
 
 

 

 

 

 
 
 
Abstract- An increasing demand for water due to population 
growth, industrial development and improvement of economic 
require management of water transfer and improve operation 
of water supply systems. This paper considers the application 
of a model predictive control (MPC) technique to improve the 
behavior of the water network supply system, to maintain 
stable operation of the water flow rate, and reduce the 
operational cost by manipulating the pump speed. The MPC 
algorithm is one of the most common automatic control system 
that has got a wide spread application in process industry. The 
results show that the MPC technique gives improved 
performance over the PID control technique, moreover, the 
MPC structure can be modified to handle the constraints 
applied on the system. 
 
Index terms: constraints, model predictive control, water 
supply system. 
 
 

I. INTRODUCTION 
 

Global demand for water is continuously increasing due to 
population growth, industrial development, and 
improvements of economic conditions, while accessible 
sources keep decreasing in number and capacity, moreover, 
the applications involving manipulation and transport of 
water and fluids in general demand high power 
consumption. The optimal use of such water supply 
networks seems to be the best solution for the present and 
thus it is necessary to carefully manage water transfer [1, 2].  
Most of the research in the field of water distribution has 
concerned with the optimal design of new networks [3 - 6], 
the main topic of this research has been mainly focused on 
the design of optimized configurations for pipe 
interconnected reservoirs [3] or concentrated on the 
scheduling of pumps [4,5], however, the energetic efficiency 
will be sacrificed when the pumps operate under a variable 
load and hence under non-optimized conditions. The 
optimized operation of this kind of system usually results in 
a control strategy determination problem for the active 
elements from measuring the monitoring variable so that 
some performance target is reached (power minimization, 
pressure limitation to avoid Leakage, etc.). A few 
researchers have developed techniques for the operational 
optimization of existing supply networks [1, 2, 7]. The 
objective of this research is the contribution in controlling a 
water supply network systems using power full control 
algorithm such as the model predictive control (MPC) 
algorithm. The MPC algorithm is an alternative to the 
conventional PID and other advance control algorithm such  
 
 
 
 

 
 
 
as the H∞ control algorithm used by Ekar and Kara [2, 7] for 
its superiority and robustness for controlling processes of 
multi-inputs multi-outputs and subjected to constraints. 
The idea of the MPC emerged in 1965, where Dawkins and  
Briggs [8] used weighting function as a system description 
for use in optimal control. However, it was rarely used as a 
controller in control engineering until the advent of digital 
computers. There are different MPC algorithms that could 
be suitable for single and multivariable systems and are 
successfully applied to real life processes include dynamic 
matrix control (DMC) 1978 [9], and generalize predictive 
control (GPC) 1987 [10,11], more review on these 
algorithms is given by Mackay etc. [9]. All of these classes 
of MPC have certain features in common, implementation of 
receding horizon to solve a finite horizon optimization 
problem, with differences occurring in the sequence of 
control implementation and in the underlying formulation of 
the models and constraints. Some of these MPC methods 
use non-parametric weighting function models forms during 
the prediction process, and others use parametric models. 
Parametric predictive controllers allowed for a more 
efficient algorithm and making the incorporation of adaptive 
techniques more feasible, whereas non-parametric predictive 
controllers are very robust when compared to parametric 
models, at the cost of computation power. DMC uses non-
parametric step response models to generate both the free 
and forced responses. However, GPC uses the impulse 
response to generate the forced response, parametric 
controlled auto-regressive and integrated moving average 
(CARIMA) model to generate the free response. a different 
number of extensions to the original DMC have been 
incorporated to deal with constraints, multi-variable 
interactions and nonlinear systems [12-17] and a review on 
the recent advances on MPC algorithm can be found in 18. 

 

II. MODEL PREDICTIVE CONTROL (MPC) 
ALGORITHMS 

 
The idea of the predictive control structure is based on a 
very natural manner of interpreting feedback control, as 
illustrated in Figure 1, where the process model is in parallel 
to the plant. It can be said, the MPC scheme is based on the 
explicit use of a process model and process measurements to 
generate values for process input as a solutions of an on-line 
(real-time) optimization problem to predict the future 
process behavior. The process measurements provide the 
feedback (and optionally, feed-forward) element in the MPC 
structure.   
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The idea of the predictive control structure is based on a 
very natural manner of interpreting feedback control, as 
illustrated in Figure 1, where the process model is in parallel 
to the plant. It can be said, the MPC scheme is based on the 
explicit use of a process model and process measurements to 
generate values for process input as a solutions of an on-line 
(real-time) optimization problem to predict the future 
process behavior. The process measurements provide the 
feedback (and optionally, feed-forward) element in the MPC 
structure.     
The MPC structure can be summarised by the following 
steps: 
• At each control interval t, the process output response is 

predicted p-steps ahead into the future y(t+l), where l = 
1, ...., p. The prediction value y(t+l) depends on the past 
actuation and the planned m-step ahead actuation 
[Δu(t+j), j =1, ..., m-1, m < p]. 

