cannot be solved via a convex 
optimization algorithm. In this paper, an Iterative LMI (ILMI) 
algorithm [7, 9] is employed to solve the BMI formulations for 
the proposed control problem.  

II.  THE DYNAMIC MODEL OF SIMPLE HUMAN STANCE 

SYSTEM 

In this section, the mathematical model of the simple 
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inverted pendulum robot system is introduced. Referring to 
Fig. 1, a simplified dynamic model for describing inverted 
pendulum robot system to simulate human stance is proposed 
as follows [10].  

 

     1 1 2k 1 k kx x T x    e kv   

   
  2 2 2

3

k 1 k
k

T
x x

M m sin x
  


 

  ku    2
4 3 2k k bml x sin x x     3 3k kmg cos x sin x

     3 3 4k 1 k kx x T x  

   
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l M m sin x
  


  

    3 kM m g sin x     3k ku cos x    2 3k kb x cos x  

     2
4 3 3k k kml x sin x cos x               (1) 

where 
m  is the mass of the black on the pendulum. 
l  is length of the pendulum. 
g  is acceleration due to gravity. 

b  is coefficient of viscous friction for motion of the cart. 
u  is applied force. 

 tv  is the denotes the disturbances. 

m

l

M
u

θ

 
Fig. 1 Inverted pendulum robot system to simulate human stance 

 

The four state variables stand for  1x x , 2x x  , 2x θ , 

4x    with x the position of the cart, and   the angle the 

pendulum makes with vertical. This model is obtained by 
discretizing the continuous time model via Euler’s method 

with   is 0.1s, kg12 98 sb . , 1 378.  kg, 0 325l . m, 

2
m9 8

s
g . , 0 051m . kg.  

Considering premise nominal parameter uncertainties, the 
modified dynamic model for the inverted pendulum robot 
system can be described as follows: 

 

        1 2k 1 0 1 t 1 k 0 1 kx . cos . x      0 2 k. v    

   
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   3 30 4998 k k. cos x sin x  

     3 3 4k 1 k 0 1 kx x . x     

   4 4k 1 kx x   

   2

3

0 1

0 4478 0 0166 k

.

. . sin x
   313 4162 k. sin x  

  
    3k ku cos x    2 312 98 k k. x cos x  

     2
4 3 30 0166 k k k. x sin x cos x            (2) 

where  
       1 1k k 1 kx x        

The  k  is a time-delay function. 

III.  THE AFFINE T-S FUZZY MODELS 

The affine T–S fuzzy model of the inverted pendulum robot 
system can be obtained by applying Jaccobian linearization 

technique [11]. Given a pair of     t  tx , u , the final outputs 

of the perturbed time-delay affine T–S fuzzy model of inverted 
pendulum robot system (2) are inferred as follows: 

 k 1x     
r

i
i 1

h kz

     i i kx A A  

   id id kx    A A    i i tu  B B   

   i i kv   a a E                          (3) 

where 

  ih z k 0  and   
r

i
i 1

h z k 1


                (4) 

The quantities iA , idA , iB , ia  and E  are constant matrices. 

Besides, iA , idA , iB  and ia  are time-varying matrices 

with appropriate dimensions and they are structured in the 
following norm-bounded form:  

  1i 2ii id
i i

3i 4ii i

k
    

       

Q QA A
D Δ

Q QB a
           (5) 

where iD , 1iQ , 2iQ , 3iQ  and 4iQ  are known real constant 

matrices of appropriate dimensions, and  i tΔ  is an unknown 

matrix function with Lebesgue-measurable elements and 
satisfies    T

i it t Δ Δ I .  

For a nonlinear T-S fuzzy system represented by (3), a 
fuzzy controller is designed to share the same fuzzy sets with 
the plant. It is based on the PDC concept [2-9]. The output of 
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the PDC-based fuzzy controller is determined by the 
summation such as 

       
r

i i
i 1

k h k ku z x


  F                (6) 

Substituting (6) into (3), one can obtain corresponding 
closed-loop system as follows: 

 k 1x       
r r

i j
i 1 j 1

h k h kz z
 

    

     1ij1ij k kx  H D H     2ij2ij k kx    H D H  

  3ij3ij k  H D H  kvE               (7) 

where  

ij ji
1ij 2




G G
H , id jd

2ij 2




A A
H , i j

3ij 2




a a
H , 

ij ji
1ij

2




G G
H , 2i 2j

2ij
2




Q Q
H , 4i 4j

3ij
2




Q Q
H , 

ij i i j G A B F  and ij 1i 3i j G Q Q F                   (8) 

Base on the PDC type fuzzy controller (6), a sufficient 
condition for ensuring delay-independent stability of 
controlled time-delay affine T-S fuzzy model (7) is introduced 
in this paper. Moreover, a H  control performance with 

0   is also considered in this paper. This constraint is of the 

following form. 

       
f fk k

T 2 T

k 0 k 0

k k k kx x v v
 

  S ,  k 0v             (9) 

with zero initial condition for all    2 fk 0  kv L , , where fk  

is the terminal time of the control,   is a prescribed value 

which denotes the worst case effect of  kv  on  kx .   

Besides, T 0 S S  is a positive definite weighting matrix.  
 
IV.  SUFFICIENT CONDITIONS OF ROBUST FUZZY CONTROLLER 

DESIGN 

Based on the PDC scheme, a fuzzy controller is designed 
to share the same fuzzy sets with the affine T-S fuzzy model 
(3). In this section, the delay-independent stability conditions 
for the affine T–S fuzzy model (7) are described in the 
following theorem. Note that the proofs of the theorems in this 
paper are all omitted due to space limit. 
 
