
Abstract— In this paper a new method for two link- robotic 

manipulator systems control using Neural Network, The first 

method is based on Proportional-Integral-Derivative 

controller,   the second method is based on artificial Neural 

Network by PID controller for Two link- robot control with 

different load. 

Index Terms— two link- robotic manipulator systems, 
Neural Network, PID controller 
 

I. INTRODUCTION 
development of robotic applications, in industrial therefore 
dynamic control of robot manipulators is one of the most 
important and challenging fields of robotics, in the recent 
years using intelligence control such as fuzzy control, 
Neural Network, Neuro Fuzzy and because that they can 
control nonlinear systems that would be difficult or 
impossible to model mathematically. In the recently years 
In   Dynamic control of robot have been utilized in many 
researchers work in this area. Such as Lianfang Tian et al 
use a neural network approach for the motion control of 
constrained flexible manipulators robots [1]. Yi , et al have 
investigated the robustness and stability of a fuzzy logic 
controller applied to a robotic manipulator with 
uncertainties such as friction, unmodeled dynamics, and 
external disturbance etc [2],  Kumbla  et al have 
implemented hierarchical control on robotic manipulator 
using fuzzy logic [3]. 
Bannerjee, et al have used a Fuzzy Logic Controller to 
achieve position control of a two-link manipulator [4]. 
Adams, et al [5] has used GA to optimize the membership 
functions and rule bases of a multi-stage fuzzy PID 
controller with a fuzzy switch for robot control. Brudka, et 
al presented an intelligent robot control system which 
employs ultrasonic distance measurements, and for 
Consecutive stages of data processing they used to neural 
networks applications [6],  
Adamiv, et al used neural networks application for mobile 

robot control on predetermined trajectory of the road [7], 

Ya-Chen , et al used an Fuzzy neural adaptive controller  to 

multiple-link robot control [8], Devendra P, et al used the 

proportional plus derivative (PD) control with the PD 

controller gain parameters optimized via Genetic Algorithm 
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 (GA) And Fuzzy  Logic for  control of Two link- robot [9], 
Z.G. Zhang, et al report on the design and stability analysis 
of a simple quadruped running controller that can 
autonomously generate steady running with good energy 
efficiency and suppress. 
Dongbing Gu, et al presented a new path-tracking scheme 
for a car-like mobile robot based on neural 
Predictive control, they employed A multi-layer back-
propagation neural network to model non-linear kinematics 
of the robot instead of a linear regression estimator in order 
to adapt the robot to a large operating range [10], Mathew 
L, et al studied on the implementation of several Intelligent 
control techniques as applied to the balancing of the 
inverted wedge problem. These included a basic four-input 
direct fuzzy controller (including the use of the nonlinear 
input term) and an adaptive fuzzy control technique known 
as the FMRLC [11].  

 

II. DYNAMIC EQUATION OF TWO LINK- ROBOTIC 
MANIPULATOR SYSTEMS [12] 

In this section we derive the equations of motion for an 
individual link based on the direct method has been derived, 
i.e. Newton-Euler Formulation. The motion of a rigid body 
can be decomposed into the translational motion with 
respect to an arbitrary point fixed to the rigid body, and the 
rotational motion of the rigid body about that point. The 
dynamic equations of a rigid body can also be represented 
by two equations: one describes the translational motion of 
the centroid (or center of mass), while the other describes 
the rotational motion about the centroid. The former is 
Newton's equation of motion for a mass particle, and the 
latter is called Euler's equation of motion.  
Figure 1 shows all the forces and moments acting on link i.  
 

 

 
Figure 1: Free body diagram of link i in motion 

 
Let be ciV  the linear velocity of the centroid of link i with 
reference to the base coordinate frame O-xyz, which is an 
inertial reference frame. The inertial force is then given by 
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cii Vm
.

−  , where im  is the mass of the link and  ciV
.

is the 

time derivative of  ciV . 
Based on D’Alembert’s principle, the equation of motion is 
then obtained by adding the inertial force to the static 
balance of forces in eq.( 1) so that  

.

