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    Abstract: An unknown input high gain observer 
based parametric fault detection and isolation 
scheme is presented. First, a reduced order 
unknown input high gain observer is derived. Then, 
using these observers, a fault detection and 
isolation technique is devised to detect and isolate 
the parametric fault of a system whose parameters 
are uncertain to some extent. The proposed FDI 
algorithm consists of two steps. In the first step, the 
detection of fault and the isolation of faulty region 
are achieved and in the next step, the faulty 
parameter is isolated from the faulty region. 
Effectiveness of the observer as well as the FDI 
technique is shown with the help of a numerical 
example. 
   Keywords: Unknown input high gain observer; 
parametric fault; fault detection and isolation; 
parameter estimation.     

I. INTRODUCTION 

    With the rising demands of high reliability and 
safety of advanced processes like avionics, nuclear 
power stations, automobiles etc have led to increasing 
requirements of developing new methods for 
supervision and monitoring as a part of overall process 
control scheme. Different fault detection and isolation 
(FDI) schemes have been developed for avoiding 
failure of the plants. Model based fault detection 
techniques (like Kalman filter or observer based) have 
received increasing attention following the pioneering 
work of Beard [1].  
     The FDI concept using observers or Kalman filters 
is based on the assumption that the mathematical 
model of the system is perfectly known. In reality, 
however  this  assumption  does not  hold,  because the  
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parameters of a  process  are  in  general  uncertain   or 
time varying. Again the characteristics of disturbances 
or noise are not completely known; hence they cannot 
be perfectly modeled. There is always a mismatch 
between the actual process model and its mathematical 
model (even if there is no fault in the process), which 
sometimes produces false alarms corrupting the 
performance of the FDI process. To avoid false alarms, 
the FDI method should be made robust i.e., insensitive 
to modeling uncertainties. But the algorithm should 
not be too robust to ignore the fault i.e., a significantly 
large variation of the parameter values.  
     Over the years, various kinds of robust fault 
detection and isolation techniques have been 
developed to diagnose different types of faults like 
sensors, actuators or components [2, 5, 7, 8, 12, 13]. 
Frank [6], in a survey paper, described different types 
of observer based robust fault diagnosis techniques. 
Patton and Chen [11] discussed various robustness 
issues related observer based fault diagnosis 
techniques. Linear matrix inequality (LMI) based 
robust fault detection techniques for uncertain systems 
have been developed in [14]. The identification based 
FDI techniques have been used by many researchers 
[9] for different types of fault diagnosis. Daley and 
Wang [3] used a high gain observer, which was 
developed by Petersen and Hollot [10], as a tool for 
sensor fault detection.  
      In the present work, an unknown input high gain 
observer (UIHGO) based parametric (i.e., component) 
fault detection and isolation technique is presented. 
First, an unknown input high gain observer is 
developed for an uncertain system. Such type of 
unknown input observers has wide applications in 
control systems where the uncertainties (modeling or 
parametric or both) are unavoidable. Next, these 
observers are used in developing a fault diagnosis 
technique for a parametrically uncertain system on the 
assumptions that sensors and actuators are fault free. 
Since the high gain observer [3, 10] is robust against 
parameter uncertainties to some extent, the FDI 
technique is also robust against the uncertainties. The 
FDI process works in two steps. In step-1, the 
detection of fault and isolation of faulty zone is 
accomplished. In the next step, faulty parameter is 
isolated by parameter isolation method. In the present 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-7-5 IMECS 2009

mailto:sharifm@postech.ac.kr
mailto:goutam@mech.iitkgp.ernet.in
mailto:king@mech.iitkgp.ernet.in


work, a part of the system parameters (i.e., the 
parameters of the faulty subsystem) is estimated and 
only when a fault occurs in the system. In this respect 
the complexity of fault isolation is drastically reduced 
in comparison with standard parameter identification 
technique [9] where all the parameters of a system are 
estimated at every instant and compared with actual 
values. A numerical example is presented to show the 
effectiveness of the observer as well as the FDI 
technique. 
     The basic methodology of designing the unknown 
input high gain observer for an uncertain system is 
discussed in section II. The fault detection and 
isolation algorithm is explained in section III. A 
numerical example is presented in section IV. The 
concluding remarks are included in section V. 

