
 

  
Abstract—In this paper, we present a modular neural network 

for learning formation strategy in multi-agent systems. A 
supervised learning method is devised to train the modular 
neural network in order for a group of agents to learn formation 
strategy in an environment. At first, the environment conditions 
are separated into some different parts called contexts in this 
paper. Consequently, each agent employs a neural network to 
learn the sequence of actions of expert, according to the present 
context. After the training process, agents would be able to 
imitate human behavior in similar conditions. As a result, an 
intelligent model of human behavior is extracted which 
contributes in building autonomous agents. This framework 
increases the robustness and efficiency of the multi-agent system 
while providing the system with redundancy, reconfiguration 
ability and structure flexibility. 

The fuzzy ARTMAP neural network combines a unique set of 
computational abilities that are needed to function autonomously 
in a changing world. These Characters lead us to use this 
network in learning process. Therefore, the modular fuzzy 
ARTMAP neural network is used to extract expert knowledge in 
formation strategy. In particular, the proposed framework is 
applied to soccer robots and its generalization capability is 
evaluated with datasets from which several data points are 
randomly removed. 
 

Index Terms—Formation Strategy, Learning Behavior, 
Modular Neural Network, Multiagent Systems. 
 

I. INTRODUCTION 

n the recent years formation strategy in multi-agent systems 
has attracted considerable attention [1-8]. These include 

satellite and spacecraft, underwater vehicles, drone planes and 
capturing/enclosing an invader [9-17].  
There are two main approaches to formation in multi-agent 
systems namely model based [18] and behavior based 
formation [19]. Many methods are discussed in each field, for 
example, leader-follower strategy [20], virtual structure 
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approach [21] and behavior-based method [22]. In model 
based formation strategy, the exact model of the robot, task 
and environment are built. Despite the time required to 
develop such a model, the operation of this model is limited in 
unknown environments. In contrast, in behavior based 
modeling, the exact models are not necessary. At each 
behavior, particular goal is assumed and entire task can be 
covered by all behaviors. In the Leader-follower research area, 
a lead vehicle that is either manually driven or autonomous is 
followed by a series of automated robots [23], [24]. The main 
criticism to the leader-follower approach is that the formation 
does not tolerate leader faults and exhibits poor disturbance 
rejection features. In spite of these deficiencies the leader-
follower approach is particularly appreciated because of its 
simplicity and scalability.  
Robot formation in the virtual structure approach [25] is 
considered as a single virtual rigid structure. In this approach, 
the behavior of the robotic system is assimilable to that of a 
physical object. Desired trajectories are not assigned to each 
single robot but to the entire formation as a whole. In this case 
the behavior of the robot formation is predictable and 
consequently the control of the robot formation is 
straightforward. Nevertheless a large inter-robot 
communication bandwidth is required. 
In the behavior based approach [26], [27] some behaviors are 
prescribed to each robot. The relative importance of each 
behavior specifies the robot final action. The theoretical 
formalization and mathematical analysis of this approach is 
difficult and consequently it is not easy to guarantee the 
convergence of the formation to a desired configuration. 
One of the main goals in formation strategy is to achieve a 
formation while using only information of positions. The 
objective investigated in this paper is that of attaining a 
dynamic formation. This means conditions are assumed such 
as a resource shortage, a monitoring target moving in 
environment and strategy is changed based on situations. Each 
agent has a partially information about the environment. The 
goal of agents is to achieve and maintain the pre-defined 
positions to the leader which may change in different 
situation. Different context change the strategy of the 
formation. 
In this study, we will introduce how formation strategy as 
high level behaviors can be modeled by extracting knowledge 
of an expert. This framework can increase the performance of 
agents’ team formation strategy in dynamic environments. As 
a case study, we use soccer simulation environment in which 
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formation strategy can be considered by a team of eleven 
autonomous robots. In this dynamic environment, robots (the 
slaves) track the position of the ball (the master) as a reference 
point in the environment. Agents learn high level behaviors 
based on the environment conditions and expert knowledge.  
At first, a task and the goal of the task are defined to be 
implemented by agents. The expert determines the strategy of 
obtaining the goal. Then he divides the environment 
conditions into some parts which are referred to as contexts in 
this paper. After defining contexts, the expert considers a high 
level behavior that must be implemented in each context to 
obtain the goal of the task. The term “high level behaviors” is 
used here because they are behaviors that involve some simple 
behaviors which are called low level behaviors [28-30]. It is 
furthermore important to notice that in contrast to high level 
behaviors, low level behaviors do not need learning 
algorithms to be implemented.  
In the training step, the expert takes some actions to complete 
the task. In this part, first, the context of the environment is 
inferred and then Fuzzy ARTMAP as a knowledge based 
neural network is utilized to extract knowledge from expert 
behaviors.  
The process of extracting knowledge from expert action and 
context based reasoning [31] in learning algorithm in multi-
agent formation strategy has some advantages as: 
After execution of low level behaviors, the time required to 
develop a model of high level behaviors could be significantly 
reduced. The only time consuming part is execution of low 
level behavior. 
 This method allows agents to learn knowledge form either 
unwilling experts or experts who are unable to explicit their 
knowledge to a third party [32].  
The idea of using context based reasoning is to decrease the 
complexity of fuzzy ARTMAP models when used in 
applications with a large number of training patterns. We can 
overcome to disadvantage of Fuzzy ARTMAP-based models 
which is sensitivity to noise. This can cause category 

