
Abstract—In this study, a self-tuning output recurrent
cerebellar model articulation controller (SORCMAC) is
investigated to control a two-wheeled robot.  Since it captures
the system dynamics, the proposed SORCMAC has superior
capability to the conventional cerebellar model articulation
controller in efficient learning mechanism and dynamic
response.  The dynamic gradient descent method is also adopted
to online adjust the SORCMAC parameters. Finally, the
effectiveness of the proposed control system is verified by the
simulations of two-wheeled robot control.  Simulation results
show that the two-wheeled robot can be controlled stably with
uncertainty disturbance by using the proposed SORCMAC.

Index Terms— SORCMAC, two-wheeled robot, gradient
descent method.

I. INTRODUCTION

In the past several years, there are several literatures to
study the topic “wheeled robot”. The main topic of this
research is how to keep the robot’s balance.  Such a system
would become a primary tool for studying balance in active
balancing system.  It is also to be an important precursor to the
field of legged machines and locomotion studies for robotics.
There are many researches in this filed.  In [1], a trajectory
tracking algorithm based on a linear state space model was
proposed to control mobile robot.  Graser et al. [2] used
Newtonian approach and linearization method to get a
dynamic model to design a controller for a mobile.  In [3], a
dynamic model was derived with respect to the wheel motor
torques as input while taking the nonholonomic no-slip
constrains into considerations.  Furthermore, two controllers
were proposed to stabilize the vehicle’s pitch and position.

Until now, at least one commercial product is available
such as “Segway”.

Modern control system often requires high-speed
high-accuracy linear motions. These linear motions are
usually realized using the rotary motors with a mechanical
transmission, such as reduction gears and lead screw. These
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transmission mechanisms not only significantly reduce the
linear motion speed and dynamic response, but also introduce
the backlash and large friction. A two-wheeled robot can
besimply considered as an inverted pendulum on a two
coaxial wheels which have independent drives.  This system is
composed of a chassis carrying a dc motor coupled to a
gearbox for each wheel.  The two dc motors are all the rotary
motors.  It is obviously the transmission loss exists. Therefore,
its mathematical model will be complex and the motor
parameters are time-varying due to increasing in temperature
and changing in motor drive operating condition [4,5].  For
control viewpoint, the conventional control technologies
always need a good understanding of the plant models. Since
a two-wheeled robot dynamic model is difficult to obtain, it is
very difficult to control a two-wheeled robot using the
conventional control technologies. In recent years, many
advanced control techniques have been adopted for a
two-wheeled robot control [1-3,6]; however, most of these
methods need the plant model and some of these design
procedures are overly complex.

Recently, many researches have been done on the
applications of neural networks (NNs) for identification and
control of dynamic systems [7-12]. Many authors have
suggested NNs as powerful building blocks for a wide class of
complex nonlinear system control strategies when there exists
no complete model information or, even, a controlled plant is
considered as a “black box” [7]. According to the structure,
the NNs can be mainly classified as feedforward neural
networks (FNNs) [8], [9] and recurrent neural networks
(RNNs) [10,11]. The most useful property of NNs is their
ability to uniformly approximate arbitrary input-output linear
or nonlinear mappings on closed subsets. Based on this
property, the NN-based controllers have been developed to
compensate the effects of nonlinearities and system
uncertainties in control system, so that the stability,
convergence and robustness of the system can be improved.
Moreover, RNN has capabilities superior to FNN, such as the
dynamic response and information storing ability [10,11].
Since an RNN has an internal feedback loop, it captures the
dynamic response of system with external feedback through
delays. Thus, the RNN is a dynamic mapping and
demonstrates good control performance in presence of
unmodelled dynamics. However, no matter FNNs or RNNs,
the learning is slow since all the weights are updated during
each learning cycle. Therefore, the effectiveness of NN is
limited in problems requiring on-line learning.

The cerebellar model articulation controller (CMAC) has
been adopted widely for the closed-loop control of complex
dynamical systems owing to its fast learning property, good
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generalization capability, and simple computation [13,14].
The CMAC is a non-fully connected perceptron-like
associative memory network with overlapping
receptive-fields. The application of CMAC is not only limited
to control problem but also to model-free function
approximation. This network has been already validated that
it can approximate a nonlinear function over a domain of
interest to any desired accuracy. The advantages of using
CMAC over conventional NN in many practical applications
have been presented in recent literatures [15-16]. The
conventional CMAC uses constant binary or triangular
receptive-field basis functions. The disadvantage is that their
derivative information is not preserved. For acquiring the
derivative information of input and output variables, Chiang
and Lin developed a CMAC with differentiable Gaussian
receptive-field basis function, and provided the convergence
analyses of this network [17]. In [18], an optimal CMAC has
been proposed for the robot manipulator control. However,
the major drawback of existing CMAC is that they belong to
static networks. In other words, the application domain of
CMAC will be limited to static mapping due to its
feedforward network structure [19,20].