II. UNKNOWN INPUT HIGH GAIN OBSERVER 

    In this section, an unknown input high gain observer 
is developed. The sufficient conditions for existence of 
such observers are provided.  
  Consider a linear time-invariant uncertain system 
with unknown inputs   

( ) ( ) ( ) ( ) ( ) ( )t t t= + ∆ + + ∆ +x A A x B B u Ed t
t  

                (1)                                                                
                                       

       
( ) ( )t =y Cx .                                                              (2)                                                

where - the state vector, - the 
measurable input vector, 

( ) nt ∈x R ( ) mt ∈u R
( ) pt ∈y R - the output vector 

and - the unknown input vector. The 
matrices  and 

( ) qt ∈d R
, ,A B C E  of suitable dimensions are 

known. The matrices ∆  and ∆  are the uncertainties 
of the system and input matrices. It is assumed that 

 is always asymptotically stable for all 

A B

( + ∆A A) ∆A . 
   It is assumed that the system satisfies the rank 
condition: . ( ) (rank rank=CE E )

t
   Now, using a state transformation matrix T , the 
states are redefined as ( ) ( )t =z Tx  such that 

( )

2

n r q− ×⎡
= ⎢
⎣ ⎦

TE
E

φ ⎤
⎥

 where 2E  is  dimensional matrix 

with 

r q×

2( ) ( )rank rank=E E  and φ  is a null matrix. 
   The system and output equations can be recast as 
follows 

( )1 1 111 12

2 2 221 22 2

1 111 12

2 221 22

n r q− ×⎡ ⎤⎡ ⎤ ⎡ ⎤⎧ ⎫ ⎧ ⎫= + +⎨ ⎬ ⎨ ⎬ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎩ ⎭ ⎩ ⎭ ⎣ ⎦⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤∆∆ ∆ ⎧ ⎫+ +⎨ ⎬⎢ ⎥ ⎢ ⎥∆∆ ∆ ⎩ ⎭ ⎣ ⎦⎣ ⎦

z z BA A u d
z z BA A E

z BA A                     u
z BA A

φ

             (3)                                                 

 1
1 2

2
( )t ⎧ ⎫⎡ ⎤= ⎨ ⎬⎣ ⎦ ⎩ ⎭

z
y C C

z
.                                               (4) 

  Now it is assumed that the measurement signals are 
such that the following rank condition is satisfied: 

. This is a necessary condition for 

designing this observer as the extra measurement 
signals are used to design the reduced order observer 
after decoupling the unknown inputs.  

( ) ( )rank rank>C

    This condition allows the rearrangement of the 
output equation in the following form with the help of 
a transformation 1

2
=

⎡ ⎤
⎢ ⎥⎣ ⎦

y
Vy

y
, where V  is a nonsingular 

matrix, as 

 1 11

2 221 22

=
⎡ ⎤ 1⎧ ⎫ ⎧ ⎫

⎨ ⎬ ⎢ ⎥
⎩ ⎭ ⎩ ⎭⎣ ⎦

⎨ ⎬
y zC
y zC C

φ .                                            (5)  

Now the equations (3) and (5) can be written in 
expanded form as follows 

1 11 1 12 2 1 11 1 12 2 1∆ ∆ ∆= + + + + +z A z A z B u A z A z B u            (6)                             

2 21 1 22 2 2 2 21 1 22 2 2∆ ∆= + + + + + +z A z A z B u E d A z A z B u   (7)    

1 11=y C z1                                                                     (8)    

2 21 1 22= +y C z C z2 .                                                      (9)                              

Eliminating 2z  from the equation (6) by using the 
equation (9), one can get  

1
1 11 1 12 22 2 21 1 1 11 1

12 2 1

( )− ∆

∆ ∆

= + − + +

+ +

z A z A C y C z B u A z
A z B u

.       (10) 