proliferation during learning and misclassification during 
recalling. 
This system which has learned high level behaviors is an 
intelligent model of expert behavior for accomplishment of a 
formation task. We have conducted experiments proving that 
by using this framework, agents can be efficiently positioned. 
We used the RoboCup Soccer 2D Simulator [33], [34] as the 
experimental environment. 
The following sections provide some background information 
on theory and terminology used in this paper. In section two, a 
brief introduction to extract knowledge from observation will 
be introduced. Context based reasoning is defined in section 
three. Fuzzy ARTMAP as a knowledge based neural network 
will be discussed in section four. Simulation results will be 
presented in section five.  In final section some conclusions 
and future research on the proposed framework are 

considered. 
 

II. EXTRACTING KNOWLEDGE FROM OBSERVATION 
The common thing in all machine learning techniques is that 
data is gathered from real world. First knowledge beyond the 
manipulated data must be extracted. The method developed 
here can extract knowledge from observing high level 
behaviors of an expert in a multi-agent system. This method is 
employed to learn formation behavior from observing expert 
actions.  
Learning from observation associated with unsupervised 
learning was first mentioned in Michalski, Carbonel and 
Mitchell's book [35].Although, with this view point, training 
data could be obtained by observation but most of works are 
limited to learning low level behavior [36], [37]. 
Observation is a discrete point of time-dependent conditions 
that can be used to infer assertions about agents’ environment. 
In this paper, observation in time t contains the characteristics 
of the environment. 

1 2, ,...,t nO U U U=< >  (1) 
where Ui is the any character of environment that shall be 
assumed in a context. In the simulation result, it is natural to 
consider that the ball is the most important focal target and its 
location is an important state variable, therefore, in this paper 

tO Ball Position=< > .  
At each context, Fuzzy ARTMAP as a knowledge-based 
neural network extracts knowledge from the observation by 
creating a mapping between the observation pattern and the 
observed response. In this study, the observation pattern is 
ball position and the observed response is the agent position. 
Assume that an expert performs a high level action Λ in a 
given task when context ci occurs. This high level behavior 
contains a sequence of level behaviors that implement in each 
time step respectively.   

1 2{ , ,...., }nδ δ δΛ =       1 i n≤ ≤ (2) 
The learning process derives some function Γ on a given 
observation sequence Ot.  
The learning algorithm designated by Γ operates on the 
observation sequence 

0T tO − and outputs a set of 

assertions
iCΛ that describe the behavior that has been 

observed. 
 

III. CONTEXT BASED REASONING 
When a task is assigned to a team of agents, each agent must 
execute a sequence of action based on the environment 
conditions to obtain the goal of task. Context based reasoning 
is a method to reduce the complexity of this activity.  
Context based reasoning is based on the idea that [38], [39]: 
 A context calls for a set of actions and procedures that 
properly address the current conditions. 

