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    Abstract - This paper introduces a new hierarchy for 
controlling dynamical systems. The new control hierarchy uses 
supervised neural network to identify certain parameters of the 
transformed system matrix [ A

~ ]. Then, Linear Matrix 
Inequality (LMI) is used to determine the permutation matrix 
[P] so that a complete system transformation {[ B~ ], [ C

~ ], [ D~ ]} is 
performed. The transformed model is then reduced using 
singular perturbation method, and various feedback control 
schemes are applied to enhance system performance, including 
PID control, state feedback control using pole assignment, state 
feedback control using LQR optimal control, and output 
feedback control. The comparative experimental results 
between system transformation without using LMI and state 
transformation via using LMI shows clearly the superiority in 
system modeling and control using the proposed LMI-based 
control method. The new control methodology simplifies the 
system model and thus uses simpler controllers to produce the 
desired response.    
 
      Index Terms - Linear Matrix Inequality (LMI), LQR 
Optimal Control, Neural Networks, Order Model Reduction, 
Output Feedback Control, PID Control, Parameter Estimation, 
Pole Placement, Singular Perturbation Methods, State Feedback 
Control, System Identification. 
 

1. INTRODUCTION 
 
The general objective of control systems is to cause the 
output variable of a dynamic process to follow the desired 
reference variable accurately. This goal can be achieved 
based on a number of steps. An important one is to develop a 
mathematical model to be controlled [4,6]. This model is 
usually done using a set of differential equations that describe 
the system dynamic behavior.   

In system modeling, sometimes it is required to 
identify certain parameters. This objective maybe achieved 
by the use of artificial neural networks (ANN) [8,9,15,16]. 
Artificial neural systems maybe defined as physical cellular 
systems which have the capability of acquiring, storing and 
utilizing experiential knowledge [8,16]. It consists of an 
interconnected group of artificial neurons and processes 
information using a computational connectionist approach. 
The basic processing elements of neural networks are called 
neurons. They perform summing operations and nonlinear 
functions. Neurons are usually organized in layers and 
forward connections and computations are performed in a 
parallel fashion at all nodes and connections.  
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Each ANN connection is expressed by a numerical 
value called a weight.  The learning process of a neuron 
corresponds to a way of changing its weights. In fact, they 
can be used to model complex relationships between inputs 
and outputs or to find patterns in data [2,8,9,15,16]. 

When dealing with system modeling and control 
analysis, some equations and inequalities require optimized 
solutions. A numerical algorithm called Linear Matrix 
Inequality (LMI) serves as an optimization technique [1,3]. 
The LMI started by the Lyapunov theory showing that the 
differential equation )()( tAxtx =&  is stable if and only if there 

exists a positive definite matrix [P] such that 0<+ PAPAT  
[3]. The requirement 0>P , 0<+ PAPAT  is what is known 
as Lyapunov inequality on [P] which is a special case of an 
LMI. By picking any 0>= TQQ  and then solving the linear 

equation QPAPAT −=+ for the matrix [P], it is guaranteed 
to be positive-definite if the given system is stable [3]. 

In practical control design problems, the first step is 
to obtain a mathematical model in order to examine the 
system behavior for the purpose of designing a proper 
controller [1,2,3,4,5,7,9,11,12,13,14]. Sometimes, this 
mathematical description involves a certain small parameter 
(perturbation). Neglecting this small parameter results in 
reducing the order model of the system and thus simplifying 
the controller design [1,2,5,7,9,11,12,13,14]. A reduced order 
model can be obtained by neglecting the fast dynamics (i.e., 
non-dominant eigenvalues) of the system and focusing on the 
slow dynamics (i.e., dominant eigenvalues). This model 
reduction leads to controller cost minimization [4,6,7]. In 
control system, due to the fact that feedback controllers do 
not usually consider all the dynamics of the system, model 
reduction is a very important issue [2,9]. One of the model 
reduction methods is the singular perturbation [5,7,11,14].  
   Figure 1 illustrates the new control hierarchical 
methodology introduced in this paper. Section 2 presents 
background on recurrent supervised NN, LMI, system model 
transformation using neural identification, and order model 
reduction. Section 3 presents a detailed illustration of the NN 
identification with the LMI optimization methods for system 
order model reduction. A practical implementation of the NN 
identification and the associated comparative results with and 
without the use of LMI to the dynamical system order model 
reduction is presented in Section 4. Section 5 presents the 
application of the feedback control on the reduced order 
model using PID control, state feedback control using pole 
placement, state feedback control using LQR optimal control, 
and output feedback control. Conclusions are presented in 
Section 6.   
 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-7-5 IMECS 2009



 

   

0kw  

1kw  

2kw  
∑  

 

)(•ϕ ky  
1x  

2x  

px  

Output 

Activation 
Function 

Summing 
Junction 

Synaptic 
Weights 

Input 
Signals 

kv  

Threshold 
kθ  

kpw  

0x  

Continuous Dynamic System: {[A], [B], [C], [D]}   

System Discretization   

System Undiscretization (Continuous)   

LMI-Based Permutation 
matrix [P]  

Order Model Reduction  

 
Output Feedback  

Control 
(LQR-Based Control) 

 
PID 

Control 
  LQR Optimal Control  

Pole Placement  

Closed-Loop Feedback Control   

Complete System 
Transformation: {[ B~ ],[ C~ ],[ D~ ]}  

State 
Feedback
Control 

Neural-Based System 
Transformation:{[ Â ],[ B̂ ]}   
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Figure 1. The new hierarchical control methodology used in this paper. 

  
2. FUNDAMENTALS 
 
The following sections provide an important background 
which will be used Sections 3-5.  
 
2.1 Recurrent Supervised Neural Network 
 
An artificial NN is an emulation of a biological neural 
system. The process of a neuron may be mathematically 
modeled as shown in Figure 2 [8,16]. 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 Figure 2. Mathematical model of an artificial neuron. 
 