1,,1 0=−+− +− ciiiiiii Vmgmff  , ni ,...,1,0=                    

(1) 

iif ,1−  And 1, +− iif are the coupling forces applied to link i 
by links i-1 and i+1, respectively, and g is the acceleration 
of gravity. 
Adding these terms to the original balance of moments we 
have: 

0)()()(
.

1,,,1,,11,,1 =×−−×−+×−−− +−−+− iiiiiiiciiiiciiiiiiii IIfrfrrNN ωωω        

(2) 

iiN ,1−  and 1, +− iiN are the moment applied to link i by links 
i-1 and i+1, respectively. 
If we consider two individual links robot, Let us obtain the 
Newton-Euler equations of motion for the two individual 
links. 

 
Figure.2 Mass properties of two planar robots 

 
From eq. (1) and (2), the Newton-Euler equations for link 1 
are given by: 

.

1112,11,0 0=−+− cVmgmff                                               

(3) 

0)()(
.

112,11,11,01,02,11,0 =−×+×−− ωIfrfrNN c                           

(4)  

Note that all vectors are 2 x 1, so that moment N i-1,i and 
the other vector products are scalar quantities. Similarly, for 
link 2: 

.

2222,1 0=−+ cVmgmf                                                          

(5) 

0)(
.

222,12,12,1 =−×− ωIfrN c                                                   

(6)    

To obtain closed-form dynamic equations, we first 

eliminate the constraint forces and separate them from the 

joint torques, so as to explicitly involve the joint torques in 

the dynamic equations. For the planar manipulator, the joint 

torques τ1 and τ2 are equal to the coupling moments: 

iiiN τ=− ,1                                                                              

(7) 

Substituting eq. (7) into eq. (6): 

0)()(
.

22

.

2222,12 =−−×− ωτ IgmVmr cc                     

(8)  

Similarly, eliminating 1,0f  yields, 

 0)()()()(
.

1121,0

.

11,0221,0

.

111,021 =−×+×+×+×−− ωττ IgmrgmrVmrVmr cccc
      

(9) 

Next, we rewrite ciV , ciω  and iir ,1− using joint 

displacements 21,θθ   which are independent variables. 

Note that 2ω  is the angular velocity relative to the base 

coordinate frame, while 2θ  is measured relative to link 1. 
Then, we have 

.

2

.

121
.

1 , θθωθω +==                                                          

(10) 

The linear velocities can be written as 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡−
=

)cos(

)sin(

1

.

11

1

.

11
1

θθ

θθ

c

c
c

l

l
V                                                          

(11) 

{ }

{ } ⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+−++

+−++−
=

.
.

2212121211

.
.

2212121211
2

)cos()cos()cos(

)sin()sin()sin(

θθθθθθθ

θθθθθθθ

cc

cc
c

lll

lll
V          

(12) 

1

.

2

.

1

.

2212

..

1111 2 GhhHH +−−+= θθθθθτ                                       

(13)  

2

.

1

..

121

..

2222 GhHH +−+= θθθτ  

That: 
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(16) 
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III. NEURAL NETWORK CONTROLLER BASED ON PID AND 
PD CONTROLLER [13, 14, 15, 16, 17] 

This paper presents two strategies for achieving the control 
in two link- robotic manipulator systems. First one is based 
on Proportional-Integral-Derivative (PID) and second 
strategies are based on Neural Network controller based on 
PID controller both of these strategies are briefly described 
below: 

PID stands for Proportional-Integral-Derivative. This is a 
type of feedback controller whose output, a control variable 
(CV), is generally based on the error (e) between some user-
defined set point (SP) and some measured process variable 
(PV). Each element of the PID controller refers to a 
particular action taken on the error:  

Proportional: error multiplied by a gain, Kp. This is an 
adjustable amplifier. In many systems Kp is responsible for 
process stability: too low and the PV can drift away; too 
high and the PV can oscillate. Integral: the integral of error 
multiplied by a gain, Ki. In many systems Ki is responsible 
for driving error to zero, but to set Ki too high is to invite 
oscillation or instability or integrator windup or actuator 
saturation Derivative: the rate of change of error multiplied 
by a gain, Kd. In many systems Kd is responsible for 
system response: too high and the PV will oscillate; too low 
and the PV will respond sluggishly. The designer should 
also note that derivative action amplifies any noise in the 
error signal.  

