Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II

IMECS 2009, March 18 - 20, 2009, Hong Kong

Magnetothermoelastic Problem of a Half-Space Subjected to
Moving Heat Source and Moving Load

S.K. Bhullar and J.L.Wegner

Abstract-This paper is concerned to study
temperature distribution, thermal stresses and
displacement components for a
magnetothermoelastic problem of a half-space
subjected to (i) moving heat source and (ii)
moving load. Classical Dynamical Coupled,
Lord-Shulman and Green Lindsay theories of
thermoelasticity are used for mathematical
analysis. It is found that the Lord-Shulman
theory is more pronounced than coupled
theory and Green Lindsay theories. Numerical
computations have been performed for
computing  temperature,  stresses  and
displacement for these theories. The results
obtained using these theories are compared
and depicted graphically.

Keywords: displacement, temperature field,
moving heat source, moving load.

Nomenclature

C-D  Classical Dynamical Coupled
L-S Lord-Shulman theory

G-L  Green Lindsay theory

f Avrbitrary function

¢ Velocity of motion

u Displacement

h Surface heat transfer coefficient

t Time

k Thermal conductivity

t,, I, Relaxation times

T Absolute temperature

T, Reference temperature chosen so that
|T-TO|<<1

e Dilatation, &,

e;;  Components of strain deviator

u; Components of displacement vector

Ce Components of displacement vector
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1. Introduction

The classical theory of thermoelasticity is
based on Fourier’s law of heat conduction,
which predicts an infinite speed of heat
propagation. Many new theories have been
proposed to eliminate this physical absurdity.
Lord and Shulman [1] first modified
Fourier’s law by introducing into the field
equations the term representing the thermal
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relaxation time. This modified theory is
known as the generalized theory of
thermoelasticity. Later, Green and Lindsay
[2] developed a more general theory of
thermoelasticity, in which Fourier.s law of
heat conduction is unchanged,

whereas the classical energy equation and the
stress-strain ~ temperature  relations  are
modified by introducing two constitutive
constants having dimensions of time. In the
last five decades another domain has been
developed, which investigates the interaction
between the strain and electromagnetic fields.
This discipline is called magnetoelasticity.
The problem of interaction between the elastic
or thermoelastic field and the electromagnetic
field has been a research topic for a number of
investigations in recent years because of it’s
utilitarian aspects in various branches of
science and technology, like geophysics for
understanding the effect of the Earth’s
magnetic field on seismic waves, damping of
acoustic waves in a magnetic field, emissions
at electromagnetic radiation from nuclear
devices, development of a highly sensitive
super conducting magnetometer, electrical
power engineering, optics and plasma physics.
A comprehensive review of the earlier
contribution to the subject can be found in [3].
The contribution of some authors who had
worked in this field is presented in [4-11]. The
other studies performed is a coupled
magnetothermoelastic problem in elastic half

space [12], transient generalized
magnetothermoelastic waves in a rotating half-
space [13] and a coupled

magnetothermoelastic problem in a perfectly
conducting elastic half-space with thermal
relaxation [14], magnetothermoelastic waves
induced by a thermal shock in a infinitely
conducting elastic half space [15] and
generation of generalized magneto
thermoelastic waves by thermal shock in a
perfectly conducting half-space[16].
Recently, relaxation effects on thermal shock
problems in an elastic half-space of
generalized magneto thermoelasticity are
stidied in [17].

In the present paper we have formulated a
two-dimensional magnetothermoelastic
problem of a half- space subjected to moving
heat source and moving load to study
temperature field, thermal stresses and
displacement components.
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2. Theory

Following Othman [17], for generalized
thermoelasticity with two relaxation times, the
linearized equations in non- dimensional form
of electrodynamics in slowly moving medium
and the non-vanishing stress components are
given by

pBu, +U,, +(ﬂ2 —1)v'Xy
B0, +1,6,)= i 0

(ﬂ2 —1)u’Xy +B7V

0,146, )=a,i )
2
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0
A1+t — |6 4
B ( + 15J (4)
o-yy:(ﬂ2 —2)qu +ﬂ02uyy
0
—B%1+t,— |0 5
i) .
Oy =U, +V, (6)
e=u, +V, ()
2 2
1 H
a0=aﬂ2,a=l+%,cz= ,a§='u° L,
c Hy & P
2_/1"'2# 2 2 G 2 M
0 ) o CZ -
G, P

t, and t, are thermal relaxation times and
other symbols have their usual meanings. In
order to discuss the results from different
theories of thermoelasticity,

we shall take for:

C-D theory, t, =t, =0;

L-Stheory, t, =0, t, #0;

G-L theory, t, #0,t, #0.