It can be seen that 1
22
−C  should be nonsingular, which 

will be always so as rank . ( ) ( )rank=CE E
Now, the equation (10) can be written in a simplified 
form as 

1 1s s u= + + uz A z B u E d ,                                             (11)                              
where 

11 12 22 21
1

s
−= −A A A C C , 1

1 12 22s
−⎡ ⎤= ⎣ ⎦B B A C , 

2
=
⎧ ⎫
⎨ ⎬
⎩ ⎭

u
u

y
 and 

11 1 12 2 1u u ∆ ∆ ∆= + +E d A z A z B u  with uE - 

known matrix and - unknown signal. ud
For designing an observer, the system should satisfy 
the observability conditions: ( ( , ))rank O n=A C .   
   Now one can design an observer for the system (11) 
and (8) as 

1 1 1
ˆˆ ˆ (s s= + + − 1)z A z B u K y y                                       (12)                              

1 11
ˆ ˆ=y C z1 .                                                                 (13)                              

The gain matrix  is found out by solving the 
following algebraic Riccati equation [3,10]  

K

2

11 11 2 0
T T

T Tu u u u
s s

q
q

+ + + − + =
σ σ

E E PE E PA P PA Q PC C P  

                                                                                (14)                              
with 

11
T=K PC ,                                                       (15)   

where  is a pre-chosen positive definite matrix and  
the constants q & 

Q
σ  are specified numbers. It was 

shown in [10] that for any , there exists q such 
that gain obtained from the above equations will lead 
to 

0σ >

11 11( )s ujw − + < σC I A KC E 1w∀ ∈R for  where 
 is the frequency. This condition implies that the wE
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effect of unknown signal  becomes very small in 
error dynamics for an appropriate value of 

ud
σ . 

The states 2ẑ  are estimated from equation (9) as 
1

2 22 2 21 1ˆ (−= − ˆ )z C y C z .                                              (16)                                                                                     

Now using { }1 2ˆ ˆ ˆ T=z z z  the estimated state vector  

is found out as . 

x̂
1ˆ ˆ−=x T z

III. FAULT DETECTION AND ISOLATION 
ALGORITHM 

    In this section, a parametric fault detection and 
isolation technique for an uncertain system is 
described. It consists of two steps. In the first step, a 
set of residuals is generated with the help of a bank of 
high gain observers to detect the fault and isolate the 
faulty zone. In the second step, faulty parameter is 
isolated from the faulty zone.  
   Consider a linear time invariant system as  

( ) ( ) ( ) ( ) ( )t t= + ∆ + + ∆x A A x B B u t

t

                         (17) 
where the significance of the matrices and vectors are 
same as described in the previous section. 
    Suppose a parametric fault occurs in the plant. The 
detection and isolation of the fault are carried out in 
two steps as follows. 

 Step-1: Detection and partial isolation of fault   
   The faulty system is written as 

( ) ( ) ( ) ( ) ( )f ft t= + ∆ + ∆ + + ∆ + ∆x A A A x B B B u ,   (18)                                                                      
where 

f∆A  and f∆B  are the faulty parts of the 
matrices A  and B  respectively. The state equation 
(18) can now be rearranged as 

( ) ( ) ( ) ( ) ( ) ( )t t t= + ∆ + + ∆ +x A A x B B u Ed t ,            (19)                                                                            

where E  is a known matrix and  is the 
unknown input satisfying the relation 

( ) qt ∈d R

( ) ( ) ( )f ft t= ∆ + ∆ tEd A x B u .                                     (20)                                                                                  
    Now the system is divided into N  number of 
subsystems with each characterized by a few 
parameters. The choice of subsystems is arbitrary. In a 
physical system, the subsystems are chosen based on 
the physical proximity of different parameters. Assume 
that the fault has occurred in the i-th subsystem.  
 The system equations considering the fault in the i-th 
subsystem is written as 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )i it t t= + ∆ + + ∆ +x A A x B B u E di i t

t

ˆ t

 (21)                                                                       
where the subscript (i) indicates that the fault has 
occurred only in the i-th subsystem.  
The output equation for this system is written as 

