Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II IMECS 2009, March 18 - 20, 2009, Hong Kong

Stochastic Stability of Linear Gyroscopic Dynamic Systems

Leila Fallah Araghi, Mohammad Reza Arvan

Abstract—in this paper, a theorem is derived for the existence of a common quadratic Lyapunov function for stability analysis of linear gyroscopic dynamic systems. A new method based on stochastic stability. In this paper we study the stochastic stability properties of linear gyroscopic dynamic systems.

Index Terms— quadratic Lyapunov function, gyroscopic, stochastic stability

I. INTRODUCTION

One of the most interesting phenomena for linear gyroscopic dynamic systems is that gyroscopic forces may stabilize a conservative system which would have been unstable in their absence [1]. In recent years many researchers has been worked in this area such as Ranislav. M. Bulatović used negative definite stiffness matrix for the stability of linear conservative gyroscopic systems [1] and he used the positive-definiteness of a certain matrix for the stability of linear conservative gyroscopic system [2] Christian Pommer worked on Gyroscopic stabilization and indefinite damped mechanical systems[3] L.A.Burlakova worked on Gyroscopic Stabilization with the Singular Matrix of Gyroscopic Forces[4].

Substantial attention has been paid to the problem of stability and stabilization of gyroscopic systems in the monograph [5].

A brief survey of the results obtained for this problem by the method of Lyapunov functions can be found in [6].

II. A REVIEW ON STABILITY ANALYSIS OF SWITCHING SYSTEM [7, 8, 9, 10]

In switched linear systems, the subsystems of which are continuous-time linear time-invariant (LTI) systems

$$x = A_i x, i = \{1, \dots, n\}$$

(1)

Or a collection of discrete-time LTI systems

$$x[k+1] = A_i x[k],$$

$$k \in Z^+, i \in \{1, 2, ..., n\}$$
(2)

Where $A_i \in \mathbb{R}^{n \times n}$

The existence of a common quadratic Lyapunov function (CQLF) for all its subsystems assures the quadratic stability of the switched system [15, 16]. Quadratic stability is a special class of exponential stability, which implies asymptotic stability, and has attracted a lot of research efforts due to its importance in practice [7, 8]. It is known that the conditions for the existence of a CQLF can be expressed as linear matrix inequalities (LMIs) [7, 8]. Namely, there exists a positive definite symmetric

matrix
$$P, P \in \mathbb{R}^{n \times n}$$
, such that
 $A_i^T P + PA_i \prec 0, i \in \{1, ..., n\}$
(3)

For the continuous-time case, or

$$A_i^{\ T} P A_i - P_i \prec 0$$
(4)

For the discrete-time case, hold simultaneously. However, the standard interior point methods for LMIs may become ineffective have the number of modes increases [8].

Corresponding Author Leila Fallah Araghi, Assistant professor in, Electrical Engineering, Engineering Facility Tehran University. (E-mail: <u>l_fallah@srbau.ac.ir</u>)

Mohammad Reza, Arvan, Malek ashtar University of Technology, Tehran, Iran. (Email: <u>m_arvan@ashtar.ac.ir</u>)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II IMECS 2009, March 18 - 20, 2009, Hong Kong

Consider a dynamical system as

(5)
$$x = A_i x, i = \{1, ..., n\}$$
 Where the

matrices, A_i belonging to set $\{A_1, \dots, A_n\}$ and A_i are

constant matrices in $\mathbb{R}^{n \times n}$. This system will be referred as the switching system.

Matrices A_i are asymptotically stable if the Eigen values of each A_i matrix lies in the open left half of the complex plan. So that matrices A_i are assumed to be Hurwitz.

An important problem is to determine necessary and sufficient condition for the existence of a quadratic Lyapunov function $V(x) = x^T P x$, $P = P^T > 0$, P belong to $R^{n \times n}$, such that $\frac{dv}{dt}$ along any trajectory of the system

(1) is negative definite, or alternatively that

$$A_i^{T} P + P A_i = -Q_i \tag{6}$$

Where Q_i positive definite and P are negative definite. The function V(x) is a common quadratic Lyapunov function (CQLF) for the switching linear time-invariant (LTI) dynamic systems,

$$\sum A_i : x = A_i x, i = \{1, ..., n\}$$
(7)

Where A_i belong to $R^{n \times n}$.

The existence of such a Lyapunov function is sufficient to guarantee the uniform asymptotic (exponential) stability of switching system (1) [9].

Theory 1: If we consider switching linear time-invariant (LTI) dynamic systems,

$$\sum A_i : z = A_i z, i = \{1, ..., n\}$$
(8)

The system described by Equation (7) with initial conditions $z(t_0) = z_0$ has the following response [10]:

$$z(t) = \exp(A_i(t - t_k)) \left(\prod_{j=1}^k M(j)\right) z_0$$
(9)
And
$$M(j) = \begin{bmatrix} I & 0\\ 0 & 0 \end{bmatrix} \exp(A_i h(j)) \begin{bmatrix} I & 0\\ 0 & 0 \end{bmatrix}$$

Definition #1 [10]

The equilibrium z = 0 of a system described by z = f(z,t) with initial condition $z(t_0) = z_0$ is almost sure (or with probability-1) asymptotically stable at large (or globally) if for any $\beta > 0$ and $\varepsilon > 0$ the solution of

$$z = f(z,t) \text{ satisfies}$$

$$\lim_{t \ge \partial} \left\{ P(\sup_{t \ge \partial} \|z(t,z_0,t_0)\| \succ \varepsilon \right\} = 0 \text{ Where}$$

$$\|z_0\| \prec \beta.$$

Corollary #1[10]