In the above equations, the following non-
dimensional quantities are used
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where, primes denote dimensional variables.
If we introduce the function ¢ defined by,

p=e-0 (8)
Equations (1) and (2) take the form
0’0 1 (_, , .\ 0%

= =\Vp-tVO)|-—- 9
ot? a( p-tv0) ot? ®

The heat conduction equation given by (3) can
be written as

vzez[gno a%}[m &0+ 9)] (10)

and the stress components given by (4) - (6)
are written as

O-xx:|:/802 _ﬂz[l—i_tl %J:|‘9

+Bip—2v, (11
2 p2 i
ayy{ﬂo Yij [1+t1 atﬂe
+fep—2u, (12)
O =U, +V, 13

We change the co-ordinate system moving
with input by shifting the origin to the position
of input

Xﬂ:ﬂ_o(xr_ ptl), y//: y/, tﬂ:tr’

CO
2 2
vie O O (14)
axﬂ ay!!
Vo . . .
where p =—, is the dimensionless loading

CO
speed and the co-ordinates x” and y” move
in positive direction with speed p. It follows

from (14) that we may use the relation

0 0

= - _p = 15

- o 15)
to eliminate time derivatives. In terms of the
moving co-ordinates given by (14) , (1) and
(2) together with (7) and (8) become
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_ﬁz (Qy - ptlg,yy):ao pzv,xx (17)

Equations (9)-(10) together with relation (15),
after omitting the primes on x and y are as

follows:
2
i =1(v2¢+ pt,V? %j
o 0 X
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p Y% (18)
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To obtain the expressions for 4, ¢,u,v and o
let us assume that

[9’(P’U’V’O'i jJ(X’ y)=[90,(00,u0,vo,0'0i jJ(y)
xexp(@ax—Dy) (20

where, D is the (complex) frequency and a is

the wave number in the x- direction and D is

unknown quantity. Inserting (20) into (18)
and (19) to obtain:

[D2 —a’+a pzaz](po(y)
:—[(D2 —az)zapt1 +ap2a2]90(y) (29

WP, (y)= [(D2 - az)— (1+ g)wl]ﬁo (y) (22)
Eliminating 6, (y) from equations (21)-(22),
we obtain

[D4_a1D2_a2]‘90(y)=0 (23)
where,

a, =2a’ +aw’p® +(1+ & + 1zapt, o,

a, = (@' + w,a’ f1-ap? )+ cw,a?(1+ apt,)

o, =-t,p*a’ —ap

Equation (23) can be factorized as

I.(DZ - klz&Dz - k22 )Jgo (Y)= 0 (24)
where,

ki, =a’+w, o,

w, = %[ozpza2 +(1+e+ zgaptl)]wl

o, =+ o) —ap’a®
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The solution of (23) is written as

2
6, = 0, exp(iax —k,y) (25)

i=1
where 6, are parameters depending upon a.
Substituting equation (25) in (21) and we get:

, (kf —az)zapt1 +op’a’
=Y K- +apa

= x6, exp(iax—k;y) (26)
Now, (16) and (17) together with (20) become

as follows:
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where, m=a’® + a,a’p?
In terms of the moving co-ordinates (14) and

by making use of relation (15) the stress
components given by (11)-(13) become as

follows
0
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Upon using (20), (25), (26) and (29) into
equations (31)-(33), we get
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Problem |

Consider a homogeneous isotropic
thermoelastic solid occupying the region
y>0, -0 <X<00, —0<Z<o0

of the xy-plane and displacement T = (u,V,0)
and the temperature T are function of X,y

and time t which is subjected to moving heat
source with following boundary
conditions,

o(x,y,t)= f(x—yt), o, =(x,y,t)=0,
06

—+h&=0 (37)
OX
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where, h is the surface heat transfer
coefficient and f is arbitrary function and be

the wvelocity of motion of heat source.
Equations (37) together with (25) and(36)

gives following expression:

2 2
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Problem 11

Consider a homogeneous isotropic
thermoelastic solid occupying the region
y>0,-0< X<, —w<z<ow of the xy-
plane which is subjected to moving load with
following boundary conditions,

G8lx, y,t)=g(x-vt) (41)
o, (X% y,t)=0 (42)
00

PV +ho=0 (43)
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2
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where,