As seen in Figure 2, the internal activity of the neuron is:

  ∑
=

=
p

j
jkjk xwv

1
                          (1) 

In supervised learning,  it is assumed  that at  each instant of 
time when the input is applied, the desired response of the 

system is available [8,16]. The difference between the actual 
and the desired response represents an error measure and is 
used to correct the network parameters externally. Since the 
adjustable weights are initially assumed, the error measure  
may  be used to adapt  the network's weight matrix [W]. A 
set of input and output patterns is required for this learning 
mode. The training algorithm estimates the negative error 
gradient directions and reduces the resulting error [8,16]. 

The supervised NN used for identification in this 
paper is based on an approximation of the method of steepest 
descent [8,15,16]. The network tries to match the output of 
certain neurons to the desired values of the system output at 
specific instant of time.  

Consider a network consisting of a total of N 
neurons with M external input connections, as shown in 
Figure 3 for a 2nd order system with two neurons and one 
external input. The variable g(k) denotes the (M x 1) external 
input vector applied to the network at discrete time k. The 
variable y(k + 1) denotes the corresponding (N x 1) vector of 
individual neuron outputs produced one step later at time     
(k + 1). The input vector g(k) and one-step delayed output 
vector y(k) are concatenated to form the ((M + N) x 1) vector 
u(k), whose ith element is denoted by ui(k). If Λ denotes the 
set of indices i for which gi(k) is an  external  input, and β 
denotes the  set of indices i for which  ui(k)  is the output  of a 
neuron (which is yi(k)), the following is true: 

⎪⎩

⎪
⎨
⎧

∈

∈

β  i ,ky 

Λ i ,kg 
 = ku

i

i
i

 if)(

 if)(
)(  

The (N x (M + N)) recurrent weight matrix of the network is 
represented by the  variable [W]. The net internal activity of 
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Figure 3. A second order recurrent neural network architecture, 

where the estimated matrices are given by:  ⎥
⎦

⎤
⎢
⎣

⎡
=

2221

1211~
AA
AA

Ad , 

⎥
⎦

⎤
⎢
⎣

⎡
=

21

11~
B
B

Bd and that [ ]]~[]
~

[ dd BA=W .  

 
neuron j at time k is given by: 

)()( = )(
 

kukwkv iji
Λi

j ∑
∪∈ β

 

where Λ ∪ ß is the union of sets Λ and ß . At the next time 
step (k + 1), the output of the neuron j is computed by 
passing vj(k) through the nonlinearity (.)ϕ  obtaining: 

))(( = )1( kvky jj ϕ+  
The derivation of the recurrent algorithm can be 

started by using dj(k) to denote the desired (target) response 
of neuron j  at time k, and ς(k)  to denote the set of neurons 
that are chosen to provide externally reachable outputs. A 
time-varying (N x 1) error vector e(k) is defined whose jth 
element is given by the following relationship: 

⎪⎩

⎪
⎨
⎧ ∈

otherwise               0, 

)(   if  ),( - )( 
 = )(

kjkykd
ke

jj
j

ς
 

The objective is to minimize the cost function Etotal which is: 

)( = 
 

total kEE
k
∑ , where )( 

2
1 = )( 2

 

kekE j
j
∑
∈ς

  

To accomplish this objective, the steepest descent is used: 

        )(  = )( =  = 
  

total
total kEkEEE

kk
WW WW

∇
∂
∂

∂
∂

∇ ∑∑  

where )(kEW∇  is the gradient of E(k) with respect to the 
weight matrix [W]. In order to train the recurrent network in 
real time, the instantaneous estimate of the gradient is used 
( ))(kEW∇ .  For the case of a particular weight lmw (k), the  
incremental change lmwΔ (k) made at  time k is defined as: 

)(
)( - = )(
kw

kEkw
m

m
l

l ∂
∂

Δ η  

where η is the learning-rate parameter. Hence:   
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To determine the partial derivative )()/( kwky mj l∂∂ , the 
network dynamics are derived. The derivation is obtained by 
using the chain rule which provides the following equation: 
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where 
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 = ))((
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j

j
j ∂

∂ϕ
ϕ& . 

Differentiating the net internal activity of neuron j with 
respect to lmw (k) yields: 
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where ( ))()/( kwkw mji l∂∂  equals "1" only when j = m and      
i = l ; otherwise, it is "0". Thus: 
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where δ mj  is a Kronecker delta equal to "1" when j = m and 
"0" otherwise, and: 
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Having those equations provides that: 
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The initial state of the network at time k = 0 is:  

0 = 
)0(

(0)

lm

i

w
y

∂
∂

, for {j∈ ß , m∈ ß , l∈ β∪Λ }. 

The dynamical system is described by the following triply 
indexed set of variables ( j

mlπ ):  
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∂
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For every time step k and all appropriate j, m and l , and 
0 = (0)j

mlπ , system dynamics are controlled by: 

            
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+∑

∈

)()()(  ))(( = 1)+(
 

kukkwkvk mj
i
mji

i
j

j
m lll

& δπϕπ
β

 

The values of  )(kj
mlπ and the error signal ej(k) are used to 

compute the corresponding weight changes: 

)()(   = )(
 

kkekw j
mj

j
m πη

ς
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Using the weight changes, the updated weight lmw (k + 1) is 
calculated as follows: 

)( + )( = 1)+( kwkwkw mmm lll Δ           (3) 
Repeating this computation procedure provides the objective 
of minimizing the cost function. 

With the many advantages that the NN has, it is 
used for parameter identification in model transformation for 
the purpose of order model reduction. 
 