• The planned moves [Δu(t+j), j=1,....,m-1] are 
calculated from minimising a quadratic cost function. 
The cost function index incorporates the errors (the 
difference between the future reference trajectory and the 
predicted process output) and actuation moves. Although 
the vector of future control moves is calculated, only u(t) 
is applied to the process. 

• The prediction is corrected at each stage by comparing 
the current measured values and its predicted values 
through a filter. 

The above steps are repeated at each control interval and 
this is referred to as receding horizon strategy as shown in 
Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2. Receding horizon strategy 

From the viewpoint of practical industrial applications, the 
method has some important advantages over other control 
techniques: 

• Applicable to processes with unusual and difficult 
dynamic behavior. 

• Can handle in straightforward way multivariable 
interactive control problems. 

• Has inherent dead-time compensation. 
• Introduces feed-forward control in a natural way 

(for compensating measured disturbances). 
• Conceptually simple to extend to constrained 

control problems. 
• Intuitive in nature and robust in approach. 

 
The general mathematical formulation for the DMC 
algorithm as a MPC structure mentioned above is composed 
of two distinct steps: 

1. The output prediction must be constructed based on 
the model and other information available, such as 
plant measurements. 

2. Having the prediction output, a set of future 
manipulated variable moves must be computed. 

 
At the beginning, the process should be at steady state at t = 
0. The current state for the model and the plant should be the 
same as the measured value of the plant, increment the 
discrete time variable t and; 
 
1- predict the output model using the value of the actuation 
to the model prediction the same as the actual value 
implemented on the plant (equation 1) 
                                             

)()/(ˆ)/1(ˆ tUSttYMttY u
shify Δ+=+                           1 

where; 
Mshift is the shift matrix for the output to include the 
predicted information and keep the prediction horizon vector 
constant. The last value is simply repeated, as p is assumed 
to equal the settling time n of the plant response; Su is the 
step response coefficient and   ΔU(t) = [ Δu(t) Δu(t+1)…… 
Δu(t+m-1)]T. where m is the number of allowable moves to 
be computed over the horizon p. This control horizon (m) 
should be less than or equal to the prediction horizon p. If m 
< p, then the step response matrix Su is of reduced order.      
This has the effect of reducing the computational time and 
increasing the robustness of the controller in the presence of 
plant and model mismatch. 
 
2- The predicted output in Equation 1 is corrected by the 
plant prediction error, which could be as a result of 
instrument/process noise, process disturbance or modeling 
errors, and then the corrected prediction output becomes 
(equation 2). 
 

))/1(ˆ)(()/1(ˆ)/1(ˆ ttytykttYMttY measfshift +−++=+
            

 
where kf is the filter that eliminates high frequencies in the 
feedback loop. The inclusion of the filter term in any 
instance would preserve the dynamics of the system, by 
removing the assumption that the error of the current sample 
would be consistent for future samples. In this work, the 
filter term is not taken into account and is assumed to be 1. 
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Fig.1. Predictive control structure  
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3- Compute the future changes in input that minimize the 
errors between the actual output response and the desired 
output response, with the addition of penalizing the 
movement of the actuation for smother control, the 
following optimizing quadratic cost function (equation 3) is 
used. 
                         

))(())(())/1(())/1(( tUtUttEttEJ uTuuyTuy ΔΓΔΓ++Γ+Γ=
                  
Where, Γy is the diagonal output weight matrix consisting of 
γy, and Γu is the diagonal output weight matrix consisting of 
γu, Eu(t+1/t) is the future predicted error (equation 4): 
                              

)()/1(ˆ)1()/1( tUSttYMtRttE u
shift

u Δ−+−+=+
                                

 
R(t+1) = [r(t+1) r(t+2)……………r(t+p)] is the reference 
trajectory. To find the optimum input vector ΔU(t) over the 
control horizon, the cost function J should be minimized 
with respect to ΔU(t). By differentiating the cost function J 
Equation 3 with respect to ΔU(t) and equating the result to 
zero, this will give us the optimum control vector: 

)/1()( ttEKtU o
MPC +=Δ     

                                                      
Eo(t+1/t), the error trajectory with no future control action 
(ΔU(t) = 0) given by equation 6:                      
 

