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Abstract—This paper addresses scheduling problems on the

material handling operation at marine container-yard terminals.

The layout, removal order and removal distination of contain-

ers are simultaneously optimized in order to reduce the waiting

time for a vessel. The schedule of container-movements is derived

by autonomous learning method based on a new learning model

considering container-groups and corresponding Q-Learning al-

gorithm. In the proposed method, the layout and movements of

containers are described based on the Markov Decision Process

(MDP), and a state is represented by a container-layout with a se-

lection of a container to be removed or a selection of destination

on where the removed container are placed. Then, a state transi-

tion arises from a container-movement, a selection of container-

destination, or a selectionh of container to be removed. Only

the container-movement takes a cost, and a series of container-

movements with selections of destination and order of containers

is evaluated by a total amount of costs. As a consequent, the total

amount of costs reflects the number of container-movements that

is required to achieve desired container-layout. After adequate

autonomous learning, the optimum schedule for material han-

dling operation can be obtained by selecting a series of container-

movements that has the best evaluation. In the problem, the

number of container-arrangements increases by the exponential

rate with increase of total count of containers. Therefore, con-

ventional methods have great difficulties to determine desirable

movements of containers in order to reduce the run time for ship-

ping.

Keywords: Scheduling, Container Transfer Problem, Q-Learning,

Block Stacking, Reinforcement Learning

1 Introduction

In recent years, the number of shipping containers grows

rapidly, and in many container yard terminals, increasing

throughput of material handling operation becomes important

issue as well as decreasing the turnaround times of vessels.

Material handling operation for loading containers into a ves-

sel is highly complex, and the complexity grows at an expo-

nential rate according to the growth of the number of contain-

ers, the operation occupy a large part of the total run time of

shipping at container terminals. Thus, improving throughput

of the material handling operation for loading container on

a vessel is one of main interests at marine terminals. Com-�Faculty of Information Science and Technology, Osaka Institute of Tech-
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monly, materials are packed into containers and each container

in a vessel has its own position determined by the destination,

weight, owner, and so on [1, 2]. Then, containers have to be

loaded into a ship in a certain desired order because they can-

not be rearranged in the ship. Therefore, containers must be

rearranged before loading if the initial layout is different from

the desired layout. Containers carried into the terminal are

stacked randomly in a certain area called bay and a set of bays

are called yard. The rearrangement process conducted within

a bay is called marshalling.

In the problem, the number of stacks in each bay is predeter-

mined and the maximum number of containers in a stack is

limited. Containers are moved by a transfer crane and the des-

tination stack for the container in a bay is selected from the

stacks being in the same bay. In this case, a long series of con-

tainer movements is often required to achieve a desired layout,

and results that are derived from similar initial layouts can be

quite different. Although some methods, such as genetic algo-

rithm (GA) and multi agent method [3, 4] have been proposed

for solveing block stacking problems, environmental models

adopted in these methods are different from the marshalling

process, and do not apply directly to obtain the desired layout

of containers.

Another candidate for solving the problem is the reinforce-

ment learning [5], which is known to be effective for learn-

ing under unknown environment that has the Markov Prop-

erty. The Q-learning, one of the realization algorithm for the

reinforcement learning can be applied to generate marshalling

plan, when all the estimates of evaluation-values for pairs of

the layout and container movement are obtained. These values

are called “Q-value”. The optimal series of container move-

ments can be obtained by selecting the movement that has

the best evaluation for each layout. However, conventional

Q-learning has to store evaluation-values for all the layout-

movement pairs. Therefore, the conventional Q-learning has

great difficulties for solving the marshalling problem, due to

its huge number of learning iterations required to obtain ad-

missible plan [6]. Recently, a Q-learning method that can

generate marshalling plan has been proposed [7]. Although

these methods were effective several cases, the desired layout

was not achievable for every trial so that the early-phase per-

formances of learning process can be spoiled. To conquer the

drawback, the environmental model that assures the reacha-
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bility to the desired layout in each trial is proposed [8]. In

addition, the environmental model considering groups of con-

tainers [9] is shown to be effective to improve the learning

performance.