0 1 2( ) { , ,...., }
iT t c nO δ δ δ−Γ = Λ =

 (3) 
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 As a task evolves, a transition to another set of actions and 
procedures may be required to address a new context. 
 What is likely to happen under the current context is limited 
and influenced by the current context itself. 
As it can infer from context based reasoning idea, the task and 
context are central concepts of context based reasoning and 
must be defined. 
A task is an abstraction defined within the model and assigned 
to agents prior to run-time. Included within a task are the goal 
and constraints that must be declared. The goal indicates the 
conditions determining the finalization of the task. The task’s 
goal can be formally defined as a function of a set of 
environmental and physical conditions. We have: 

( , )c cGOAL f E P=  (4) 
The union of the set of physical constraints (Lp), 
environmental constraints (Le) and logistical constraints (Ll) 
construct the constraints of a task. 

Constraint ={Lp, Le,Ll}  (5) 
In [40], environment and physical conditions which propose a 
particular behavior are assumed to comprise a context. An 
expert divides the environment conditions to some contexts. 

C={C1, C2, …, C3} (6) 
At any given time, environmental conditions represent a 
unique context which is called in this paper as the active 
context (Ci). The active context induces a certain agent 
behavior specific to that context [39]. Based on these ideas, it 
is clear that agents use only a fraction of their knowledge at 
any given time.  
 

IV. FUZZY ARTMAP NEURAL NETWORK 
An autonomous agent must be able to learn about rare events 
with important consequences, even if such events are similar 
to many other events that have different consequences. Many 
traditional learning schemes use a form of slow learning that 
tends to average similar event occurrences. In contrast, fuzzy 
ARTMAP systems can rapidly learn rare events whose 
predictions differ from those of similar events [41]. Rare 
events typically occur in a non-stationary environment, such 
as a large database, in which event statistics may change 
rapidly and unexpectedly. Individual events may also occur 
with variable frequencies and durations, and arbitrarily large 
numbers of events may need to be processed. Each of these 
factors tends to destabilize the learning process within 
traditional algorithms. Fuzzy ARTMAP was developed in the 
early 1990's by Carpenter et al [42]. Readers must refer to [43] 
for further information. 
Each fuzzy ARTMAP system includes a pair of fuzzy ART 
modules (FUZZY ARTa and FUZZY ARTb), as shown in 
Figure 1. The FUZZY ARTa and FUZZY ARTb modules 
within Fuzzy ARTMAP are responsible for generating pattern 
clusters that correspond to a certain pattern form. During 
supervised learning, FUZZY ARTa receives a stream p

ia of 

input patterns and FUZZY ARTb receives a stream p
ib of input 

patterns, where ib is the correct prediction given ia . These 
modules are linked by an associative learning network and an 
internal controller that ensures autonomous system operation 
in real time. The map field is then responsible for creating a 
many-to-one mapping between the templates within FUZZY 
ARTa and those within FUZZY ARTb. 

 
Fig 1: Fuzzy ARTMAP Architecture 

 
Each fuzzy ART module (FUZZY ARTa, FUZZY ARTb) is 
composed of input, match and choice layers. Input layer (F0) 
uses current input vector and complement input vector in 
order to prevent a category proliferation and transmits it to the 
next layer. At first, each input must be normalized and then 
the complement coded input is obtained by 

1 , [0,1]c
i i ia a a= − ∈ . Thus, at the input layer we have:  

1 1( , ) ( ,..., , ,..., )c c c
m mI a a a a a a= = (7) 

where m is the length of the input pattern. Match layer (F1) 
receives input (I) from the input layer (F0) and top-down input 
from the choice layer (F2) and matches the input pattern which 
has been clamped and the information stored in the top-down 
weights. Choice layer (F2) represents a category of inputs 
grouped together around an exemplar generated during the 
self-organization of the fuzzy ART module. In this layer, the 
neurons are called category neurons. 
The three steps of fuzzy ART learning process are choice, 
match and learning. In choice layer, once the complement 
coded input (I) is in the match layer, all category nodes 
become active to some degree and the winning node is 
chosen. This output activation is denoted Tj(I) and is defined 
as: 

| |
| |α

∧
=

+j
j

I WT
W

 
(8) 