( ) ( ) ( )( ) ( )i i it =y C x ,                                                    (22)    
     The equations (21) and (22) are similar to equations 
(1) and (2). Now, following the procedure discussed in 

the previous section, an unknown input high gain 
observer is designed to estimate the states . ( )ˆ ( )i tx
   Once the states  are estimated, the residuals 
are calculated as 

( )ˆ ( )i tx

 
( ) ( ) ( ) ( ) ( ) ( )ˆ( ) ( ) ( ) ( ) ( )i i i i i it t t t= − = −r y y y C x .              (23)                              

 Now, an unknown input observer, if properly 
designed, can estimate the states irrespective of 
unknown inputs. So the residual , calculated 
from the equation (23), converges within bounded 
value (i.e., threshold value) if the fault occurs in the i-
th subsystem or there is no fault in the system as the 
effect of possible faults in i-th is considered as 
unknown inputs. In this way, one can detect a fault and 
isolate the faulty subsystem using  number of 
UIHGOs. However (

( ) ( )i tr

N
1N )−  such observers will be 

sufficient to isolate a faulty subsystem when  
because once (

2N >
1N )−  subsystems are found fault free, 

the remaining subsystem is automatically identified as 
the faulty one. A decision table is drawn to isolate the 
faulty subsystem from observation of ( 1)N −  
residuals.   

Step-2: Total isolation of fault 
    In this step, the faulty parameter in the faulty 
subsystem is isolated. The effect of the faulty 
subsystem is now simulated as an unknown input 
signal, say . The relationship between , the 
parameters of the faulty subsystem, say , and the 
states  are known and can be written as 

( )uF t ( )uF t
s

( )tx
,( ) ( )uF t f s= x ,                                                         (24)                              

where the function ‘f ’ is linear for a linear system. 
    The system equation for this case becomes 
 ( ) ( ) ( ) ( ) ( ) ( )t t t t= + ∆ + + ∆ +x A A x B B u Ed ,           (25)                              
where ( ) ( )ut F t=d . With a measurement matrix , an 
observer is then designed to estimate the states.  
Knowing the states, the unknown input signal is then 
estimated from the state equations neglecting the 
uncertainties using the nominal values of the 
parameters of the other non-faulty subsystems.  

C

The estimated signal ˆ ( )uF t  is now used to estimate the 
parameters 's from the relation (24) as s
ˆ ˆ( ) ( , ( ))uF t f s t= x .                                                     (26) 

    Different parameter estimation techniques can be 
used to estimate  from equation (26). However, a 
very simple logical estimation approach is applied in 
the present work in order to isolate the faulty element.   

s

    Let us consider the k-th parameter  as the faulty 

one. From the above relation,  can be estimated 
using nominal values of rest of the parameters. 
Mathematically, 

ks

ks
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1 2 1 1

ˆˆˆ ( , ,....., , ,..., ( ), ( ))k k k us g s s s s t F t− += x                      (27) 1 3500 Ns / mC =
where g is a functional. 
     In steady state, the estimated values vary very less 
if the assumption is correct. The moving averages 
technique is used to smoothen the fluctuation of the 
estimated values. If the assumption is wrong, the 
estimated values will vary significantly large. Now, as 
the single fault case is being considered, there will be 
only one case when the estimated parameter will vary 
less. The particular parameter for which it happens is 
the faulty one. In this way, the faulty parameter is 
isolated. With this the isolation process is completed. 
In this way, any parametric fault can be detected and 
isolated following the above two steps. 