)/1(ˆ)1()/1( ttYMtRttE shift
o +−+=+                                          

 

The constant gain matrix KMPC can be calculated off-line as 

(equation 7): 

yyuuuuyyu
MPC

TTTTT

SSSK ΓΓΓΓ+ΓΓ= −1)(                    7 

An important characteristic of control problems is the 
presence of constraints on input and output variables. Input 
and output constraints are usually associated with 
operational limitations. The presence of such constraints 
results in on-line optimization that produces a non-linear 
controller, even when the plant and model dynamics are 
assumed linear. It is important to note that the input 
constraints are hard constraints, in the sense that they must 
be satisfied; output constraints can be viewed as soft 
constraints, because their violation may be necessary to 
obtain a feasible optimization problem. For the model 
predictive control to deal with constraints the quadratic cost 
function (Equation 3) should be formulated in a way that 
can be solved by the quadratic programming (QP) method. 
A standard QP problem can be stated as follows: 
                                                       

bAxtoSubject

xgHxxf TT

x

≤

−=

 
2
1min

                                                 8 

 
Where, H is the Hessian matrix, g is the gradient vector, A is 
the inequality constraint equation matrix, and b is the 
inequality constraint equation vector. 
By substituting and expansion of equation 3, the cost 
function can be reduced in form of equation 9:  

           

[ ] [ ] )()/1()()(
2
1 tUttEStUSStUJ oyyuuuuyyuT TTTTT

Δ+ΓΓ−ΔΓΓ+ΓΓΔ=    9 

which is in the same form as the QP problem, where, 
 

 
uuuyyu TTT

SSH ΓΓ+ΓΓ=  and 

)/1( ttESg oyyu TT

+ΓΓ=  
 
It can be noticed that the Hessian matrix H is constant and it 
can be calculated off-line, and that the gradient vector g is a 
function of the error trajectory Eo(t+1/t), which is updated at 
each control interval. The cost function (equation 9) is 
subjected to constraints equation 10. 
                                              

   btUA ≤Δ )(                                                                   10 

where A is the inequality constraint matrix, A = [Il -Il I -I Su 
-Su]T, Il is an (m x m) lower triangular matrix, I is an (m x m) 
identity matrix, b, is the inequality constraint vector; 
b = [uhigh (t) – u(t-1), ... uhigh (t+m- 1) – u(t-1), u(t-1) -  ulow 
(t), ... u(t-1)- ulow (t+m-1), Δumax(t) ... Δumax(t+m-1) , Δumax(t) 
... Δumax(t+m-1), -Mshift Ŷ(t/t)+yhigh(t+1),Mshift Ŷ(t/t)-
ylow(t+1)]T. 
Now the MPC problem is a minimization of a quadratic cost 
over the decision vector ΔU(t), subject to the linear 
inequality equations. This encompasses both requirements 
for the constraint variables to lie in the feasible region, and 
for ΔU(t) to minimize the quadratic cost function. As the 
number of constraint increase, the number of QP increases 
and may exceed the maximum time required to complete the 
calculation within the control interval. In the moving 
horizon strategy, the QP algorithm is solved at each control 
interval after a new prediction vector becomes available. For 
the QP in MPC, the Hessian matrix H is constant, but the 
gradient vector g and vector b need to be updated at each 
control interval, because of the generation of a new error 
vector at each control interval. A number of numerical 
iterative techniques exist to solve the resulting QP problem. 
The method which is used for solving this QP problem is the 
active set method (projection method) supported in the 
MatLab software package due to its fast convergence.  
 

III. WATER SUPPLY SYSTEM 
 
Water supply systems are generally composed of a large 
number of interconnected pipes, reservoirs, pumps, valves, 
and other hydraulic elements which carry water from 
retention to demand areas [1, 2, 7]. The hydraulic elements 
in a supply system may be classified into two categories: 
active and passive. The active elements are those which can 
be operated to alter the flow rate of water in specific parts of 
the system, such as pumps and valves. The pipes and 
reservoirs are passive elements, insofar as they receive the 
effects of the active elements. These elements in the supply 
systems play important roles in dynamic behavior of the 
water supply systems. Simulations of the water supply 
systems have been an indispensable work to understand 
their behavior to produce a feasible control solution as well 
as modeling .The simulations can thus be used to generate 
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ideas in order to develop flexible management and design 
schemes. Consequently, this process may facilitate a better 
exchange of ideas among representatives of different 
professions. It also combines technical and financial 
viewpoints. The first step in simulation and control is to 
establish a mathematical model for the plant to be 
controlled. Furthermore, an adequate model is an important 
step in determining the behavior and producing a well MPC 
algorithm.  
Hydraulic systems generally require complex models. 
Derivation of control strategies on the basis of the complex 
models is difficult. For these reasons, the plant model should 
be chosen to be simple with a minimum number of 
dominant variables, which, nevertheless, adequately reflect 
the dynamics of the plant. The plant can be described by the 
parameters that characterize its functioning such as the 
pumps discharges, water heads in the reservoirs, and flow 
rates through the system .Thus the simulation of the model 
that represents a water supply system may prove an efficient 
measure to contribute to the correct transfer of water and to 
reduce operational cost, as well as to improve the operation. 
The active and passive elements are represented by 
dominant system variables.  The main objectives are to 
ensure the proper operation of a water supply system and to 
regulate the water flow rates and heads by manipulating the 
water pumps. By assuming that the water is incompressible 
and the individual system components are stationary the 
hydraulic model of the supply system is composed of the 
following models for every component of the supply system. 
 