This paper proposes a new environmental model integrated in

Q-learning method for marshalling plan in order to improve

learning performances. The learning process in the proposed

method is consisted of two stages: 1. determination of re-

arrangement order, 2. selection of destination for removal

containers. In both stages, candidates are extended includ-

ing all the candidates in conventional methods [8, 9], so that

the method can find better marshalling plan as compaired to

conventional methods. In addition, Q-values in one stage are

referred from the learning algorithm in the other stage. Stages

are repeated sequentially in accordance with container move-

ments and Q-values are discounted according to the number of

container movements, then Q-values reflect the total number

of container movements. Consequently, selecting the best Q-

values leads the best series of container movements required

to obtain a desired layout. Moreover, each rearranged con-

tainer is placed into the desired position so that every trial can

achieve one of desired layouts. In addition, in the proposed

method, each container has several desired positions in the

final layout, and the feature is considered in the learning al-

gorithm. Thus, the early-phase performances of the learning

process can be improved.

Finally, effectiveness of the proposed method is shown by

computer simulations for several cases.

2 PROBLEM DESCRIPTION

Fig.1 shows an example of container yard terminal. The ter-

Container terminal

Port crane

Yard transfer crane

Vessel

ContainerYard area
Figure 1: Container terminal

minal consists of containers, yard areas, yard transfer cranes,

auto-guided vehicles, and port crane. Containers are carried

by trucks and each container is stacked in a corresponding area

called bay and a set of bays constitutes a yard area. Each bay

has ny stacks that my containers can be laden, the number

of containers in a bay is k, and the number of bays depends

on the number of containers. Each container is recognized

by an unique name ci (i = 1; � � � ; k). A position of each

container is discriminated by using discrete position numbers,1; � � � ; ny � my. Then, the position of the container ci is de-

scribed by xi (1 � i � k; 1 � xi � my � ny), and the state of

a bay is determined by the vector, x = [x1; � � � ; xk℄.

2.1 Grouping

The desired layout in a bay is generated based on the loading

order of containers that are moved from the bay to a ship. In

this case, the container to be loaded into the ship can be any-

where in the bay if it is on top of a stack. This feature yields

several desired layouts for the bay.

2.1.1 Groups in horizontal direction

In the addressed problem, when containers on different stacks

are placed at the same height in the bay, it is assumed that the

positions of such containers can be exchanged. Fig.2 shows

an example of desired layouts, where my = ny = 3; k = 9.

In the figure, containers are loaded in the ship in the descen-

dent order. Then, containers c7; c8; c9 are in the same group

(group1), and their positions are exchanged because the load-

ing order can be kept unchanged after the exchange of po-

sitions. In the same way, c4; c5; c6 are in the group2, and

c1; c2; c3 are in the group3 where positions of containers can

be exchanged. Consequently several candidates for desired

layout of the bay are generated from the original desired-

layout.

A desired layout (original)

Bay

stack1 stack2 stack3

ny = 3m y=3

Layout candidates for bay

� � � � � �Grouping

group1
group2
group3

c7
c7c7c7 c7c7 c8

c8c8c8 c8c8 c9
c9c9c9 c9c9 c4
c4c4c4 c4c4 c5

c5c5c5 c5c5 c6
c6c6c6 c6c6 c1

c1c1c1 c1c1 c2
c2c2c2 c2c2 c3

c3c3c3 c3c3
Figure 2: Layouts for bay

2.1.2 Heap shaped group

In addition to the grouping in the horizontal direction, a “heap

shaped group” for ny containers at the top of stacks in original

the desired-layout (group1) is generated as follows:

1. ny containers in group1 can be placed at any stacks if

their height is same as the original one.

2. Each of them can be stacked on other ny � 1 containers

when both of followings are satisfied:

(a) They are placed at the top of each stack in the orig-

inal disired-layout,

(b) The container to be stacked is loaded into the ship

before other containers being under the container.

Other groups are the same as ones in the original grouping, so

that the grouping with heap contains all the desired layout in

the original grouping.
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Fig.3 depicts an example of heap grouping for k = 9; ny = 3.