In this study, an self-tuning output recurrent cerebellar
model articulation controller for a two-wheeled robot is
investigated. Its architecture is a modified model of the
conventional CMAC network to attain a small number of
receptive-fields for capturing the system dynamics and
converting the static CMAC into a dynamic one. Since it
captures the dynamic response, the SORCMAC will
demonstrate good control performance in presence of
unmodelled system. The parameters of SORCMAC are
on-line tuned by the derived adaptive laws automatically.
Finally, simulation results show the proposed SORCMAC can
move the robot forward and back ward stably with the
uncertainty disturbance.

II. ARCHITECTURE OF TWO-WHEELED ROBOT

Figure 1 shows the robot with its three degree of freedom.
The robot can be able to rotate around the z axis and its
vertical axis. The whole system needs six state space
variables to fully describe the dynamics of three degree of
freedom [2].  The movement of the rotation around the z axis
(pitch) can be described by the angle P and the

corresponding angular velocity P . The linear movement of

the chassis is the position RMx  and the speed RMv .

Moreover, the robot can rotate around its vertical axis (yaw)

with the associated angle   and angular velocity  .

dPf , dRLf  and dRRf  are the forces applied to the center of

gravity of the robot, to the center of the left wheel, to the
center of the left wheel, respectively [2]. The dynamic
mathematical model of the left-hand wheel can be described
as follow: [2]

TLLdRLRLRL HHfMx  (1)

LRLgTLRLRL VMVMy  (2)

RHCJ TLLRLRL  (3)

where RLJ is the moment of inertia of the rotating masses

with respect to the z axis; RLM is the mass of the rotating

masses connected to the left and right wheels; PJ is moment

of inertia of the chassis with respect to the z axis; pJ is

moment of inertia of the chassis with respect to the z
axis; pM is mass of the chassis;

R : Radius of the wheels; D is lateral distance between the
contact patches of the wheels; L  is distance between the z
axis and CG of the chassis. For the chassis,

LRdPpp HHfMx  (4)

CPgLRpp FMVVMy  (5)
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where ,,,,,,, TLRLTRTLRL VVVHHHH  and TRV  represent

reaction forces between the different free bodies.

Fig. 1 Two-wheeled robot with its three degree of freedom

Obviously, the linear motion is realized using the rotary
motors with reduction gears. These reduction gears not only
significantly reduce the linear motion speed and dynamic
response, but also introduce the backlash and large friction.  It
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is obviously the transmission loss exists. Therefore, the
mathematical model of such a system is complex and the
motor parameters are time-varying due to increasing in
temperature and changing in motor drive operating condition.
For control viewpoint, the conventional control technologies
always need a good understanding of the plant models. Since
the accurate dynamic model is difficult to obtain, it is very
difficult to control a two-wheeled robot using the
conventional control technologies.

In this study, a model free self-tuning output recurrent
cerebellar model articulation controller for a two-wheeled
robot is investigated.

III. SORCMAC CONTROL SYSTEM

An SORCMAC control system is proposed in this
section. The configuration of the proposed control system is
shown in Fig. 2, where the reference angle signal   is
specified by a reference model following a command input

*  and p  is the angle output of the two-wheeled robot

system. Moreover, the reference signal   is specified by a
reference model following a position command input mx  and

the position output of the robot x. Clearly,   is obtained
from the robot’s position error. It is a virtual angle which is
used to move the robot forward or backward to the target
position.  In this paper, a virtual angle can be gotten as

))()(()( NxNxkN mx   where xk  is a small positive

constant.  Obviously, )(N  will be zero when )(Nx  equals

to )(Nxm .  It means that the robot moves to the target position

already.  The inputs of SORCMAC are the mix angle tracking
error of the robot’s body )()()()( NNNNe pm    and

change-of-error )1()()(  NeNeNe mmm ; the output of

SORCMAC is the control signal u . Here, the model of the
robot system is unknown.

Fig. 2 Block diagram of two-wheeled robot control system

3.1   Description of ORCMAC
An output recurrent cerebellar model articulation

controller (ORCMAC) is proposed and shown in Fig. 3a. The
signal propagation and the basic function in each space are
introduced as follows.

1) Input space X: For a given nT
nxxx  ],,,[ 21 x ,

each input state variable ix  must be quantized into discrete

regions (called elements) according to given control space.
The number of elements, En , is termed as a resolution.

