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Abstract-This paper is concerned to study 
temperature distribution, thermal stresses and 
displacement components for a 
magnetothermoelastic problem of a half-space 
subjected to (i) moving heat source and (ii) 
moving load. Classical Dynamical Coupled, 
Lord-Shulman and Green Lindsay theories of 
thermoelasticity are used for mathematical 
analysis.  It is found that the Lord-Shulman 
theory is more pronounced than coupled 
theory and Green Lindsay theories.  Numerical 
computations have been performed for 
computing temperature, stresses and 
displacement for these theories.  The results 
obtained using these theories are compared 
and depicted graphically. 
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Nomenclature 
C-D Classical Dynamical Coupled 
L-S Lord-Shulman theory  
G-L Green Lindsay theory  
f  Arbitrary function 
ν  Velocity of motion 
u  Displacement 
h   Surface heat transfer coefficient 
t   Time   
k   Thermal conductivity 

,0t 1t   Relaxation times   
T   Absolute temperature  

0T  Reference temperature chosen so that 
1|0| <<−TT  

e   Dilatation, kkε  

jie  Components of strain deviator   

iu   Components of displacement vector 

EC   Components of displacement vector 
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Greek notation 

jiσ  Stress components  
μλ ,  Lam  constants 

ρ  Density  

0μ  Magnetic permability 

b Electric permability 

iα       Coefficient of linear thermal expansion       
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1. Introduction 

The classical theory of thermoelasticity is 
based on Fourier’s law of heat conduction, 
which predicts an infinite speed of heat 
propagation.  Many new theories have been 
proposed to eliminate this physical absurdity.   
Lord and Shulman [1] first modified 
Fourier’s law by introducing into the field 
equations the term representing the thermal 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-7-5 IMECS 2009



relaxation time. This modified theory is 
known as the generalized theory of 
thermoelasticity.  Later, Green and Lindsay 
[2] developed a more general theory of 
thermoelasticity, in which Fourier.s law of 
heat conduction is unchanged,  
whereas the classical energy equation and the 
stress-strain temperature relations are 
modified by introducing two constitutive 
constants having dimensions of time.  In the 
last five decades another domain has been 
developed, which investigates the interaction 
between the strain and electromagnetic fields.  
This discipline is called magnetoelasticity. 
The problem of interaction between the elastic 
or thermoelastic field and the electromagnetic 
field has been a research topic for a number of 
investigations in recent years because of  it’s 
utilitarian aspects in various branches of 
science and technology, like geophysics for 
understanding the effect of the Earth’s 
magnetic field on seismic waves, damping of 
acoustic waves in a magnetic field, emissions 
at electromagnetic radiation from nuclear 
devices, development of a highly sensitive 
super conducting magnetometer, electrical 
power engineering, optics and plasma physics. 
A comprehensive review of the earlier 
contribution to the subject can be found in [3]. 
The contribution of some authors who had 
worked in this field is presented in [4-11]. The 
other studies performed is a coupled 
magnetothermoelastic problem in elastic half 
space [12], transient generalized 
magnetothermoelastic waves in a rotating half-
space [13] and a coupled 
magnetothermoelastic problem in a perfectly 
conducting elastic half-space with thermal 
relaxation [14], magnetothermoelastic waves 
induced by a thermal shock in a infinitely 
conducting elastic half space [15] and 
generation of generalized magneto 
thermoelastic waves by thermal shock in a 
perfectly conducting half-space[16].  
Recently, relaxation effects on thermal shock 
problems in an elastic half-space of 
generalized magneto thermoelasticity are 
stidied in [17].  
In the present paper we have formulated a 
two-dimensional magnetothermoelastic 
problem of a half- space subjected to moving 
heat source and moving load to study 
temperature field, thermal stresses and 
displacement components. 
 