In the figure, containers are loaded into a vessel by the order

c9; c8; c7; � � � . Then, c9 can be placed on c7 and c8, c8 can be

placed on c7, so that the number of desired layouts is incresed.

Desired layout (original)

loading order

Heap Shaped grouping
Vessel� � �� � �

c1c1c1
c1

c2c2c2
c2

c3c3c3
c3

c4c4c4
c4

c5c5c5
c5

c6c6c6
c6

c7c7c7
c7c7

c7
c8c8c8 c8c8

c8
c9c9

c9 c9c9
c9

Figure 3: Heap shaped group

2.1.3 Overlapped group

As the main contribution of the paper, the horizontal groups

are extended by overlapping adjacent groups to each other.

Groups are overlapped by exchanging members in different

groups. When groupj is located on groupi, members being in

the overlapping area, which can be placed in adjacent group

are determined by the following rule :

1. A container cl in groupj can be placed in groupi if l sat-

isfiesl < ny2 + (k � jny),
when i > j and loading is conducted with descending

order from ck to c1.

2. A container cr in groupi can be placed in groupj if r
satisfiesr > ny2 + (k � iny),
when i > j and loading is conducted with descending

order from ck to c1.

Fig.4 shows an example of overlapped group for k = 9; ny =3. In the example, members of group1 are fc9; c8; c7g, ones

of group2 are fc6; c5; c4g, and ones of group3 are fc3; c2; c1g.

In group2 c4 can be placed in group3 because c4 satisfies the

rule 1, and in group1, c3 can be placed in group2 because c3
satisfies the rule 2. When loading is conducted descending

order, c4 can be placed under c5 and c6. c3 can be placed on

c1 and c2. This feature augments the number of candidates for

optimum layout as shown in the figure.
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Candidates of desired layout

c1c1c1
c1

c2c2c2
c2

c3c3c3
c3

c4c4c4
c4

c5c5c5
c5

c6c6c6
c6

c7c7c7
c7

c8c8c8
c8

c9c9c9
c9

Figure 4: Overlapped group

2.2 Marshalling process

The marshalling process consists of 2 stages: 1
 selection of

a container to be rearranged, and 2
 removal of the containers

on the selected container in 1
. After these stages, rearrange-

ment of the selected container is conducted. In the stage 2
,

the removed container is placed on the destination stack se-

lected from stacks being in the same bay. When a container is

rearranged, ny positions that are at the same height in a bay

can be candidates for the destination. In addition, ny contain-

ers can be placed for each candidate of the destination. Then,

defining t as the time step, 
a(t) denotes the container to be re-

arranged at t in the stage 1
. 
a(t) is selected from candidates

cyi1 (i1 = 1; � � � ; n2y) that are at the same height in a desired

layout. A candidate of destination exists at a bottom position

that has undesired container in each corresponding stack. The

maximum number of such stacks is ny, and they can have ny
containers as candidates, since the proposed method consid-

ers groups in the desired position. The number of candidates

of 
a(t) is thus ny � ny. In the stage 2
, the container to

be removed at t is 
b(t) and is selected from two containers

cyi2 (i2 = 1; 2) on the top of stacks. cy1 is on the 
a(t) and

cy2 is on the destination of 
a(t). Then, in the stage 2
, 
b(t)
is removed to one of the other stacks in the same bay, and the

destination stack u(t) at time t is selected from the candidatesuj (j = 1; � � � ; ny � 2). 
a(t) is rearranged to its desired po-

sition after all the cyi2 s are removed. Thus, a state transition

of the bay is described as follows:xt+1 = � f(xt; 
a(t)) (stage 1
)f(xt; 
b(t); u(t)) (stage 2
)
(1)

where f(�) denotes that removal is processed and xt+1 is the

state determined only by 
a(t); 
b(t) and u(t) at the previous

state xt. Therefore, the marshalling plan can be treated as the

Markov Decision Process.

Additional assumptions are listed below:

1. The bay is 2-dimensional.

2. Each container has the same size.

3. The goal position of the target container must be located

where all containers under the target container are placed

at their own goal positions.