2
b, = 1 jg(x) exp(zax)dx and
i

g(x) = exp(-x?)
Solving equations (44)-(46) for unknown
constants
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3. Numerical calculations and Conclusion

In order to study the temperature field, thermal
stresses and displacement components, we
have computed them for a specific model. The
material chosen for numerical calculation is
Copper. The physical data for such material in
Sl units is,

p=8.93x10°kg/m°,C. =0.398x10J /Kg,

K =381W/m°C, £=00168 f° =35, 2 =201

To compare the results obtained using
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Classical Dynamic Coupled, Lord-Shulman
and Green-Lindsay

theories of thermoelasticity. The value of
thermal relaxation times have been taken as:
C-D theory, t, =t, =0;

L-S theory, t, =0.5,t, =0;

G-L theory, t, =0.2,t, =0.5.

The graphs are drawn for different values of
time,

t=0.2,t, =0.5. The values of real part of

temperature  field and  displacement
components u(x,t)and v(x,t) are evaluated

onthe planey =1

for the problem of moving heat source and
moving load. In Fig.1, three curves, predicted
by the three theories, C-D, G-L and L-S for
temperature distribution due to moving heat
source at dimensionless time, t=0.2, are
shown. The graph in Fig. 2, is drawn to see the
variation in temperature at  time
t=0.5whereas  the  comparison  for
temperature variation, at time t=0.2 and
t = 0.5 due to moving heat source is shown in
Fig. 3. The horizontal displacement for C-D,
G-L and L-S theories respectively due to
moving heat source at dimensionless time
t=0.2 and t =0.5is shown in Fig. 4-5 and
comparison of three theories is given in Fig.6.
The graph in Fig. 7-8, is drawn to see vertical
displacement at dimensionless time t=0.2
and t =0.5 whereas their comparison due to
moving heat source is shown in Fig. 9.
Similarly the results are obtained for the
problem of moving load. The variation in
temperature, horizontal displacement and
vertical displacement at different values of at
dimensionless time t=0.2and t=0.5and
their comparison, for C-D, G-L and L-S
theories due to moving load are shown in
Fig.10-18. It is observed that temperature
variation is more in L-S theory than C-D and
G-L theory with distance at small time due to
moving heat source. The same variation is
observed in the case of horizontal and vertical
displacement distribution. As well as case of
moving load source is concerned the variation
in temperature and displacement occurs in
same fashion.
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Fig. 1, Temperature distribution for C-D,
G-L and L-S theories, due to moving heat
source, at t=0.2
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Fig. 2, Temperature distribution for C-D,
G-L and L-S theories, due to moving heat
source, at t=0.5
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Fig. 3, Comparison for temperature
distribution for C-D, G-L and L-S theories,
due to moving heat source, times, t=0.2 and
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Fig. 5, Horizontal displacement for C-D,
G-L and L-S theories, due to moving
heat source, at t=0.5
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Fig. 6, Comparison for horizontal
displacement for C-D, G-L and L-S
theories, due to moving heat source,
times t=02 and t=0 5
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Fig. 4, Horizontal displacement for C-
D, G-L and L-S theories, due to
moving heat source, at t=0.2
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Fig. 7, Vertical displacement for C-
D, G-L and L-S theories, due to
moving heat source, at t=0.2
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Fig. 8, Vertical displacement for C-

D, G-L and L-S theories, due to
moving heat source, at t=0.5
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Fig. 9, Comparison for vertical
displacement for C-D, G-L and
L-S theories, due to moving
heat source, times, t=0.2 and
t=0.5.
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Fig. 10, Temperature
distribution for C-D, G-L and
L-S theories, due to moving
load at t=0.2
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Fig. 11, Temperature distribution for C-D, G-L
and L-S theories, due to moving load at t=0.2
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Fig. 13, Horizontal displacement
for C-D, G-L and L-S theories, due
to moving load at t=0.2
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Fig. 14, Horizontal displacement for
C-D, G-L and L-S theories, due to
moving load at t=0.2
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Fig. 15, Comparison for horizontal
displacement for C-D, G-L and L-S
theories, due to moving load, times,

t=0.2 and t

=0.5.
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Fig. 16, Vertical displacement for C-D,
G-L and L-S theories, due to moving
load at t=0.2
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Fig. 17, Vertical displacement for C-
D, G-L and L-S theories, due to
moving load, at t=0.5
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Fig. 18, Comparison for vertical displacement
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