IV. NUMERICAL EXAMPLE 

     Consider a mechanical system as shown in figure 1. 
The state space model of the system can be written as 
follows: 
        , ( ) ( ) ( ) ( ) ( )t t= + ∆ + + ∆x A A x B B u t
where 

1 2 2 1 2 2

1 1 1 1

2 3 2 32 2

3 3 3

0 0 1 0
0 0 0 1

( ) ( )

( ) (

K K K C C C
M M M M

K K C CK C
M M M M

⎡

3

)

⎢
⎢ ⎥
⎢ ⎥+ +
− −⎢
⎢
⎢ + +

− −⎢
⎣

A =

⎤
⎥

⎥
⎥
⎥
⎥
⎦

, 

, [ ]30 0 0 (1/ ) TM=B { }1 2 1 2
T

X X X X=x , 

, where ( ) ( )t F t=u iX  and iX  are the displacement 
and velocity of the mass element iM  respectively, 

jK - the stiffness element and jC - the damping 
coefficient (i=1,2 and j=1, 2, 3). The matrices ∆A  and 

 are uncertainties. ∆B

  
Figure 1: Mechanical system having two masses and 

three sets of spring-damper 

The numerical values of the parameters are 
, , , 

, , 
1 870 kgM = 3 1550 kgM = 1 280000 N / mK =

2 370000 N / mK = 3 340000 N / mK =

,  and 2 3000 Ns / mC =

3 5675 Ns / mC = . 
    A fault is introduced at  in the spring of 
stiffness 

50sect =

2K . The new value of 2K  is set to 185000 
N/m. Now using FDI algorithm, discussed in section 3, 
the fault (here 2K ) is detected and isolated as follows.  

Step-1: Detection and partial isolation of the fault      
    First, the system is divided into three subsystems as 
follows: :SS1 1K ,  & 1C 1M ; :SS2 2K  &  and 

:
2C

SS3 3K ,  & 3C 3M .  
The uncertainties are as follows: 1∆ =A M NΣ  and 

2∆ =B M NΣ  with , n=M I 1 0.05= × uN A , 

2 0.05= × uN B  and  where 0 1sin( )w t=Σ Σ

0 0.25= × IΣ  and 1 0.05w =  rad/s. The matrices  
and 

uA

uB are same as A  and  excepting the elements 
containing constant terms are replaced with zeros. The 
sinusoidal variation in system parameters is applied.  
The following input signal is applied in numerical 
simulation: 

B

0 in( )u s wt=u  with  N and 0 100u =
1w = rad/s. 

   As the system is divided into three subsystems, so 
two UIHGOs are sufficient as a part of step-1. The 
observers are designed for SS1 and SS3. The unknown 
input matrices E ’s and unknown input signals d ’s for 
those observers are given as 
 , [ ](1) 0 0 1 0 T=E (1) (1) (1) (1) (1)= ∆ + ∆d A x B u                  

 [ ](3) 0 0 0 1 T=E , .    
(3) (3) (3) (3) (3)= ∆ + ∆d A x B u

    The output matrices are  
[ ](1) 0 1 0 0;0 0 1 0 T=C and  [ ](3) 0 1 0 0;0 0 11 T=C . 

     Now applying the algorithm discussed in section-2, 
two uE ’s appear as [ ](1) 0 0 1 T

u =E  and 

[ ](3) 0 0 1 T
u =E . The tuning parameters σ  and  

are considered as 

q

(1) 0.05σ = , (3) 0.05σ = , (1) 15q =  
and (3) 15q = . The value of  Q  is chosen as  
for both the observers. 

1
5 n=Q I

     Two high gain observers are then designed for the 
above systems and the gain matrices are calculated 
from the equations (14) and (15). The values of the 
observer gains for the above observers are 

[ ](1) 0.7253 4.7760 14.8934 T=K  and 

[ ](3) 0.4368 2.9387 -13.1569 T=K  respectively. The 
residuals are plotted in figure 2 and figure 3. 
    In ideal (fault free and without presence of 
parameter uncertainties) situation the residuals should 
be zero. However in the present case these will not be 
perfectly zero due to presence of parameter 
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uncertainties. Hence two small threshold values 

{ }5 2
(1) 1.5 10 1 10

T
ε − −= × × 0 and { }9 2

(3) 3 10 3 10
T

ε − −= × × 0  

units are chosen. These are calculated when there is no 
fault in the system. 

