
 
Abstract—in this paper, a theorem is derived for the existence 

of a common quadratic Lyapunov function for stability 

analysis of linear gyroscopic dynamic systems. A new method 

based on stochastic stability. In this paper we study the 

stochastic stability properties of linear gyroscopic dynamic 

systems.  

Index Terms— quadratic Lyapunov function, gyroscopic, 
stochastic stability  
 

I.   INTRODUCTION 
One of the most interesting phenomena for linear 

gyroscopic dynamic systems is that gyroscopic forces may 

stabilize a conservative system which would have been 

unstable in their absence [1]. In recent years many 

researchers has been worked in this area such as Ranislav. 

M. Bulatović used negative definite stiffness matrix for the 

stability of linear conservative gyroscopic systems [1] and 

he used the positive-definiteness of a certain matrix for the 

stability of linear conservative gyroscopic system [2] 

Christian Pommer worked on Gyroscopic stabilization and 

indefinite damped mechanical systems[3] L.A.Burlakova 

worked on Gyroscopic Stabilization with the Singular 

Matrix of Gyroscopic Forces[4]. 

Substantial attention has been paid to the problem of 

stability and stabilization of gyroscopic systems in the 

monograph [5]. 

A brief survey of the results obtained for this problem by 

the method of Lyapunov functions can be found in [6]. 
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II. A REVIEW ON STABILITY ANALYSIS OF 
SWITCHING SYSTEM [7, 8, 9, 10] 

In switched linear systems, the subsystems of which are 

continuous-time linear time-invariant (LTI) systems 
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Or a collection of discrete-time LTI systems 
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Where nn
i RA ×∈ . 

The existence of a common quadratic Lyapunov function 

(CQLF) for all its subsystems assures the quadratic stability 

of the switched system [15, 16]. Quadratic stability is a 

special class of exponential stability, which implies 

asymptotic stability, and has attracted a lot of research 

efforts due to its importance in practice [7, 8]. It is known 

that the conditions for the existence of a CQLF can be 

expressed as linear matrix inequalities (LMIs) [7, 8]. 

Namely, there exists a positive definite symmetric 

matrix nnRPP ×∈, , such that 
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For the continuous-time case, or 

 0≺ii
T

i PPAA −                                                                 
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For the discrete-time case, hold simultaneously. However, 

the standard interior point methods for LMIs may become 

ineffective have the number of modes increases [8]. 
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Consider a dynamical system as                     
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(5)                                                          Where the 

matrices, iA  belonging to set { nAA ,....,1 } and iA are 

constant matrices in nnR × . This system will be referred as 

the switching system. 

Matrices iA are asymptotically stable if the Eigen values of 

each iA  matrix lies in the open left half of the complex 

plan.  So that matrices iA  are assumed to be Hurwitz. 

An important problem is to determine necessary and 

sufficient condition for the existence of a quadratic 

Lyapunov function V(x) = x T P x, P = P T  > 0, P belong 

to nnR × , such that  
dt
dv

 along any trajectory of the system 

(1) is negative definite, or alternatively that 
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T
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QPAPA −=+                         (6)                                

Where iQ positive definite and P are negative definite. The 

function V(x) is a common quadratic Lyapunov function 

(CQLF) for the switching linear time-invariant (LTI) 

dynamic systems, 
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(7) 

Where iA  belong to nnR × . 

The existence of such a Lyapunov function is sufficient to 

guarantee the uniform asymptotic (exponential) stability of 

switching system (1) [9]. 

Theory 1: If we consider switching linear time-invariant 

(LTI) dynamic systems, 
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 The system described by Equation (7) with initial 

conditions 00 )( ztz =  has the following response [10]: 
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Definition #1 [10] 
The equilibrium 0=z of a system described by 

),(
.

tzfz = with initial condition 00 )( ztz =  is almost 

sure (or with probability-1) asymptotically stable at large 

(or globally) if for any 0;β and 0;ε  the solution of 
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tzfz =  satisfies 
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Where  

β≺0z . 

Corollary #1[10] 
 
The system described by Equation (2), with update times 

)( jh that are independent identically distributed random 

variable with probability distribution )(hF is globally 

almost sure (or with probability-1) asymptotically stable 

around the solution 0=z if [ ] ∞= ≺))(exp( hAET iσ and 

the expected value of the maximum singular value of the 

test matrix : 
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III. THE MODEL OF LINEAR GYROSCOPIC 
DYNAMIC SYSTEMS [1] 

Systems of interest here are linear conservative gyroscopic 

systems described by the Equation [1]. 

0ˆˆ ...
=++ qKqGqM                                                              

(10) 

Where M, Gˆ and Kˆ are real n ⋅ n matrices, q is the n-

vector, and M is symmetric and positive definite 

( ); 

  Is skew-symmetric ( = −Gˆ)? 

  Is symmetric and negative definite ( = K < 0). 

The vector q represents the generalized coordinates, M is 

the mass matrix,  describes the gyroscopic forces, and  

the potential forces. 
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It is convenient, although not necessary, to rewrite Eq. (10) 

in the form: 

0
...

=++ KxxGx                                                                    

(11) 

Using the transformation 
2/12/1 ˆMKMK −=  
2/12/1 ˆMGMG −=  

qMx 2/1=  
 
Here the exponent ½ indicates the unique positive definite 

square root of the matrix M. Clearly 
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If we consider: 

  ,  =  

Then we can write Eq.11 into state space Equation: 
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Then we can write Eq.12in to state space matrix: 
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IV. STABILITY ANALYSIS OF LINEAR 
GYROSCOPIC DYNAMIC SYSTEMS 

If we consider  
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 Using theorem 1 and Corollary #1[18] we 

can say that (13) is globally almost sure (or with 

probability-1) asymptotically stable around the solution  

0=X� . 

V. CONCLUSION 
This paper proposed a new method based on stochastic 

stability for linear gyroscopic dynamic systems. 
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