2. Theory 
 

Following Othman [17], for generalized 
thermoelasticity with two relaxation times, the 
linearized equations in non- dimensional form 
of electrodynamics in slowly moving medium 
and the non-vanishing stress components are 
given by 
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0t  and  1t  are thermal relaxation times and 
other symbols have their usual meanings. In 
order to discuss the results from different 
theories of thermoelasticity, 
we shall take for:  
C-D theory, 010 == tt ; 
L-S theory, 0,0 10 ≠= tt ; 
G-L theory, 0,0 10 ≠≠ tt . 
In the above equations, the following non-
dimensional quantities are used 
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where, primes denote dimensional variables.  
If we introduce the function ϕ  defined by,    

)8(θϕ −= e  
Equations (1) and (2) take the form 
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The heat conduction equation given by (3) can 
be written as 
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and the stress components given by  (4) - (6) 
are written as 
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We change the co-ordinate system moving 
with input by shifting the origin to the position 
of input 
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where  ,
0c

vp =  is the dimensionless loading 

speed and the co-ordinates x ′′ and y ′′  move 
in positive direction with speed p .  It follows 
from (14) that we may use the relation 
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to eliminate time derivatives.  In terms of the 
moving co-ordinates given by (14) ,  (1) and 
(2) together with (7) and (8) become 
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Equations (9)-(10) together with relation (15), 
after omitting the primes on x  and y  are as 
follows: 
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To obtain the expressions for ijvu σϕθ and,,,   
let us assume that 
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where, D is the (complex) frequency and a  is 
the wave number in the x - direction and D is 
unknown quantity. Inserting  (20) into (18) 
and (19) to obtain: 
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The solution of  (23) is written as 
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where iθ are parameters depending upon a . 
Substituting equation (25) in (21) and we get: 
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as follows: 
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In terms of the moving co-ordinates (14) and 
by making use of relation (15) the stress 
components given by (11)-(13) become as 
follows 
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Upon using (20), (25), (26) and (29) into 
equations (31)-(33), we get 
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Problem I 
Consider a homogeneous isotropic 
thermoelastic solid occupying the region 

∞<<∞−∞<<∞−≥ zxy ,,0  
of the xy-plane and displacement ( )0,,vu=u  
and the temperature T  are function of yx,  
and time t  which is subjected to moving heat 
source with following boundary 
conditions,
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where, h  is the surface heat transfer 
coefficient and f  is arbitrary function and be 
the velocity of motion of heat source.  
Equations (37) together with (25) and(36)  
gives following expression: 
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Problem II 
 Consider a homogeneous isotropic 
thermoelastic solid occupying the region 

∞<<∞−∞<<∞−≥ zxy ,,0  of the xy-
plane which is subjected to moving load with 
following boundary conditions, 
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 Solving equations (44)-(46) for unknown 
constants 
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3. Numerical calculations and Conclusion 
 
In order to study the temperature field, thermal 
stresses and displacement components, we 
have computed them for a specific model. The 
material chosen for numerical calculation is 
Copper. The physical data for such material in 
SI units is, 

.01.2,5.3,0168.0,/381

,/10398.0,/1093.8
2
0

2

333

====

×=×=

ββε

ρ

CmWK

kgJCmkg
o

E

 To compare the results obtained using 

Classical Dynamic Coupled, Lord-Shulman 
and Green-Lindsay 
theories of thermoelasticity. The value of 
thermal relaxation times have been taken as: 
C-D theory,  010 == tt ; 
L-S theory,  0,5.0 10 == tt ; 
G-L theory, 5.0,2.0 10 == tt . 
The graphs are drawn for different values of 
time, 

.5.0,2.0 1 == tt  The values of real part of 
temperature field  and displacement 
components ),( txu and ),( txv  are evaluated 
on the plane y = 1 
for the problem of moving heat source and 
moving load.  In  Fig.1, three curves, predicted 
by the three theories, C-D, G-L and L-S for 
temperature distribution due to moving heat 
source at dimensionless time, 2.0=t , are 
shown. The graph in Fig. 2, is drawn to see the 
variation in temperature at time 

5.0=t whereas the comparison for 
temperature variation, at time 2.0=t  and 

5.0=t  due to moving heat source is shown in 
Fig. 3. The horizontal displacement for C-D, 
G-L and L-S theories respectively due to 
moving heat source at dimensionless time 