4. k � myny � 2my + 1
The maximum number of containers that must removed be-

fore rearrangement of 
a(t) is 2my � 1 because the height of

each stack is limited to my. Thus, assumption (4) assures the

existence of space for removing all the 
b(t), and 
a(t) can be

placed at the desired position from any state xt.
Figure 5 shows 3 examples of marshalling process, wheremy = 3; ny = 5; k = 8. Positions of containers are discrimi-

nated by integers 1; � � � ; 15. The first container to be loaded is

c8 and containers must be loaded by descendent order until c1
is loaded. In the figure, a container marked with a � denotes
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1, a container marked with a 
 is removed one, and an ar-

rowed line links source and destination positions of removed

container. Cases (a),(b) have the same order of rearrangement,

c2; c7; c6, and the removal destinations are different. Whereas,

case (c) has the different order of rearrangement, c8; c2; c7.

When no groups are considered in desired arrangement, case

(b) requires 5 steps to complete the marshalling process, and

other cases require one more step. Thus, the total number of

movements of container can be changed by the destination of

the container to be removed as well as the rearrangement order

of containers.

If groups are considered in desired arrangement, case (b)

achieves a goal layout at step2, case (a) achieves at step3, case

(c) achives at step4. If extended groups are considered, cases

(a),(b) achive goal layouts at step2 and case (c) achives at

step4. Since extended goal layouts include the non-extended

goal layouts, and since non-extended goal layouts include a

non-grouping goal layout, equivalent or better marshalling

plan can be generated by using the extended goal notion as

compared to plans generated by other goal notions.

The objective of the problem is to find the best series of move-

ments which transfers every container from an initial position

to the goal position. The goal state is generated from the ship-

ping order that is predetermined according to destinations of

containers. A series of movements that leads a initial state

into the goal state is defined as an episode. The best episode is

the series of movements having the smallest number of move-

ments of containers to achieve the goal state.

3 REINFORCEMENT LEARNING FOR

MARSHALLING PLAN

3.1 Update rule of Q-values

In the selection of 
a, the container to be rearranged, an eval-

uation value is used for each candidate cyi1 (i1 = 1; � � � ; r,

where r is the number of candidates. In the same way, eval-

uation values are used in the selection of the container to

be removed 
b and its destination uj (j = 1; � � � ; ny � 2).
Candidates of 
b is cyi2 (i2 = 1; � � � ; ny). The evaluation

value for the selection of cyi1 , cyi2 and uj at the state x
are called Q-values, and a set of Q-values is called Q-table.

At the lth episode, the Q-value for selecting cyi1 is defined

as Q1(l;x; cyi1 ), the Q-value for selecting cyi2 is defined asQ2(l;x; cyi1 ; cyi2 ) and the Q-value for selecting uj is de-

fined as Q3(l;x; cyi1 ; cyi2 ; uj). The initial value for bothQ1; Q2; Q3 is assumed to be 0.

In this method, a large amount of memory space is required to

store all the Q-values referred in every episode. In order to re-

duce the required memory size, the length of episode that cor-

responding Q-values are stored should be limited, since long

episode often includes ineffective movements of container. In

the following, update rule of Q3 is described. When a se-

ries of n movements of container achieves the goal state xn
from an initial state x0, all the referred Q-values from x0

Initial layout of bay

case (a) case (b) case (c)