2.2 LMI and Model Transformation 
 
In this section, the detailed illustration of system 
transformation using LMI optimization will be presented. 
Consider the system:  

)()()( tButAxtx +=&                         (4) 
)()()( tDutCxty +=                         (5) 

In order to determine the transformed [A] matrix, which is 
[ A~ ], the discrete zero input response is obtained. This is 
achieved by providing the system with some initial state 
values and setting the system input  to zero (u(k) = 0). Hence, 
the  discrete system of Equations (4) and (5), with 0)0( xx = , 
becomes:  

)()1( kxAkx d=+                           (6) 
)()( kxky =                          (7) 

          We need x(k) as a NN target to train the network to 
obtain the needed parameters in [ dA~ ] such that the system 

output will be the same for [Ad] and [ dA~ ]. Hence, simulating 
this system provides the state response corresponding to their 
initial values with only [Ad] is  being  used. Once the input-
output data is obtained, transforming [Ad] is achieved using 
the NN training, as will be explained in Section 3. The 
estimated transformed [ dA~ ] is then converted back to the 
continuous form which is in general (with all real 
eigenvalues): 

           ⎥
⎦

⎤
⎢
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⎡
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o
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A
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⎥
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1121
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L

        (8) 

where λi represents the system eigenvalues. This is an upper 
triangular matrix that preserves the eigenvalues by (1) 
placing the original eigenvalues on the diagonal and (2) 
finding the elements ijA~  in the upper triangle. This upper 
triangular matrix form is used to produce same eigenvalues 
for the purpose of eliminating the fast dynamics and 
preserving the slow dynamics eigenvalues through order 
model reduction.   

Having the [A] and [ A~ ] matrices, the permutation 
[P] matrix is determined using the LMI optimization 
technique, as will be illustrated in later sections. The 
complete system transformation can be achieved as follows: 
assuming that xPx 1~ −= , the system of Equations (4) and (5) 

can be re-written as: 
            )()(~)(~ tButxAPtxP +=& , )()(~)(~ tDutxCPty += , 
where )()(~ tyty = . Pre-multiplying the first equation above 
by [P-1], we get:  

)()(~)(~ 111 tBuPtxAPPtxPP −−− +=&  
)()(~)(~ tDutxCPty +=         

which yields the following transformed model: 
)(~)(~~)(~ tuBtxAtx +=&                                       (9) 

)(~)(~~)(~ tuDtxCty +=                       (10) 
where the transformed system matrices are given by: 

APPA 1−=
~                        (11) 

BPB 1−=
~                        (12) 

CPC =
~                                  (13) 

DD =
~                         (14) 

Transforming the system matrix [A] into the form 
shown in Equation (8) can be done based on the following 
definition [10]. 
Definition. A matrix nMA∈ is called reducible if either: 
(a)   n = 1 and A = 0; or 
(b)  n ≥ 2, there is a permutation matrix nMP∈ , and there is  
       some integer r with 11 −≤≤ nr  such that:  

 ⎥
⎦

⎤
⎢
⎣

⎡
=−

Z
YX

APP
0

1                        (15) 

where rrMX ,∈ , rnrnMZ −−∈ , , rnrMY −∈ , , and 0 rrnM ,−∈  
is a zero matrix. 

The attractive features of the permutation matrix [P] 
such as being orthogonal and invertible have made this 
transformation easy to carry out. Some form of a similarity 
transformation maybe used as follows nnnn RRf ×× →: , 

where f  is a linear operator defined by APPAf 1)( −=  [10]. 

Hence, based on the [A] and [ A~ ], LMI is used to obtain the 
transformation matrix [P]. The optimization problem is 
performed as follows: 
  ε<−− − AAPPtoSubjectPP oP

~min 1         (16) 

which maybe written in an LMI equivalent form as: 

           

0
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T
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                     (17) 

where S is a symmetric slack matrix [3]. 
 

2.3 System Transformation via Neural Identification 
 

A different type of transformation can be obtained using NN 
with the condition of preserving the eigenvalues as a subset 
of the original system. To achieve this goal, the upper 
triangular block structure produced by the permutation 
matrix, as shown in Equation (15), is used. However, in the 
new method when using NN, finding the permutation matrix 
[P] does not have to be performed, instead, [X] and [Z] in 
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Equation (15) will be selected as the eigenvalues and [Y] in 
Equation (15) is to be estimated directly using NN 
identification. Thus, the transformation is obtained and the 
reduction is then achieved. Therefore, another way to obtain 
a transformed model preserving the eigenvalues of a reduced 
order model as a subset of the original system is by using NN 
training without LMI. This may be achieved by assuming 
that the states are measurable. Hence, the NN can estimate 
[ dÂ ] and [ dB̂ ] for a given input signal as illustrated in 
Figure 3. The NN identification would lead to the following 
[ dÂ ] and [ dB̂ ] transformations which (in the case of all real 
eigenvalues) construct the weight matrix [W] as follows: 
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where the eigenvalues are selected as a subset of the original 
system eigenvalues.   
 

2.4 Order Model Reduction 
 

Linear Time-Invariant (LTI) models of many physical 
systems have fast and slow dynamics, which may be referred 
to as singularly perturbed systems [11]. Neglecting the fast 
dynamics of a singularly perturbed system provides a 
reduced (slow) model. This gives the advantage of designing 
simpler lower-dimensionality reduced order controllers based 
on the reduced model.  
           To show the formulation of a reduced order model, 
consider the singularly perturbed system [5]: 
             011211 0 , )( )()( )( x)x(tuBtAtxAtx =++= ξ&          (18) 

             022221 0( , )()()()( ξξξξε =++= )tuBtAtxAt&       (19) 
)()(  )(y 21 tCtxCt ξ+=                       (20) 

where  1mx ℜ∈ and 2mℜ∈ξ  are the slow and fast state 

variables, respectively,  1nu ℜ∈ and 2ny ℜ∈ are the input 
and output vectors, respectively, { ][ iiA , [ iB ], [ iC ]} are 
constant matrices of appropriate dimensions with }2,1{∈i , 
andε  is a small positive constant. The singularly perturbed 
system in Equations (18)-(20) is simplified by setting 0=ε  
[1,7,13]. In doing so, we neglect the fast system dynamics 
and assume that the state variablesξ  have reached their 
quasi-steady state. Hence, setting 0=ε  in Equation (19), 
with the assumption that [ 22A ] is nonsingular, produces:  

 )()()( 1
1

2221
1

22 tuBAtxAAt r
−− −−=ξ                        (21) 

where the index r denotes the reduced model. Substituting 
Equation (21) in Equations (18)-(20) gives the reduced model  

     )()(  )( tuBtxAtx rrrr +=&                      (22) 
)()()( tuDtxCty rrr +=                                 (23) 

where: 21
1

221211 AAAAAr
−−=  2

1
22121 BAABBr
−−=  

 21
1

2221 AACCCr
−−= , 2

1
222 BACDr
−−= . 