 
Figure 2: Components of the residual  (1) ( )tr

 

 
Figure 3: Components of the residual  (3) ( )tr

     As both the residuals cross the threshold values, the 
existence of fault is confirmed. In order to isolate the 
faulty subsystem a decision table is constructed as 
shown in table 2. 

Table 1: Decision table for isolation of faulty 
subsystem 

Is (i) (i)>r ε  (use ‘1’) or 

(i) (i)≤r ε  (use ‘0’) ? Observation 

(1)r  (3)r  

Decision 

Case 1 1 Fault: SS2. 

  From table-1, it is seen that the fault is in subsystem 
2. Now the next step (i.e., step-2) is carried out to 
isolate faulty parameter. 

Step-2: Total isolation of the fault 
    Here the faulty subsystem (SS2) is replaced by an 
unknown force ( )uF t  as 
          2 2 1 2 2 1( ) ( ) ( )uF t K X X C X X= − + − . 
    The system is remodeled as follows 

( ) ( ) ( ) ( ) ( ) ( )t t t t= + ∆ + + ∆ +x A A x B B u Ed   
 where [ ]10 0 1/ 1/ TM M= −E 3

 and ( ) ( )ut F t=d . 
It can be noticed that the parameter uncertainties for 
this system are only in 3rd and 4th rows of A  and B  
matrices for this problem, which indicate ∆  and A ∆B  
have non-zero elements in 3rd and 4th rows only. For 
this advantage here the system equation can be 
rewritten combining the unknown inputs and 
uncertainties as  
           ( ) ( ) ( ) ( )c ct t t t= + +x Ax Bu E d  

 where [ ]0 0 1 0;0 0 0 1 T
c =E and 

3,1 4 3,1 1 4,1 4 4,1 3/ / T
c uF M F M− − u⎡ ⎤= ∆ + ∆ + ∆ + ∆ −⎣ ⎦d A x B u A x B u . 

This special situation may not occur in all system. A 
full order unknown input observer [4] is designed with 
output matrix [ ]0 1 2 0;0 0 11;1 0 0 0 T= −C  to 
estimate the states . Using the estimated states 

 and the nominal values of the parameters of 
subsystem-1, the unknown input 

ˆ ( )tx
ˆ ( )tx

( )uF t  is estimated 
from the following relationship 
              , 

1 3 1 1 1 3
ˆ ˆ ˆ( )uF t M K C= + +x x x̂

where  is calculated taking the derivative of  with 
respect to time. 

3x̂ 3x̂

   Finally the faulty parameters are estimated using the 
following relation  
             

2 2 1 2 4 3
ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )uF t K C= − + −x x x x

    First, the fault is assumed in  and the stiffness  
is estimated using the nominal value of =3000 

2K 2K

2C
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Ns/m. The moving averages are taken to smoothen the 
estimated values and the estimated values are plotted 
in figure 4. The plot shows that estimated values vary 
very less from it mean value. Now  is assumed to be 
faulty and  is estimated using the nominal value of 

2C

2C

2K =370000 N/m. The estimated values after taking 
moving averages are plotted in figure 5. The plot 
shows that the estimated values of  vary widely, 
which is because of wrong assumption. This confirms 
that fault is in 

2C

2K  and thereby the fault isolation 
process is completed.  

 
Figure 4: Estimated stiffness 

 
Figure 5: Estimated damping coefficient 

  Thus it is seen that the FDI scheme works well for the 
occurrence of fault in subsystem 2. It can be shown 
easily that the method works with equal ease for any 
parameter fault in other subsystem. 

V.  CONCLUSIONS 

   An UIHGO based parameter FDI scheme is 
presented. First an UIHGO for uncertain systems is 

derived. These types of observers have wide 
applications in robust control and fault diagnosis. 
Then, using these observers, a FDI technique is 
devised. The main advantage of the FDI algorithm is 
that it is capable of estimating faults even if the 
parameters are coupled in the system matrix. It also 
reduces the complexity of estimating all the parameters 
at every time instant unlike existing identification 
based techniques. The same FDI technique can also be 
used to detect a fault of a noisy system provided other 
types of unknown input estimators capable of handling 
noise should be used. 
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