Here ( ) ( , )x y min x y∧ = is the fuzzy AND operator [44] 
and α is generally a very low value. The highest output node is 
the winning category node. In this part, the winner-takes-all 
method is used. 
After the winner category is computed, it will be analyzed to 
check if its similarity is higher than the minimum similarity 
allowed that is defined by the vigilance parameter( ρ ). The 
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vigilance parameter [0,1]ρ ∈ calibrates to the minimum 
amount to correct the predictive error. The match function 
figures out the degree of the match between the category node 
and the input vector. This function is defined as: 

| |( , )
| |
∧

Γ = i
i

I WI W
I  

(9) 

If the match function is higher than the vigilance parameter 
( ( , )iI W ρΓ > ) then the winning node belongs to the same 
class and its weight vector Wi is updated to learn the new 
input pattern (learning phase). If the match function is higher 
than the vigilance, but the winning node does not represent the 
same class as that to which input vector belongs, then the 
match tracking process occurs. In this process, the vigilance 
parameter is increased in order to avoid a subsequent 
activation of the same category node. That is, a search for 
another category node is activated (choice phase). If the match 
function is lower than the vigilance, its activation output (T) is 
set to zero and a new search is activated (choice phase). The 
process of searching for a winner category neuron continues 
until a satisfactory node is found or a new node is assigned. 
Once both FUZZY ART modules produce their output, the 
map field model forms the association between both winning 
categories (from FUZZY ARTa and FUZZY ARTb). 
Once the match conditions are satisfied, a resonance state is 
activated which allows learning to occur in the relevant 
section of the weight matrix. The learning equation is defined 
as follows. 

( ) (1 )new old old
j j jW I W Wβ β= ⋅ ∧ + − ⋅ (10) 

wherein β is the learning rate parameter ( 0 1β≤ ≤ ). Fast 
learning corresponds to setting β = 1. After learning process is 
occurred, then FUZZY ARTa and FUZZY ARTb connect to 
each other via the map field module. Each category neuron in 
FUZZY ARTa module is linked to all the map field neurons 
(1-to-many association) and this weight is initially set to zero. 
During the learning phase, the weight linking the winner 
category neuron and its corresponding map field neuron is set 
to one. During the recalling phase, once the two fuzzy ART 
modules produce their output, an association between these 
outputs is employed. First, the winner node in the map field 
module is calculated, taking into account the output of the 
ARTa module, which can be defined as follows: 

1
( ) ( )

N

k
k

W I Max U
=

= ∑
 

(11) 

where 

1

M

k jk j
j

U w T
=

= ∑
 

(12) 

Wjk is the weight from the jth category neuron ( 2
aF in Figure 1) 

to the kth neuron of map field layer and Tj is the output of the 
jth category neuron. 
After the map field winner node is chosen, an association 
between the map field winner node and the FUZZY ARTb 

module winner node is created. Each map field neuron is 
linked only to its corresponding category FUZZY ARTb 
module neuron one-to-one association. Initially, the weights 
from the map field and FUZZY ARTb modules are set to zero. 
When an association occurs, the corresponding weight is set 
to one. 

V. SIMULATION RESULTS 
For simulation results, we use FormationEditor that was 
implemented by H. Akiyama et al. [45]. The main reasons to 
use this tool are that we can modify the data easily and train 
the agent with the presented data and then observe the agent’s 
positions. Thereby, we developed this simulation environment 
to construct the proposed learning framework. Figure 2 shows 
the main screen of the GUI tool.  