    

3. NEURAL NETWORK IDENTIFICATION WITH LMI 
OPTIMIZATION   

 

It is our objective to search for a similarity transformation 
that can be used to decouple a pre-selected eigenvalue set 
from the system matrix [A]. To achieve this objective, 
training the NN to estimate the transformed discrete system 
matrix [ dA~ ] is performed [1,8]. For the system of Equations 
(18)-(20), the discrete model of the system is given as: 

)()()1( kuBkxAkx dd +=+                      (24) 
)()()( kuDkxCky dd +=                              (25) 

The estimated discrete model can be written as: 

             )(
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             ⎥
⎦

⎤
⎢
⎣

⎡
=

)(~
)(~

)(~
2

1

kx
kx

ky                        (27) 

where k is the time index. The detailed matrix elements of 
Equations (26)-(27) are shown in Figure 3.  

The NN presented in Section 2.1 can be summarized 
by defining Λ as the set of indices i for which )(kgi is an 
external input, and by defining ß as the set of indices i for 
which )(kyi is an internal input or a neuron output. Also, by 
defining )(kui as the combination of the internal and external 
inputs for which ∪∈ ßi Λ. Training the network depends on 
the internal activity of each neuron which is:  

∑
∪∈

=
βΛi

ijij kukwkv )()()(                              (28) 

where wji is the weight representing an element in the system 
matrix or input matrix for ßj∈  and ∪∈ ßi Λ such that 

[ ]]~[]~[ dd BA=W . At (k +1), the output (internal input) of the 
neuron j is computed by passing the activity through the 
nonlinearity φ(.) as follows: 

))(()1( kvkx jj ϕ=+                       (29) 
With these equations, the NN estimates the system matrix 
[Ad] as illustrated in Equation (6) for zero input response. 
That is, an error can be obtained by matching a true state 
output with a neuron output as follows: 

)(~)()( kxkxke jjj −=      
The objective is to minimize the cost function given by: 

∑=
k

kEE )(total , where   ∑
∈

=
ςj

j kekE )()( 2
2
1  

where ς denotes the set of indices j for the output of the 
neuron structure. This cost function is minimized by 
estimating the instantaneous gradient of E(k) with respect to 
the weight matrix [W] and then updating [W] in the negative 
direction of this  gradient  [8,16]. In steps, this may be 
proceeded as follows: 

- Initialize the weights, [W], by a set of uniformly 
distributed random numbers. Starting at the instant         
k = 0, use Equations (28) and (29) to compute the output 
values of the N neurons (where ßN = ).  
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- For every time step k and all ,ßj∈  ßm∈  and 
∪∈ ßl Λ, compute the dynamics of the system which 

are governed by the triply indexed set:  

         
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+=+ ∑

∈ßi
mj

i
mjij

j
m kukkwkvk )()()())(()1( lll

& δπϕπ  

with initial conditions 0)0( =j
mlπ  and mjδ  is given by 

( ))()( kwkw mji l∂∂ , which is  equal to "1" only when      
j = m and l=i ; otherwise it is "0". Notice that for the 
special case of a sigmoidal nonlinearity in the form of a 
logistic function, the derivative )(⋅ϕ&  is given by: 
          )]1(1)[1())(( +−+= kykykv jjjϕ& .    

- Compute the weight changes corresponding to the error 
signal and system dynamics:  

∑
∈

=Δ
ς

πη
j

j
mjm kkekw )()()( ll                               (30) 

- Update the weights in accordance with: 
)()()1( kwkwkw mmm lll Δ+=+                 (31) 

- Repeat the computation until the desired estimation is 
achieved. 

As illustrated in Equations (6) and (7), for the 
purpose of estimating only the transformed [ dA~ ], the 
training is based on the zero input response. Once the training 
is complete, the obtained weight matrix [W] is the discrete 
estimated transformed system matrix [ dA~ ]. Transforming 
the estimated system back to the continuous form yields the 
desired continuous transformed system matrix [ A~ ]. Using 
LMI, the permutation matrix [P] is determined. Hence, a 
complete system transformation, as shown in Equations (9) 
and (10) is achieved.  

For order model reduction, the system in Equations 
(9) and (10) will be written as: 
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The following system transformation enables us to decouple 
the original system into retained (r) and omitted (o) 
eigenvalues. The retained eigenvalues are the dominant 
eigenvalues that produce the slow dynamics and the omitted 
eigenvalues are the non-dominant eigenvalues that produce 
the fast dynamics. Hence, 

)()(~)(~)(~ tuBtxAtxAtx rocrrr ++=& ,  

)()(~)(~ tuBtxAtx oooo +=&      
The coupling term )(~ txA oc  maybe compensated for by 
solving for )(~ txo  in the second equation above by setting 

)(~ txo
&  to zero based on the singular perturbation method (by 

setting 0=ε ). Doing so, the following is obtained: 
 )()(~ 1 tuBAtx ooo

−−=                         (34) 

Using )(~ txo , we get the reduced order model given by:  

    )(][)(~)(~ 1 tuBBAAtxAtx roocrrr +−+= −&                 (35) 

    )(][)(~)( 1 tuDBACtxCty ooorr +−+= −                  (36)  
Thus, the overall reduced order model is: 

     )()(~  )(~ tuBtxAtx orrorr +=&          (37) 
)()(~)( tuDtxCty orror +=                                      (38) 

The details of the {[ orA ], [ orB ], [ orC ], [ orD ]} overall 
reduced matrices are shown in Equations (35) and (36). 
 