2.0=t  and 5.0=t is shown in Fig. 4-5 and 
comparison of three theories is given in Fig.6. 
The graph in Fig. 7-8, is drawn to see vertical 
displacement at dimensionless time 2.0=t  
and 5.0=t  whereas their comparison due to 
moving heat source is shown in Fig. 9. 
Similarly the results are obtained for the 
problem of moving load. The variation in 
temperature, horizontal displacement and 
vertical displacement at different values of at 
dimensionless time 2.0=t and 5.0=t and 
their comparison, for C-D, G-L and L-S 
theories due to moving load are shown in 
Fig.10-18.  It is observed that temperature 
variation is more in L-S theory than C-D and 
G-L theory with distance at small time due to 
moving heat source. The same variation is 
observed in the case of horizontal and vertical 
displacement distribution. As well as case of 
moving load source is concerned the variation 
in temperature and displacement occurs in 
same fashion. 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-7-5 IMECS 2009



-6 -4 -2 0 2 4 6

-0.04
-0.02

0
0.02
0.04
0.06
0.08

x

T

L- S,t=0.2
G- L,t=0.2
C- D,t=0.2

 
 
 
 
 
 
 

-6 -4 -2 0 2 4 6

-0.06
-0.04
-0.02

0
0.02
0.04
0.06

x

T

L- S,t=0.5
G- L,t=0.5
C- D,t=0.5

 
 
 
 
 

-6 -4 -2 0 2 4 6

-0.05

-0.025

0

0.025

0.05

0.075

x

T

 
 
 
 
 
 

-6 -4 -2 0 2 4 6
-0.0125

-0.01
-0.0075

-0.005
-0.0025

0
0.0025

0.005

x

U

L- S,t=0.2
G- L,t=0.2
C- D,t=0.2

 
 
 
 
 

-6 -4 -2 0 2 4 6

-0.01

-0.005

0

0.005

x

U

L- S,t=0.5
G- L,t=0.5
C- D,t=0.5

 
 
 
 
 
 

-6 -4 -2 0 2 4 6

-0.01

-0.005

0

0.005

x

U

 
 
 
 
 
 

-6 -4 -2 0 2 4 6

-0.01

-0.005

0
0.005

0.01

x

V

L- S,t=0.2
G- L,t=0.2
C- D,t=0.2

 
 
 
 
 
 

-6 -4 -2 0 2 4 6
-0.01

-0.005

0

0.005
0.01

0.015

x

V

L- S,t=0.5
G- L,t=0.5
C- D,t=0.5

 
 
 
 
 

Fig. 1, Temperature distribution for C-D, 
G-L and L-S theories, due to moving heat 
source, at t=0.2 

Fig. 2, Temperature distribution for C-D, 
G-L and L-S theories, due to moving heat 
source, at t=0.5 

Fig. 3, Comparison for temperature 
distribution for   C-D, G-L and L-S   theories, 
due to moving heat source, times, t=0.2 and 
t=0.5. 

Fig. 4, Horizontal displacement for C-
D, G-L and L-S theories, due to 

moving heat source, at t=0.2 

Fig. 5, Horizontal displacement for C-D, 
G-L and L-S theories, due to moving 

heat source, at t=0.5 

Fig. 6, Comparison for horizontal 
displacement for C-D, G-L and  L-S   
theories, due to  moving heat source, 
times, t=0.2 and t=0.5.

Fig. 7, Vertical displacement for C-
D, G-L and L-S theories, due to 

moving heat source, at t=0.2 

Fig. 8, Vertical displacement for C-
D, G-L and L-S theories, due to 

moving heat source, at t=0.5 
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Fig. 12, Comparision for 
temperature distribution for   C-D, 
G-L and L-S   theories, due to 
moving heat source, times, t=0.2 

Fig. 13, Horizontal displacement 
for C-D, G-L and L-S theories, due 

to moving load at t=0.2 

Fig. 14, Horizontal displacement for 
C-D, G-L and L-S theories, due to 

moving load at t=0.2 

Fig. 15, Comparison for horizontal 
displacement for   C-D, G-L and  L-S   
theories, due to  moving load, times, 
t=0.2 and t=0.5. 

Fig. 16, Vertical displacement for C-D, 
G-L and L-S theories, due to moving 
load at t=0.2

Fig. 9, Comparison for vertical 
displacement for   C-D, G-L and  
L-S   theories, due to  moving 
heat source, times, t=0.2 and 
t=0.5. 

Fig. 11, Temperature   distribution for C-D, G-L 
and L-S theories, due to moving load at t=0.2 

Fig. 10, Temperature 
distribution for C-D, G-L and 
L-S theories, due to moving 
load at t=0.2 
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