The transform function of PID controller that used in this 
paper is [16]: 

                                                                                      
                                                                                        

(17) 
 

In this strategy PID controller is used in control of Two 
link- robotic manipulator systems,  The block diagram of  a 
PID controllers is shown in Figure 3. 
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Figure 3: the schematic of PID Controller 
  
Artificial neural network can be applied to various problems 
such as function approximation, pattern recognition, signal 
processing, classification, etc. There are typically two steps 
involved when using neural networks for control:  
1-System identification  
2-Control design  
In the system identification stage a neural network model of 
the plant to be controlled is developed. Fig. 4 shows the 
block diagram representation of the system identification 

stage. In the control design stage, the neural network plant 
model is used to train the controller. 
 

u
Plant
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+
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yp

ym +

-

Error

  
 

Figure 4: the structure of system identification stage 
 
In learning process, neural network adjusts its structure such 
that it will be able to follow the supervisor. The learning is 
repeated until the difference between network output and 
the Supervisor is low. Implemented with a closed loop 
control. The difference NARMA-L2 controller, a multilayer 
neural network has been successfully applied in the 
identification and control of dynamic systems. System 
identification and control design are the two steps involved 
in using NARMA-L2 controller [17].  

As with the model predictive control, the first step in using 
feedback linearization (or NARMA-L2 control) is to 
identify the system to be controlled. You train a neural 
network to represent the forward dynamics of the system. 
The first step is to choose a model structure to use. One 
standard model that has been used to represent general 
discrete-time nonlinear systems is the Nonlinear 
Autoregressive-Moving Average (NARMA) model: 

)]1(),...,1(),(),1(),...,1(),([)( +−−+−−=+ nkukukunkykykyNdky     
(18)                                                              

Where )(ku the system is input, and )(ky is the system 
output. For the identification phase, you could train a neural 
network to approximate the nonlinear function N . This is 
the identification procedure used for the NN Predictive 
Controller. 

If you want the system output to follow some reference 
trajectory, )()( dkydky r +=+ , the next step is to develop a 
nonlinear controller of the form 

)]1(),...,1(),(),1(),...,1(),([)( +−−++−−= mkukudkynkykykyGku
r

  
(19) 
 
The problem with using this controller is that if you want to 
train a neural network to create the function G that will 
minimize mean square error. 

As with the model predictive control, the first step in using 
feedback linearization (or NARMA-L2 control) is to 
identify the system to be controlled. You train a neural 
network to represent the forward dynamics of the system. 
The first step is to choose a model structure to use. One 
standard model that has been used to represent general 
discrete-time nonlinear systems is the Nonlinear 

)}cos()cos({)cos( 1121221111 θθθθ llgmglmG cc +++=
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Autoregressive-Moving Average (NARMA) model. The 
controller used in this section is based on the NARMA-L2 
approximate model: 

)()].1(),...,1(),1(),...,1(),([
)]1(),...,1(),1(),...,1(),([)(

kumkukunkykykyg
mkukunkykykyfdky

+−−+−−
++−−+−−=+

     

(20) 

This model is in companion form, where the next controller 
input u (k) is not contained inside the nonlinearity. The 
advantage of this form is that you can solve for the control 
input that causes the system output to follow the 
reference )()( dkydky r +=+ . The resulting controller 
would have the form 