4. DYNAMICAL SYSTEM MODEL REDUCTION USING 

NEURAL IDENTIFICATION  
 

This section investigates the proposed method of reduced 
system modeling using NN with and without LMI. 
 

4.1 Model Reduction Using Neural Identification  
 

Based on the assumption that the states are reachable and 
measurable, the recurrent NN is utilized to estimate [ dÂ ] 

and [ dB̂ ] for a given input as shown in Figure 3. Based on 
this transformation, a desired reduced model is obtained.  
Example 1. Consider the 3rd order system: 
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Since the system is a 3rd order, there are three eigenvalues 
which are {-25.2822, -22, -42.717}. After proper 
transformation and training, the following desired diagonal 
transformed model is obtained: 
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         This transformed model was simulated with an input 
signal that has different functions to capture most of the 
system dynamics as seen in Figure 4, which presents the 
system states while training and converging.  
 
 
 
 
 
 
 
 
 
   
 
 
 
 
Figure 4. System state response for the three states for a sequence 
of inputs (1) step, (2) sinusoidal and (3) step ( ___original state. -.-.-. 
state while convergence). 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-7-5 IMECS 2009



 

   

0 0.1 0.2 0.3 0.4 0.5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Time[s]

S
ys

te
m

 O
ut

pu
t

             It is important to notice that the eigenvalues of the 
original system are preserved in the transformed model as 
seen in the above diagonal system matrix. Reducing the 3rd 
order transformed model to a 2nd order model yields: 
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with the dominant eigenvalues preserved as desired. 
However, by comparing this result to the result of the 
singular perturbation without transformation which is: 

uxx rr ⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
=
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2.7520.9-

&  

[ ] [ ]uxy rr 0.0125     0.3251.05 +=  
it is seen that the eigenvalues {-18.79, -31.60} are totally 
different from the original system eigenvalues. The three 
different models were tested for a step input signal and the 
results are shown in Figure 5. 
 
 
 
 
 
 
 
 
 
 
     
 
 
Figure 5. Reduced 2nd order models (.… transformed, -.-.- non-
transformed) output responses to a step input along with the non-
reduced model ( ___ original) 3rd order system output response. 
 

It is observed that the transformed reduced model 
has achieved (1) preserving the original system dominant 
eigenvalues and (2) performing well as compared with the 
original system response. 
 
4.2 Order Model Reduction via NN and LMI-Based 
         System Transformation 
 
The following example illustrates the new idea of system 
order model reduction using LMI with comparison to the 
order model reduction without using LMI. 
Example 2. Consider the system of a high-performance tape 
transport shown in Figure 6. The system is  designed with a 
small capstan to pull the tape past the read/write heads with 
the take-up reels turned by DC motors [6].  

As can be shown, in static equilibrium, the tape 
tension equals the vacuum force FTo =  and the torque from 
the motor equals the torque on the capstan oot TriK 1=  where:  
     To = tape tension at the read/write head at equilibrium, 
     F = constant force (tape tension for vacuum column), 
     K = motor torque constant, 
     io = equilibrium motor current,  

     r1 = radius of the capstan take-up wheel. 
The variables are defined as deviations from this 

equilibrium. The system motion equations are: 

 iKTr
dt

d
J t+−+= 111

1
1 ωβ

ω , 111 ωrx =&  

 eKRi
dt
diL e =+ 1ω ,  222 ωrx =&  

 0222
2

2 =++ Tr
dt

d
J ωβ

ω  

 )()( 131131 xxDxxKT && −+−=  
 )()( 322322 xxDxxKT && −+−=  
 111 θrx = ,  222 θrx = ,  

2
21

3
xx

x
−

=  

where:  
D1,2 = damping in the tape-stretch motion, 
e = applied input voltage V, 
i = current into capstan motor, 
J1 = combined inertia (wheel and take-up) motor, 
J2 = inertia of the idler, 
K1,2 = spring constant in the tape-stretch motion, 
Ke =  electric constant of the motor, 
Kt =  torque constant of the motor, 
L =  armature inductance, 
R =  armature resistance, 
r1 = radius of take-up wheel, 
r2 = radius of the tape on the idler,  
T = tape tension at the read/write head, 
x3 = position of the tape at the head, 

=3x& velocity of the tape at the head, 
β1 = viscous friction at take-up wheel, 
β2 = viscous friction at the wheel, 
θ1 = angular displacement of the capstan, 
θ2 = tachometer shaft angle, 
ω1 = speed of the drive wheel 1θ& , 
ω2 = output speed measured by the tachometer output 2θ& . 

The state space form is derived from the system 
equations, where there is one input, which is the applied 
voltage, three outputs, which are: (1) tape position at the 
head, (2) tape tension, and (3) tape position at the wheel, and 
five states: (1) tape position at the air bearing, (2) drive wheel 
speed, (3) tape position at the wheel, (4) tachometer output 
speed, and (5) capstan motor speed. The following 
subsections present the simulation results for the 
investigation of different system cases using transformations 
with and without the use of LMI. 
 

4.2.1 System Transformation Using Neural  
           Identification without LMI 
 

This subsection presents simulations of system 
transformation using neural identification without LMI use.  
Case #1. Consider the following case of the tape transport: 

)(

1
0
0
0
0

)(

10-000.03-0
011.4-2.4-1.41.35
05000

0.753.11.11.35-1.1-
00020

)( tutxtx

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=&

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-7-5 IMECS 2009



 

   

0 5 10 15 20
-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Time[s]

S
ys

te
m

 O
ut

pu
t

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
        (a)      (b) 
     Figure 6. Tape-drive system: (a) Front view of a typical tape-drive mechanism and (b) schematic control model. 
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       The five eigenvalues are {-10.5772, -9.999, -0.9814,       
-0.5962 ± j0.8702}, where two eigenvalues are complex and 
three are real, and thus since (1) not all the eigenvalues are 
complex and (2) the existing real eigenvalues produce the 
fast dynamics that we need to eliminate, order model 
reduction may be applied. As can be seen, two real 
eigenvalues produce fast dynamics {-10.5772, -9.999} and 
one real eigenvalue produces slow dynamics {-0.9814}. We 
performed reduction based on the estimation of the input 
matrix ]ˆ[B  and the transformed system matrix ]ˆ[A . This 
estimation is achieved using NN.  