 
IV. PUMPS 

 
Head developed by n variable-speed pumps running in 
parallel varies nonlinearly with their speed N rpm and output 
water flow rate Qp(t) m3/ s. 
 
                                              

2 2
2( , ) o o

p p o p p
B Ch N Q A N NQ Q
n n

= + −                     11 

 
where, Ao, Bo, Co are the constants for a particular pump 
depending on  component characteristics [2, 7]. These 
constants can also be calculated using appropriate 
manufacturer’s specifications. 
 
 

V. PIPES 
  
Consider a pipe section with length lp (m) and cross-
sectional area Ap (m2) . If the head difference Δh between 
two ends of the pipe section is considered, the following 
differential equation is obtained: 
                                           

[ ]( ) ( ) ( )p
loss

p

gAdQ t h t h t
dt l

= Δ −                                    12 

 
Where hloss (t)  denotes the total head loss along the piping 
section and g denotes the acceleration of gravity. The flow 
rate and head loss may be given as: 
 
 

        
( ) ( ) ( )

( ) ( )

o
loss loss loss

o

h t h t h t

Q t Q Q t

= + Δ

= + Δ
                                   13 

                                                                                                          
where (.)o denotes steady-state value and Δhloss (t) designates 
the variable head loss caused by the variable water flow rate 
ΔQ (t).  
 

VI. WATER RESERVOIR 
  
When a reservoir discharges under its own head without 
external pressure, the continuity equation simplifies to: 
                                              

[ ]( ) 1 ( ) ( )i i o o
dh t Q t Q t

dt c
ρ ρ ρ= −                                1 4 

 
Where ρ, ρi, ρo represent the water densities inside the 
reservoir, water inflow, and outflow, respectively, and these 
are assumed equal ρ = ρi = ρo. Qi(t) m3/ s Qo(t) m3/ s denote 
reservoir input and output water flow rates, respectively, 
c(m2) denotes the capacity of the reservoir and h(t) (m) is 
the head in the reservoir. 
 
A single input single output linear model of a water supply 
system considered in our study has been developed for the 
Gaziantep water supply system shown in figure 1. by Eker 
and Kara [19]. 
 

 
Fig.3. diagram of the water supply system taken from (19) 

 
The input to the system is considered to be the pump speed 
N rpm and the ouptut of the system is the flow rate from the 
third reservoir Qo(t) m3/ s. The numerical data about the 
water supply system are given in Table 1. The output water 
flow rate was measured at 1-h intervals in a day, so 24 
measurements were taken using a flow meter installed on 
the real system. 
 
Using the data obtained, the average water flow rate is about 
Qo = 2.83 m3/ s (10188 3), m3/ h) and it changes between 
10175 m3/ h and 10 200 m3/ h. The pump characteristics 
were obtained from the pump’s manufacturer. Head 
developed by the pump was calculated around the operating 
point using the characteristic curve as 

 
l1 = 669.27 m 

 
Ap= 1.5394 m2 

 
D = 1.4 m 

 
l2 = 13805.04 m

 
hs1 = 113.4 m

g = 9.81 m/s2 l3 = 20094.69 
m 

hs2 = 210.4 m l4 = 4689.04 m hs3 = 283.4 m

Nso = 985 rpm At  = 475 m2 hs4 = 2.79.7 m Qso =  2.83 m3/s  
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The linear model of the water supply system shown in figure 
1 was obtained by linearizing the mentioned system using 
the Taylor series expansion method around a steady-state 
operating point ( Nso = 985 rpm , Qso =  2.83 m3/ s). 
 