 
Fig 2: Screenshot of FormationEditor 

We use two sets of agents’ positions. In the first set, the 
training data is prepared by a human instructor who has no 
knowledge about soccer simulation (based on his intuition). In 
the second set, an expert in soccer simulation field has been 
told to prepare training data. In this set, agents’ positions have 
been arranged more precisely. 
The set of contexts contains {Offence, Defense, Free Kick, 
Kick Off, Corner kick, Goal Kick}. The target of the play is to 
reach to the desired position. Moreover, there are some 
constraints in the simulation environment. Maximum agent 
speed is an example of physical constraints. Readers may refer 
to [33] for further information.  
Each agent partially observes the simulation field. Therefore, 
it must first find the its position and then consider the position 
of the ball and other agents. After it gathers the local 
information about the environment, the agent must conclude 
the desired position and implement some low level behaviors 
to reach to the goal. 
The soccer field is 105 m × 68 m and the entire field is used. 
As shown in figure 3, first to implement the proposed learning 
algorithm, the position of each agent and ball is normalized to 
the interval [0, 1] and the context of learning algorithm is 
selected. Then the Fuzzy ARTMAP neural network is used to 
learn the structure of the data. In this paper 90 percent of the 
entire data is used for training and the rest of it is used for test. 
In the training phase, the position of each agent is fed to 
Fuzzy ARTa and the position of the ball recommended by the 
supervisor is fed to Fuzzy ARTb. After all training data are 
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learned by the network, the test data is fed to network.  
A standard three-layer feed-forward neural network which is 
widely used is considered here as a case to be compared with 
Fuzzy ARTMAP neural network. This network has sigmoid 
activation functions for each unit in hidden and output layers 
and connection weights between units are determined by 
back-propagation algorithm. This network is called BPN in 
this paper. 
Simulation results show the average error and the maximum 
error between the recommended and the acquired position. To 
evaluate the generalization capability, some data are randomly 
removed from the original data set. 

 
Fig 3: Average error BPN and Fuzzy ARTMAP (data set 1) 

 
Fig 4: Maximum error BPN and Fuzzy ARTMAP (data set 1) 

 
Fig 5: Average error BPN and Fuzzy ARTMAP (data set 2) 

 
Fig 6: Maximum error BPN and Fuzzy ARTMAP (data set 2) 

 
In figures 3-6, the average and maximum error value is 
illustrated versus the available percent of data. In data set 1, 
the average error and the maximum error of the proposed 
algorithm based on Fuzzy ARTMAP neural network is less 
than BPN neural network when 50 percent or more of the data 
is available. In data set 2, the results illustrate that if up to 90 
percent of the data is randomly removed, the Fuzzy ARTMAP 
learning algorithm is more accurate. Thus, we can realize that 
the generalization capability of the proposed algorithm is very 
high and agents can operate more precisely. In contrast, the 
average error of the BPN is more than 10 times greater than 
that of Fuzzy ARTMAP. If the data are prepared precisely, the 
Fuzzy ARTMAP can learn the data more efficiently and faster 
than BPN neural network. Therefore, if a more complex and 
higher precision positioning is required, the fuzzy ARTMAP 
neural network must be employed. 
 

VI. CONCLUSION 
In this paper, we introduced a framework for multi agent 
formation strategy using learning from observation of expert 
behavior. Here fuzzy ARTMAP is used to extract expert 
behavior in a task, as a knowledge based neural network. 
Employing such a system helps us better understand expert 
behavior and obtain an intelligent model of expert behavior. 
Experimental tests were performed in order to investigate the 
benefits of using the proposed techniques within a multi agent 
system. 
The main outcome of the experimental test is that the model 
proposed in this paper exhibited a higher performance than the 
conventional BPN. In addition, the experiments illustrate that 
the learning method aided by fuzzy ARTMAP converges 
more quickly than the conventional BPN. It also stabilizes 
with fewer training exemplars than the BPN and generates a 
good performance in this case. 
ARTMAP-based model has a number of advantages over 
other model, such as knowledge extraction, no catastrophic 
forgetting and fast learning. 
However, the main disadvantage of ARTMAP-based models 
is sensitivity to noise which can cause category proliferation 
during learning and misclassification during recalling. 
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Overcoming the main disadvantage of ARTMAP-based 
models was the main aim behind the proposal of the Context 
based reasoning model. The idea of using context based 
reasoning is to decrease the complexity of fuzzy ARTMAP 
models when used in applications with a large number of 
training patterns. 
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