Marshalling

Step 1Step 1Step 1

Step 2Step 2Step 2

Step 3Step 3Step 3

Step 4Step 4Step 4

Step 5Step 5Step 5

desired layout for bay positions in a bay

c1 c1 c1c1 c1 c1c1c1
c1

c1
c1c1

c1

c1c1c1
c1

c2 c2 c2c2 c2 c2 c2c2
c2

c2
c2

c2
c2

c2 c2

c2

c2

c3 c3 c3c3 c3 c3c3c3
c3

c3
c3c3

c3

c3
c3c3

c3

c4 c4 c4c4 c4 c4c4c4
c4

c4
c4c4

c4

c4c4c4
c4

c5 c5 c5c5 c5 c5c5c5
c5

c5
c5c5

c5c5c5
c5c5

c6 c6 c6c6 c6 c6c6c6
c6

c6
c6c6

c6c6
c6

c6
c6

c7 c7 c7c7 c7 c7c7c7
c7

c7
c7c7

c7 c7

c7c7c7

c8 c8 c8c8 c8 c8c8c8
c8

c8
c8c8c8 c8

c8c8c89
1 2 3 4 5
6 7 8 9 10

11 12 13 14 15

Figure 5: Marshalling process

to xn are updated. Then, defining L as the total counts of

container-movements for the corresponding episode, Lmin as

the smallest value of L found in the past episodes, and s as

the parameter determining the threshold, Q3 is updated whenL < Lmin + s (s > 0) is satisfied by the following equation:Q3(l;xt; 
a(t); 
b(t); u(t)) =(1� �)Q3(l � 1;xt; 
a(t); 
b(t); u(t))+�[R + Vt+1℄Vt = � 
maxyi1 Q1(l;xt; cyi1 ) (stage 1
)
maxyi2 Q2(l;xt; 
a(t); cyi2 ) (stage 2
) (2)

where 
 denotes the discount factor and � is the learning

rate. Reward R is given only when the desired layout has

been achieved. Lmin is assumed to be infinity at the initial

state, and updated when L < Lmin by the following equation:L = Lmin.

In the selection of 
b(t), the evaluation value Q3(l;x;
a(t); 
b(t); uj) can be referred for all the uj(j = 1 � � �ny�2),
and the state x does not change. Thus, the maximum value ofQ3(l;x; 
a(t); 
b(t); uj) is copied to Q1(l;x; 
(t)), that is,Q2(l;x; 
a(t); 
b(t)) =maxj Q3(l;x; 
a(t); 
b(t); uj): (3)

In the selection of 
a(t), the evaluation value Q1(l;x; 
a(t)) is

updated by the following equations:Q1(l;xt; 
a(t)) =� maxyi1 Q1(l;xt; cyi1 ) +R (stage 1
)maxyi2 Q2(l;xt; 
a(t); cyi2 ) (stage 2
) (4)

In order to select actions, the ”�-greedy” method is used.

In the ”�-greedy” method, 
a(t); 
b(t) and a movement that

have the largest Q1(l;x; 
a(t)); Q2(l; x; 
a(t); 
b(t)) andQ3(l;x; 
a(t); 
b(t); uj) are selected with probability 1 ��(0 < � < 1), and with probability �, a container and a move-

ment are selected randomly.
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START

Initialize Q-values

Rearrange 
a(t)

Rearrange 
a(t)
Exist free 
a(t)?

Select 
a(t)
Select 
b(t)

Save (x; 
a(t); uj)Save (x; 
a(t); uj)
(Update Q3 by eq.(3))

(Update Q1 by eq.(4))

Exist 
b(t)?Move 
b(t)
(Update Q2 by eq.(2))

Save (x; 
a(t); 
b(t); uj)
 (t)
Receive reward

Desired layout?

Desired layout?

END

yes

yes

yes

yes

no

no

no

no

Figure 6: Flowchart of the learning algorithm

3.2 Learning algorithm

By using the update rule, restricted movements and goal states

explained above, the learning process is described as follows:

[1]. Count the number of containers being in the goal posi-

tions and store it as n
[2]. If n = k, go to [10]

[3]. Select 
a(t) to be rearranged

[4]. Store (x; 
a(t))
[5]. Select 
b(t) to be removed

[6]. Store (x; 
a(t); 
b(t))
[7]. Select destination position uj for 
b(t)
[8]. Store (x; 
a(t); 
b(t); uj)
[9]. Remove 
b(t) and go to [5] if another 
b(t) exists, oth-

erwise go to [1]

[10]. Update all the Q-values referred from the initial state

to the goal state according to eqs. (2), (3)

A flow chart of the learning algorithm is depicted in Figure 6.

4 SIMULATIONS

Computer simulations are conducted for 2 cases, and learning

performances are compared for following two methods:

(A) proposed method using 3 grouping method,

(B) proposed method only using horizontal and heap shaped

grouping,

(C) a learning method using eqs. (2)-(4) as the update rule

without grouping [8],

(D) method (E) considering original grouping.