By discretizing the above system with a sampling 
time Ts = 0.1 s, using a step input with learning time Tl = 300 
s, training the NN for the input output data with a learning 
rate η = 0.005, the transformed model for ]ˆ[A  and ]ˆ[B  is: 
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As observed, all the system eigenvalues have been 
preserved in this transformed model with a little difference 
due to discretization. Using the singular perturbation 
technique, the following reduced 3rd order model is obtained: 
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It is also observed in the above model that the 
reduced order model has preserved all of its eigenvalues      

{-0.9809, -0.5967 ± j0.8701} which are a subset of the 
original system, while the reduced order model obtained 
using the singular perturbation without transformation has 
provided different eigenvalues {-0.828, -0.598± j0.930}. 

Evaluations of the reduced order models 
(transformed and non-transformed) were obtained by 
simulating both systems for a step input. Simulation results 
are shown in Figure 7.  

 
 

 
 
 
 
 
 

  
 
 
 
   

Figure 7. Reduced 3rd order models (…. transformed, -.-.-.- non-
transformed) output responses to a step input along with the non-
reduced model ( ____ original) 5th order system output response. 

 
Based  on Figure 7, it can be  seen  that  the  non-transformed 
reduced order model provides a response that is better than 
the transformed reduced model. This is due to the 
transformation performed only for [A] and [B] leaving [C] 
unchanged. Hence, system transformation is further 
considered for complete system transformation using LMI 
(for [A], [B], and [D]), where LMI-based transformation will 
produce better reduction-based response results than both the 
non-transformed and transformed without LMI.   
 Case #2. Consider the following 2nd case: 
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The eigenvalues are {-9.9973, -3.9702, -1.8992, -0.6778,       
-0.2055} which are all real. Utilizing the discretized model   
(Ts = 0.1 s) for a step input with learning time Tl = 500 s, and 
training the NN for the input output data with η = 1.25 x 10-5, 
and then, by applying the singular perturbation technique, the 
following reduced 3rd order model is obtained: 
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Again, it is seen here the preservation of the reduced order 
model eigenvalues being as a  subset of the original system. 
However, as shown before, the reduced order model without 
system transformation provided different eigenvalues           
{-1.5165, -0.6223, -0.2060} from the transformed reduced 
order model. Simulating both systems for a step input 
provided the results shown in Figure 8.  

 
 
 
 
 
 

  
 
 
 
   
 
 

 
 

Figure 8. Reduced 3rd order models (…. transformed, -.-.-.- non-
transformed) output responses to a step input along with the non-
reduced ( ____ original) 5th order system output response. 
 

In Figure 8, it is also seen that the response of the 
non-transformed reduced order model is better than the 
transformed reduced model, which is again caused by  
leaving the output [C] matrix without transformation.  
 
4.2.2 LMI-Based State Transformation via Neural 
           Identification 
 
As previously observed, the system transformation without 
using LMI, where its objective was to preserve the system 
eigenvalues in the reduced order model, did not provide an 
accurate response as compared with either the reduced non-
transformed or the original responses. As was explained, this 
was due to the fact of not transforming the complete system 
(i.e.,  by neglecting the [C] matrix). In order to achieve better 
response, we will now perform a complete system 
transformation using LMI to obtain the permutation matrix 

[P]. The following presents simulations for the previously 
considered tape drive system cases.  
Case #1. For the example of case #1 in subsection 4.2.1, the 
NN estimation is used now to estimate only the  transformed 
[ dA~ ] matrix. Discretizing the system with Ts = 0.1 s, using a 
step input with learning time Tl = 15 s, and training the NN 
for the input output data with η = 0.001, produces the 
transformed system matrix:  
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Based on this transformed matrix, using LMI, the 
permutation matrix [P] was computed and then used for the 
complete system transformation. Thus, the transformed 
{[ B~ ], [ C~ ], [ D~ ]} matrices were then obtained. Performing 
order model reduction provided the 3rd order reduced model: 
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where the objective of eigenvalue preservation is clearly 
achieved. Investigating the performance of this new LMI-
based reduced order model shows clearly that the new 
completely transformed system is better than all of the 
previous reduced models. This is shown in Figure 9. As seen 
in the figure, the 3rd order reduced model, based on LMI 
transformation, provided a response that is almost the same 
as the 5th order original system response.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. Reduced 3rd order models (…. transformed without LMI, 
.-.-.- non-transformed, ---- transformed with LMI) output responses 
to a step input along with the non reduced ( ____ original) system 
output response. The LMI-transformed curve fits almost exactly on 
the original response.  
 
Case #2. Investigating the example of case #2 in subsection 
4.2.1, for Ts = 0.1 s, 200 input/output data points, and            
η = 1 x 10-4, the LMI-based transformation and then order 
reduction were performed. Simulation results of the reduced  
order models and the original system are shown in Figure 10. 
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Figure 10. Reduced 3rd order models (…. transformed without LMI, 
-.-.-.- non-transformed, ---- transformed with LMI) output responses 
to a step input along with the non reduced ( ____ original) system 
output response. The LMI-transformed curve fits almost exactly on 
the original response. 
 

 Again, the response of the reduced order model 
using the complete LMI-based transformation is the best as 
compared to the other reduction techniques. 
 

5. CLOSED LOOP FEEDBACK CONTROL FOR THE 
REDUCED ORDER MODELS 

 

Using the LMI-based reduced system models presented in the 
previous section, different control techniques are considered 
in this section to obtain the desired system performance.   
 

5.1 PID Control 
 

A PID controller is a control  feedback method which is 
widely used in industrial control systems [4,6]. It attempts to 
correct the error between a measured process variable 
(output) and a desired set-point (input) by calculating and 
then providing a corrective signal that can adjust the process 
as shown in Figure 11.  
 