Theorem 1 

Given a H  attenuation parameter 0  . The affine T–S 

fuzzy model described in (7) is quadratically stable in the large 
and the H  control performance (9) is guaranteed for an 

attenuation  , if there exist positive definite matrices 0P , 

0S , d 0P , control gains iF  and scalars ijq 0   such that 
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The stability conditions in Theorem 1 are BMI forms that 
cannot be solved by LMI technique. Therefore, the ILMI 
algorithm is applied to solve the BMI condition in next section.  

 
V.  ROBUST FUZZY CONTROLLER DESIGN VIA ILMI 

ALGORITHM 
In order to solve BMI condition of Theorem1, some 

modified conditions are derived in this section. The detail 
formulations are introduced in the following theorem. 

 
Theorem 2 
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Given a H  attenuation parameter 0   and the 

auxiliary constant matrix 0R . The conditions of Theorem 1 
are satisfied if there exist 1  , positive definite matrices 

0P , 0S , d 0P , control gains iF  and scalars ijq 0   

such that 
 

ij
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         (16) 

□ 
Note that the conditions of Theorem 2 are of modified LMI 
forms which can be solved by using ILMI algorithm [7, 9]. 

 
VI.  NUMERICAL SIMULATIONS 

According to the results develop in previous section, this 
section provides a numerical simulation for the inverted 
pendulum robot system in order to show the applications of 
the present fuzzy controller design approach. Considering the 
inverted pendulum robot system (2) with Fig. 1, one can 
choose three operating points to obtain the linearized models 
for the system (2). Let us choose three operating points as 
follows: 

   d oper1
,  0 0 88 0 0 0 0 0 0x x , u      ,  

   d oper2
,  0 0 0 0 0 0 0 0 0x x , u    ,  

   d oper3
,  0 0 88 0 0 0 0 0 0x x , u        (17) 

Then, three linear subsystems can be constructed by these 
three operating points. In which,  d oper2

,  x x , u  is the 

maintain equilibrium point and the others are the off-
equilibrium points. Through the above three linear subsystems 
and defining membership functions as Fig. 2, one can obtain 
the time-delay affine T-S fuzzy model, which is composed by 
three fuzzy rules as follows: 
 

Rule i:  IF  3x k  is about i1M  THEN 

         i i id idk+1 k kx x x       A A A A   

     i ik ku v  B a E , i 1 3            (18) 

where 

1

0 998 0 1 0 0

0 0 0917 0 035 0

0 0 1 0 1

0 0 0 1

. .

. .

.

 
 
 
 
 
 

A ,  
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0 0 0581 0 0363 0

0 0 1 0 1

0 2 8983 3 127 1

. .

. .

.

. .
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 
 
 
 

E . 

The corresponding matrices of S-procedure are presented as 
follows: 
For Rules 11, i.e.,  390 t 80x    

111

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

 
 
 
 
 
 

T ,  
 111

0

0

1
80 90 180

2
0

 
 
 

  
     

 
  

n  and 

   111v 90 180 80 180/ /               (19) 

For Rules 33, i.e.,  390 t 80x     , the matrices of S-

procedure are given as follows: 

331

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

 
 
 
 
 
 

T ,  
 331

0

0

1
80 90 180

2
0

 
 
 

  
      

 
  

n  and 

   331v 90 180 80 180/ /                 (20) 

 

For the above perturbed time-delay affine T-S fuzzy model 
(18), the fuzzy controller can be designed by applying 
Theorem 2 and the ILMI algorithm [7, 9]. In this example, it is 
assumed that the H  control performance is guaranteed for an 

attenuation 2 0 32.  . Then, we can get a feasible solution 

after four iterations of the ILMI algorithm. The final decay 
rate   is 0 9999.  and the feasible solutions are obtained as 
follows: 

 
    
     
    
 
    

P ,  

d

0 0327 0 0186 0 0430 0 0118

0 0186 0 0238 0 0366 0 0134

0 0430 0 0366 0 1136 0 0225

0 0118 0 0314 0 0225 0 0081

. . . .

. . . .

. . . .

. . . .

 
 
 
 
 
 

P  

0 0076 0 0046 0 0107 0 0030

0 0046 0 0059 0 0092 0 0034

0 0107 0 0092 0 0284 0 0056

0 0030 0 0034 0 0056 0 0020

. . . .

. . . .

. . . .

. . . .

 
 
 
 
 
 

S , 

0 3419 0 1082 0 0601 0 5031

0 1082 0 8916 0 1470 0 2054

0 0601 0 1470 0 7670 3 7935

0 5031 0 2054 3 7935 20 7108

. . . .

. . . .

. . . .

. . . .

  
    
  
 
   

R ,

111  , 331             (21) 

 
And, the fuzzy controller has the following form: 
 
Rule 1: IF  3x k  is about 11M THEN 

     k 5 2530 1 0054 43 6819 k +9.2813u . . . x       

Rule 2:  IF  3x k  is about 21M THEN 

     k 5 1953 18 5910 49 8976 k +9.2234  u . . . x      

Rule 3:  IF  3x k  is about 31M THEN 

     k 5 2530 1 0054 43 6819 k +9.2813  u . . . x       (22) 

The disturbance input noise  kv is given with variance one. 

The simulation results are shown in Fig. 3 to Fig. 6. From the 
simulated results, one can find that the controlled nonlinear 
perturbed time-delay inverted pendulum robot system (2) is 
globally stable. 
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Fig. 2   Membership functions of  3 kx  

 

 

Fig. 3   Responses of  1 kx  

 

Fig. 4   Responses of  2 kx  

 

Fig. 5   Responses of  3 kx  

 

Fig. 6   Responses of  4 kx  
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