(E) a learning method using, eqs. (2),(3) as the update rule,

which has no selection of the desired position of 
a(t)
[10].

In methods (D),(E), although the stage 2
 has the same process

as in the method (A), the container to be rearranged, 
a(t), is

simply selected from containers being on top of stacks. The

learning process used in methods (D),(E) is as follows:

[1]. The number of containers being on the desired posi-

tions is defined as kB and count kB

[2]. If kB = k, go to [6] else go to [3],

[3]. Select 
a(t) by using �-greedy method,

[4]. Select a destination of 
a(t) from the top of stacks by

using �-greedy method,

[5]. Store the state and go to [1],

[6]. Update all the Q-values referred in the episode by eqs.

(2),(3).

Since methods (D),(E) do not search explicitly the desired po-

sition for each container, each episode is not assured to achieve

the desired layout in the early-phase of learning.

In methods (A)-(E), parameters in the yard are set as k =18;my = ny = 6 that are typical values of marshalling envi-

ronment in real container terminals. Containers are assumed

to be loaded in a ship in descendant order from c18 to c1. Fig-

ure 7 shows a desired layout for the two cases, and figure 8

shows corresponding initial layout for each case. Other pa-

rameters are put as � = 0:8; 
 = 0:8; R = 1:0; � = 0:8; s =15.

Results for case 2 are shown in Fig. 9. In the figure, hori-

zontal axis shows the number of trials, and vertical axis shows

the minimum number of movements of containers found in the

past trials. Each result is averaged over 20 independent sim-

ulations. In both cases, solutions that is obtained by methods

(A),(B) and (C) is much better as compared to methods (D),(E)

in the early-phase of learning, because methods (A),(B),(C)

can achieve the desired layout in every trial, whereas meth-

ods (D),(E) cannot. Also, methods (A),(B) successfully re-

duces the number of trials in order to achieve the specific

count of container-movements as compared to method (C),

since methods (A),(B) considers grouping and finds desirable

layouts than can easily diminish the number of movements of

container in the early-phase learning. Moreover, at 10000th

trail the number of movements of containers in method (A)

is smaller as compared to that in method (B) because, among

the extended layouts, method (A) obtained better desired lay-

outs for improving the marshalling process as compared to the

layout generated by method (B). Desired layouts generated by

methods (A),(B) are depicted in the Fig.10 for case 2.
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Table 1: The best solution of each method for cases 1, 2
Case 1 Case 2

min. ave. min. ave.

counts value counts value

(A) 16 16.90 22 23.00

(B) 18 19.10 23 24.40

Method (C) 34 35.05 35 38.85

(D) 38 46.90 50 64.00

(E) 148 206.4 203 254.0

The container-movement counts of the best solution and its

averaged value for each method are described in Table1. Av-

eraged values are calculated over 20 independent simulations.

Among the methods, method (A) derives the best solution with

the smallest container-movements. Therefore method (A) can

improve the solution for marshalling as well as learning per-

formance to solve the problem.

c1 c2 c3 c4 c5 c6c7 c8 c9 c10 c11 c12c13 c14 c15 c16 c17 c18
Figure 7: A desired layout for cases 1,2

c1c1 c2c2 c3c3
c4c4 c5c5
c6c6 c7c7 c8c8

c9c9
c10c10 c11c11 c12c12

c13
c13 c14c14 c15c15 c16

c16 c17
c17 c18c18

Case 1 Case 2
Figure 8: Initial layouts for cases 1,2

5 CONCLUSIONS

A new reinforcement learning system for marshalling plan at

container terminals has been proposed. Each container has

several desired positions that are in the same group, and the

learning algorithm is designed to considering the feature.

In simulations, the proposed method could find solutions that

had smaller number of movements of containers as com-

pared to conventional methods. Moreover, since the proposed

method achieves the desired layout in each trial as well as

learns the desirable layout, the method can generate solutions

with the smaller number of trials as compared to the conven-

tional method.
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