Table 1. Numerical data of the water supply system 
  
A detailed study on the system modeling is given by Eker 
and kara [19]. The resulting equations (16 - 23) of the 
system using the above data and operating point in table 1 
are as follows: 
                                            

1
1 10.0067 0.0226 0.4553dQ N h Q

dt
= − −                   16 

  
1

1 20.0021 0.0221dh Q Q
dt

= −                                       17 

                                            

2
1 2 20.0011 0.0011 0.0465dQ h h Q

dt
= − −                             18  

 
2

2 30.0021 0.0021dh Q Q
dt

= −                                       19 

                                            

3
2 3 30.0008 0.0008 0.0398dQ h h Q

dt
= − −       20 

3
30.0021 0.0021 o

dh Q Q
dt

= −                                         21 

                                            

30.0032 0.0253o
o

dQ h Q
dt

= −                                       22 

  oy Q=                                                                             23 
 
This system can be represented in state space matrix form 
such that the reservoir heads and flow rates can be 
considered as states. The canonical state space form of the 
above equations (16 – 23) [2] is as follows:  
 

( ) ( ) ( )
( ) ( )

x t Ax t Bu t
y t Cx t

= +
=                                                      24 

 

where x(t) is the state matrix, A, B, C are the constant system 
matrices, u(t) is the system input, and y(t) is the system 
output. The state matrix x(t), input u(t), and calculated 
constant matrices A, B, C are as follows: 
x(t) = [Qo h3 Q3 h2  Q2 h1 Q1]T, u(t) = N,  B = [0 0 0 0 0 0 
0.0067]T, C = [1 0 0 0 0 0 0], and 
 

 

0.0253 0.0032 0 0 0 0 0
0.0021 0 0.0021 0 0 0 0

0 0.0008 0.0398 0.0008 0 0 0
0 0 0.0021 0 0.0021 0 0
0 0 0 -0.0011 -0.0465 0.0011 0
0 0 0 0 -0.0021 0 0.0021
0 0 0 0 0 -0.0226 -0.4553

A

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥− −
⎢ ⎥= −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

The response of the open loop system without compensation 
to ±10% step response from the nominal value of 985 rpm is 
shown in figure 3. 

 

VII. CONTROL OF SUPPLY SYSTEM USING 
MPC ALGORITHM 

 
The proposed MPC algorithm is applied to control the water 
supply network system to provide stable operation, improve 
performance costs, and reduce the cost of operation and save 
electricity in the event of having many pumps operating 
simultaneously, by manipulating the speed of one of the 
pumps and letting the rest to operate at the minimal speed. 
For the closed-loop simulation, the control algorithm was set 
up with the linearized model described earlier in equation 
24, and step response of the model is obtained. The new set 
points were introduced. The tuning parameters were chosen 
so that the integrated square error (ISE) between the 
simulated output and set point is minimized, as follows: p = 
25, m = 2, Γu = 0.95 and Γy = 1. The pump operation was 
constrained between maximum value of 1000 rpm and a 
minimum value of 970 rpm. 
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Fig.3. Output flow rate Qo(t) m3/ s for N = 985±10% rpm 
square wave speed variation 
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Fig. 5. Closed-loop system response to a desired steady state 

output flow rate of 2.8566 m3/s due to the effect of non-
constrained MPC (solid), constrained MPC dash-dotted and 

PID controller (dashed) 
 
Fig. 5 and 6 illustrate the closed-loop response of the output 
flow rate of the system to a desired steady state values, it 
can be noticed that all the controllers takes the system 
response to the new values, but their performance are 
comparable. However, the rising time of the closed-loop 
response is faster in the case of unconstrained MPC 
comparing to the constrained MPC and PID controller, the 
constrained MPC has a good settling time slower than the 
settling time for unconstrained MPC and faster than the 
settling time for the PID controller, moreover, the constraint 
are kept within their interval which makes MPC a success 
control technique for controlling this water supply network 
system. In general, it can be said that the MPC algorithm 
adapt quickly to changing conditions of the water supply 
network system, the MPC structure can be modified to meet 
possible requirements concerning energy consumption and 
to handle the constraints applied to the system.        
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Fig.6. Closed-loop system response to a desired steady state 

output flow rate of 2.8074 m3/s due to the effect of non-
constrained MPC (solid), constrained MPC dash-dotted and 

PID controller (dashed) 

VIII. CONCLUSION 
 

It is clear that the robust MPC technique with a moving 
optimization horizon, offer an effective means of dealing 
with the problem of water transfer operation to achieve 
goals such as flow rate regulation and cost minimization. 
This concept has the intrinsic ability to compensate for 
changes in water disturbance that may occur at any point of 
the water supply system. 
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