)]1(),...,1(),1(),...,1(),([
)]1(),...,1(),1(),...,1(),([)()(

+−−+−−
+−−+−−−+

=
nkukunkykykyg

nkukunkykykyfdkyku  

(21)                                                            Using this 
equation directly can cause realization problems, because 
you must determine the control input based on the 
output at the same time, . So, instead, use the model: 

)1()].1(),...,(,)1(),1(),...,1(),([

])1(),...,1(),(),1(),...,1(,)([)(

++−−+−−

++−−+−−=+

kunkukukunkykykyg

nkukukunkykykyfdky   

(22)                                                                                
Where .2≥d  
In the system identification stage a neural network 
Plant model must be developed before the controller is 
used. The plant model predicts future plant outputs. The 
plant model has only one hidden layer. 
The following figure shows the structure of a neural 
network representation [17, 16]. 
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 Figure 5: the structure of neural network 
 
 The model predictive control method is based on the 
receding horizon technique. The neural network model 
predicts the plant response over a specified time horizon; 
figure 6 shows the controller block that has been used for 
predictive control: 
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 Figure 6: the structure of predictive control 
 
In the system identification stage, you develop a neural 
network model of the plant that you want to control. In the 
control design stage, you use the neural network plant 
model to design (or train) the controller. In each of the three 
control architectures described in this chapter, the system 
identification stage is identical. 
The model predictive control method is based on the 
receding horizon technique. The neural network model 
predicts the plant response over a specified time horizon 
[14, 16]; 
The Neural Network controller based on PID controller has 
been used for control of two link- robotic manipulator 
systems, the block diagram of a Neural Network controllers 
based on PID controllers is shown in Figure 7. 
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Figure 7: the structure of the Neural Network controller based 
on PID controllers 

  
The structure of Neural Network controller based on PID 
controller is shown in figure 8. 
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Figure 8: the schematic of Neural Network controller 
 
In Neural Network controller as learning rules Modified 

Levenberg-Marquardt has been used [13, 15].  
 

IV.   SIMULATION RESULT 
In the first the dynamic model of two link- robotic 
manipulator systems has been simulated using Matlab 
software 2007 as you see the system is unstable. Figure 9 
shows the schematic of two link- robotic manipulator 
systems and figure 8 shows the simulation result for step 
input:  
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Figure 9: the schematic of the two link- robotic manipulator 
systems 

 

 

 
 

Figure 10: the output of two link- robotic manipulator systems 
 

In the first we considered that two link- robotic 
manipulator systems without is non load and then two link- 
robotic manipulator systems has been simulated with 
different load. 
As the first method for closed loop control of two link 
robotic manipulator systems the PID controller has been 
used, figure 11 shows the non load simulation result: 
 

 

 
Figure 11: the output of two link- robotic manipulator systems 

using PID controller without any load 
Then the different load has been considered in closed 

loop control of link robotic manipulator systems by PID 
controller, figure 12 shows the simulation result with the 
different load.   

 

 

 
 

Figure 12: the output of two link- robotic manipulator systems 
using PID controller with different load 3kg, 5kg, 7.5kg, 10kg 
 
As the second method closed loop control of two link 

robot the Neural Network controller based on PID 
controller has been used, figure 13 shows the non load 
simulation result: 

 

 

 
Figure 13: the output of two link- robotic manipulator systems 

using Neural Network controller based on PID controller without 
any load 

 
Then the different load has been considered in closed 

loop control of link robotic manipulator systems by Neural 
Network controller based on PID controller, figure 14 
shows the simulation result with the different load.   

 

 
 

 
 

Figure 14: the output of two link- robotic manipulator systems 
using Neural Network controller based on PID controller with 

different load 3kg, 5kg, 7.5kg, 10kg 
 

V.       CONCLUSION 
This paper presents 2 methods for the control of Two 

link- robotic manipulator systems with different load, The 
first method is based on Proportional-Integral-Derivative 
controller,   and the second method used artificial Neural 
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Network by PID controller for control of Two link- robotic 
manipulator systems.  
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