The system described by Equation (2), with update times h(j) that are independent identically distributed random variable with probability distribution F(h) is globally almost sure (or with probability-1) asymptotically stable around the solution z = 0 if $T = E[\exp(\sigma(A_i)h)] \prec \infty$ and the expected value of the maximum singular value of the test matrix :

$$M, E[||M||] = E\left[\sigma M\right], \text{ is strictly less than one,}$$

where $M(j) = \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} \exp(A_i h(j)) \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix}.$

III. THE MODEL OF LINEAR GYROSCOPIC DYNAMIC SYSTEMS [1]

Systems of interest here are linear conservative gyroscopic systems described by the Equation [1].

$$M \dot{q} + \hat{G} \dot{q} + \hat{K} q = 0$$

(10)

Where *M*, *G*[^] and *K*[^] are real $n \cdot n$ matrices, *q* is the *n*-vector, and M is symmetric and positive definite $(M^T = M \gg 0);$

 \hat{G} Is skew-symmetric ($\hat{G}^{T} = -G^{\hat{T}}$)?

 \vec{k} Is symmetric and negative definite ($\vec{k}^{T} = K < 0$).

The vector q represents the generalized coordinates, M is the mass matrix, \hat{G} describes the gyroscopic forces, and \hat{K} the potential forces.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II IMECS 2009, March 18 - 20, 2009, Hong Kong

It is convenient, although not necessary, to rewrite Eq. (10)

in the form:

$$x + G x + Kx = 0$$

(11)

Using the transformation

$$K = M^{-1/2} \hat{K} M^{1/2}$$
$$G = M^{-1/2} \hat{G} M^{1/2}$$
$$x = M^{1/2} q$$

Here the exponent $\frac{1}{2}$ indicates the unique positive definite square root of the matrix *M*. Clearly

$$G^T = -G$$
$$K^T = K$$

If we consider:

 $x = x_1, \dot{x} = x_2$

Then we can write Eq.11 into state space Equation:

 $\begin{aligned} x_1 &= x_2 \\ x_2 &= -Kx_1 - Gx_2 \end{aligned}$

(12)

Then we can write Eq.12in to state space matrix:

$$X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 & & 1 \\ -K & & -G \end{bmatrix} X$$

(13)

IV. STABILITY ANALYSIS OF LINEAR GYROSCOPIC DYNAMIC SYSTEMS

If we consider

$$A_i = \begin{bmatrix} 0 & 1 \\ -K & -G \end{bmatrix}$$
 Using theorem 1 and Corollary #1[18] we

can say that (13) is globally almost sure (or with

probability-1) asymptotically stable around the solution

 $\dot{X} = 0$.

V. CONCLUSION

This paper proposed a new method based on stochastic stability for linear gyroscopic dynamic systems.

REFERENCES

- Ranislav. M. Bulatović, "On Stability Criteria for Gyroscopic Systems with Negative Definite Stiffness" The scientific journal FACTA Universities *Series*: Mechanics, Automatic Control and Robotics Vol.2, No 10, 2000 pp. 1081 – 1087
- [2] R. M. Bulatović, "A Remark on the Stability of Linear Gyroscopic Systems" The scientific journal FACTA Universities *Series*: Mechanics, Automatic, Control and Robotics Vol.2, No 7, 1997 pp. 255 - 258
- [3] Christian Pommer, "Gyroscopic stabilization and indefinite damped mechanical systems" GAMM–SIAM Conference on Applied Linear Algebra Düsseldorf, July 24–27, 2006:
- [4] L.A.Burlakova, "On Gyroscopic Stabilization with the Singular Matrix of Gyroscopic Forces" Works on Analytical Mechanics. - Moscow, Publ. AS USSR, 2000
- [5] Merkin D.R. Gyroscopic Systems. Moscow, Nauka. 1974 (in Russian)
- [6] Bulatovich R. On stability of linear potential gyroscopic systems in the cases
- Of maximum potential energy. J. of Applied. Mathematics and Mechanics, (1997) Vol. 61, no. 3, 385 {389.
- [7] Hai Lin, & Panos J. Antsaklis, Stability and Stabilizability of Switched Linear Systems: A Survey of Recent Results. IEEE Transaction on Automatic Control VOL., NO., 2008.
- [8] L. Gurvitz, R. Shorten, O. Mason, On stability of switched positive linear Systems. IEEE, Transaction on Automatic control, 2007.
- [9] G. Zhai, X. Xu, H.Lin, D. Liu, Extended Lie Algebric Stability Analysis For Switching Systems With Continuous-Time and Discrete–Time Subsystems. Int. J. Appl. Math. Compute. Sci., 2007, Vol. 17, No. 4, 447–454.
- [10] Luis A. Montestruque, Panos J. Antsaklis , "STOCHASTIC STABILITY FOR MODEL-BASED NETWORKED CONTROL SYSTEMS" IEEE, Proceedings of the American Control Conference Denver, Colorado June 4-6, 2003
- [19] L. Gurvits, A. Olshevsky, "Stability testing of matrix polytopes" arXiv: math [math.OC], 2007.