 
 
 
 
 
 
 
 
Figure 11. Single-input single-output (SISO) closed-loop feedback 
control using a PID controller. 
 

 In the control design process, the three parameters 
of the PID controller {Kp, Ki, Kd} have to be calculated for 
some specific process requirements such as system overshoot 
and settling time. It is normal that once they are calculated 
and implemented, the response of the system is not actually 
as desired. Therefore, further tuning of these parameters is 
needed to provide the desired control action. 

For the system of LMI-based case #1, focusing on 
one output of the tape-drive machine, we investigated the 

PID controller using the reduced order model for the desired 
output that we are interested in. Thus, the estimated reduced 
3rd order model is now considered for the output of the tape 
position at the head represented by: 

         
1.09192.2837s2.1742s

0.1330.0801s)(
23original

+++

+
=

s
sG  

Searching for suitable values of the PID controller 
parameters, such that the system provides a faster response 
settling time and less overshoot, it is found that Kp = 100,    
Ki = 80, and Kd = 90 with a controlled system given by: 

         
10.6420.8s22.26s9.383s

10.6419.71s19.98s7.209s)(
234

23

controlled
++++

+++
=

s
sG  

Simulating the PID controlled system for a step input shows 
the results in Figure 12, where the settling time is 1.5 s while 
without the controller was 6.5 s. Also as observed, the 
overshoot has much decreased after using the PID controller. 
 
 
 
 
 
 
 
     
 
 
 
 
 
Figure 12. Reduced 3rd order model PID controlled and 
uncontrolled step responses.  
 

 On the other hand, the other system outputs can be 
PID-controlled using the cascading of current process PID 
and new tuning-based PIDs for each output. For the PID-
controlled output of the tachometer shaft angle, the 
controlling scheme would be as shown in Figure 13.  

 
 
 
 
 
      
 
      
    
 
Figure 13. Single-input multiple-output (SIMO) closed loop 
feedback system with a PID controller. 
 

As seen in Figure 13, the output of interest (2nd 
output) is controlled as desired using the PID controller. 
However, this will affect the other outputs performance and 
therefore a further PID-based tuning operation must be 
applied. As shown in Figure 13, the tuning process is 
accomplished using G1T and G3T. For example, for the 1st 
output G1: 

RG Y YRGGY T 112111 )PID( ==−=                    (39) 
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where Y2 is the Laplace transform of the 2nd output. Similarly, 
G3T can be obtained for the 3rd output G3. 
 
5.2 State Feedback Control  
 
In this section, we will present the state feedback control 
(SFC) using pole placement and the LQR optimal control. 
  
5.2.1 SFC via Pole Placement 
 
For the reduced order model in the system of Equations (37) 
and (38), an LQR-based state feedback controller can be 
designed. For example, assuming that a controller is needed 
to provide the system with an enhanced system performance 
by relocating the eigenvalues, this objective can be achieved 
using the control input given by: 

)()(~)( trtxKtu r +−=                    (41) 
where K is the state feedback gain designed based on the 
desired system eigenvalues. A state feedback control for pole 
placement can be illustrated as shown in Figure 14.  
 
 
 
 
 
  
 
 
 
 
Figure 14. Block diagram of a state feedback control (SFC) with  
{[ orA ], [ orB ], [ orC ], [ orD ]} overall reduced order system 
matrices. 

 
Replacing the control input u(t) in Equations (37) 

and (38) by the above new control input in Equation (41) 
gives the following reduced system equations: 

)]()(~[)(~)(~ trtxKBtxAtx rorrorr +−+=&               (42) 
)]()(~[)(~)( trtxKDtxCty rorror +−+=                 (43) 

 which can be re-written as:  
)()(~)(~)(~ trBtxKBtxAtx orrorrorr +−=&        

         )()(~][ trBtxKBA orroror +−=   
)()(~)(~)( trDtxKDtxCty orrorror +−=  

       )()(~][ trDtxKDC orroror +−=  
The overall closed-loop system model can be written as:  

)()(~)(~ trBtxAtx clrcl +=&                       (44) 
)()(~)( trDtxCty clrcl +=                       (45) 

such that the closed loop system matrix [Acl] will provide the 
new desired system eigenvalues.  
           For example, for the system of case #2 using LMI, the 
state feedback was used to replace the eigenvalues by {-1.89, 
-1.5, -1}. The feedback control was found K = [-1.2098 
0.3507 0.0184], which placed the eigenvalues as desired and 
enhanced the system performance as observed in Figure 15.  

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15. Reduced 3rd order state feedback control (for pole 
placement) output step response .-.-.- compared with the original 
____ full order system output step response. 
 
5.2.2 SFC via LQR Optimal Control 
 

Another method for designing SFC may be achieved by 
minimizing the cost function given by [6]: 

 ( )∫
∞

+=
0

dtRuuQxxJ TT                                 (46) 

which is defined for the system )()()( tButAxtx +=& , where 
Q and R are weight matrices for the system states and inputs. 
This is known as the LQR problem, [4,6]. The feedback 
control law that minimizes the values of the cost is given by: 
 )()( txKtu −=                        (47) 

where K is the solution of qBRK T1−=  and [q] is found by 
solving the algebraic Riccati equation described by: 

01 =+−+ − QqBqBRqAqA TT                        (48) 
A direct solution for the optimal control gain maybe 

obtained using the MATLAB statement ),,,(lqr RQBAK = , 

where in our example R = 1, and CCQ T= . 
The LQR optimization is applied to the reduced 3rd 

order model in case #2 of subsection 4.2.2. The state 
feedback optimal control gain K = [-0.0967 -0.0192  0.0027], 
which when simulating the complete system for a step input, 
provided the normalized output response (with a 
normalization factor γ = 1.934) as shown in Figure 16. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 16. Output step response for the LQR state feedback control 
reduced 3rd order model -.-.-.- and original ____ full order system. 
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5.3 Output Feedback Control  
 

The output feedback control (OFC) is another way of 
controlling the system for certain desired system  
performance as shown in Figure 17 where the feedback is 
directly taken from the output. This type of control is 
important since the output is usually measurable while the 
states (in the case of SFC) may not be measurable.   
 
 

 
 
 
 
 
 
Figure 17. Block diagram of an output feedback control (OFC). 

 

The control input is now given by )()()( trtyKtu +−= , 
where )()(~)( tuDtxCty orror += . Applying this control to the 
considered system, the system equations become [4]: 
            

)](]][[)(~]][[        

)]())()(~([)(~)(~

11 trKDIBtxCKDIKBA

trtuDtxCKBtxAtx

ororrorororor

orrororrorr
−− +++−=

++−+=&  (49) 

            
)(]][[)(~]][[

)]()([)(~)(
11 trDKDItxCKDI

trtyKDtxCty

ororroror

orror
−− +++=

+−+=           (50) 

            To obtain the OFC gain K, we used the LQR-based 
control and then the pseudo-inverse technique with partial 
tuning for K was performed. Focusing on the reduced model 
of case #2 in subsection 4.2.2, using the OFC, the feedback 
control is found K = [0.5799 -2.6276 -11]. The normalized 
controlled system step response is shown in Figure 18, where 
system performance enhancement can be seen. 
 

 
 

 
 
 
 
 
 
 
 
 
 
Figure 18. Reduced 3rd order output feedback controlled step 
response -.-.-.- compared with the original ____ full order system 
uncontrolled output step response. 
 

6. CONCLUSION 
 

A new method of dynamical system control is introduced in 
this paper. In order to achieve this control, the model order of 
the dynamical system was reduced. This reduction was 
achieved by the implementation of a NN to identify certain 
elements [Ac] of the transformed system matrix [ A~ ], while 
the other elements [Ar] and [Ao] are set based on the system 
eigenvalues such that [Ar] contains the dominant eigenvalues 
(slow dynamics) and [Ao] contains the non-dominant 

eigenvalues (fast dynamics). To obtain the transformed 
matrix [ A~ ], the zero input response (u(t) = 0) was used in 
order to obtain output data related to the state dynamics, 
based only on the system matrix [A]. After the transformed 
system matrix was obtained, the optimization algorithm of 
Linear Matrix Inequality (LMI) was used to determine the 
permutation matrix [P], which is required to complete system 
transformation matrices {[ B~ ], [ C~ ], [ D~ ]}. The reduction 
process was then performed using the singular perturbation 
method, which operates on neglecting the faster-dynamics 
eigenvalues and leaving the dominant slow-dynamics 
eigenvalues to control the system. The comparison results 
show clearly that modeling and controlling dynamical 
systems using LMI is superior to that without using LMI.  
 

REFERENCES 
 
[1] A. N. Al-Rabadi and O. MK. Alsmadi, “Supervised Neural  
      Computing and LMI Optimization for Order Model Reduction- 
      Based Control of the Buck Switching-Mode Power Supply,”   
      submitted. 
[2] A. Bilbao-Guillerna, M. De La Sen, S. Alonso-Quesada, and A. 
      Ibeas, “Artificial Intelligence Tools for Discrete Multiestimation  
      Adaptive Control Scheme with Model Reduction Issues,” 
      Proc. of the Int. Association of Science and Tech., Artificial   
      Intelligence and Application, Innsbruck, Austria, 2004.  
[3]   S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, 
       Linear Matrix Inequalities in System  and Control Theory,  
       SIAM, 1994. 
[4]  W. L. Brogan, Modern Control Theory, 3rd Edition, Prentice 
        Hall, 1991. 
[5]   J. H. Chow and Peter V. Kokotovic, “A Decomposition of 
        Near-Optimal Regulators for Systems with Slow and Fast  
        Modes,” IEEE Transactions on Automatic Control, Vol. 
        AC-21, pp.  701-705, October 1976. 
[6]   G. F. Franklin, J. D. Powell, and A. Emami-Naeini, Feedback 
        Control of Dynamic Systems, 3rd Edition, Addison-Wesley,1994.  
[7]   G. Garsia, J. Dfouz, and J. Benussou, “H2 Guaranteed Cost 
        Control for Singularly Perturbed Uncertain Systems,” 
        IEEE Transactions on Automatic Control, Vol. 43,  
        pp. 1323-1329, September 1998. 
[8]   S. Haykin, Neural Networks: a Comprehensive Foundation,  
       Macmillan College Publishing Company, New York, 1994. 
[9]   G. Hinton and R. Salakhutdinov, “Reducing the  
        Dimensionality of Data with Neural Networks,” Science, 
        pp. 504-507, 2006. 
[10] R. Horn and C. Johnson, Matrix Analysis, Cambridge, 1985. 
[11] S. H. Javid,  “Observing the Slow States of a Singularly 
        Perturbed Systems,” IEEE Transactions on Automatic 
        Control, Vol. Ac-25, pp. 277-280, April 1980. 
[12] H. K. Khalil, “Output Feedback Control of Linear Two 
        Time Scale Systems,” IEEE Transactions on Automatic 
        Control, AC-32, pp. 784-792, 1987. 
[13] H. K. Khalil and P. V. Kokotovic, “Control Strategies for 
        Decision Makers Using Different Models of the Same 
        System,” IEEE Tran.  on Auto. Contr., V.  AC-23,  
        pp. 289-297, 1978. 
[14] P. Kokotovic, R. O'Malley, and P. Sannuti, “Singular 
        Perturbation and Order Reduction in Control Theory – An  
        Overview,” Automatica, 12(2), pp. 123-132, 1976. 
[15] R. J. Williams and Zipser, “A Learning Algorithm for 
        Continually Running Full Recurrent Neural Networks,” 
        Neural Computation, 1(2), pp. 270-280, 1989. 
[16] J. M. Zurada, Artificial Neural  Systems, West Publishing  
        Company, New York, 1992. 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-7-5 IMECS 2009