2) Association memory space A: Several elements can be
accumulated as a block, the number of blocks, Bn , in

ORCMAC is usually greater than two. The A denotes an
association memory space with An  ( BA nnn  )

components. In this space, each block performs a
receptive-field basis function, which can be defined as
rectangular or triangular or any continuously bounded
function (e.g., Gaussian [18], [19] or B-spline [13], [21]). The
Gaussian function is adopted here as the receptive-field basis
function, which can be represented as
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where ik  represents the kth block of the ith input ix  with the

mean ikm  and variance ikv . In addition, the input of this

block for discrete time N can be represented as
)1()()(  NyrNxNx iiri (9)

where ir  is the recurrent weight of the recurrent unit. It is

clear that the input of this block contains the memory terms
)1( Ny , which store the past information of the network.

This is the apparent difference between the proposed
ORCMAC and the conventional CMAC. Figure 3b depicts
the schematic diagram of two-dimensional ORCMAC
operations with 9En  and 4  (   is the number of

elements in a complete block).

a

1variable x

2variable x

b
Fig. 3 a Architecture of SORCMAC, b A two-dimensional

SORCMAC with 4  and 9En
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corresponds to a receptive-field. The multidimensional
receptive-field function is defined as
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where kb  is associated with the kth receptive-field,

nT
nkkkk mmm  ],,,[ 21 m , ,],,[ 21
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n and nT
nk rrr  ],,,[ 21 r . The multidimensional

receptive-field function can be expressed in a vector form as
T
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4) Weight memory space W: Each location of T to a particular
adjustable value in the weight memory space can be expressed

as R

R

nT
nk www  ],,,,[ 1 w  where kw  denotes the

connecting weight value of the output associated with the kth
receptive-field.
5) Output space Y: The output of ORCMAC is the algebraic
sum of the activated weights in the weight memory space, and
is expressed as





Rn

k
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A two-dimensional ORCMAC is shown in Fig. 8b.

3.2   On-line learning algorithm
Selections of the connective weight w , recurrent weight

r , mean m and variance v  of the receptive-field basis
functions will significantly affect the performance of
ORCMAC. Inappropriate recurrent weights and receptive-
field basis functions will degrade the ORCMAC learning
performance. For achieving effective learning, an on-line
learning algorithm, which is derived using the supervised
gradient descent method, is introduced so that it can real-time
adjust the recurrent weights and means and variances of the
receptive-field basis functions. Define the cost function E  as
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The error term to be propagated is given by
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and the learning algorithm, based on gradient descent method
for kw , can be derived as
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where the positive factor w  is the learning-rate for the

output weight kw . The connective weight can be updated

according to the following equation:
)()()1( NwNwNw kkk  (16)

Moreover, the mean, variance and recurrent weight of the
Gaussian receptive-field basis functions can be also adjusted
in the following equation:
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where the positive factors m , v  and r  are the learning-

rates for the mean, variance and recurrent weight, respectively.
Then the updated laws of mean, variance and recurrent weight
are given as follows:

)()()1( NmNmNm ikikik  (20)

)()()1( NvNvNv ikikik  (21)

)()()1( NrNrNr iii  (22)

If the plant model is obtainable, then the Jacobian of the
system up   can be calculated. If the plant model is

unknown, then up   cannot be obtained. Although

intelligent identifier [10] can be implemented to identify the
system model, heavy computation effort is required. A simple
approximation of the propagation error term of the system can
be used as follows [22]:

mmp ee  (23)

According to Theorem 1, the optimal learning-rate
parameters can be gotten automatically and the convergence
of tracking error is guaranteed.

IV. SIMULATIONS

In this section, the simulations of the two-wheeled robot
using the effective SORCMAC based on the proposed
learning laws will be demonstrated. The description of the
two-wheeled robot and its model are shown in Section 2.  For
all the simulations shown in this section, the parameter values
of the robot are listed in Table 1 [3].

Table 1. Simulation parameters

bM 35 Kg xxI 2.1073 kg 2m
wM 5 Kg yyI 1.8299 kg 2m

R 0.25 m zzI 0.6490 kg 2m

zc R, 3R m waI 0.1563 kg 2m
b 0.2 m wdI 0.0781 kg 2m

The SORCMAC used in this study can be characterized as
4 , 5En , 42 RB nn . The inputs of the

SORCMAC are the angle error of the robot’s body, me , and

the change rate of the angle error, me . The receptive-field

basis functions are chosen as 2)(exp[)( ikrikriik mxx 

]/ 2
ikv for 2,1i and 8,,2,1 k . Additionally, The initial

values of the parameters are chosen as 1.01 r , 1.02 r ,

41 im , 32 im , 13 im , 5.04 im , 5.05 im ,

16 im , 37 im , 48 im and 2ikv for all i  and k .

In order to exhibit the goodness control performance and
the robustness of the two-wheeled robot by the proposed
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SORCMAC, several simulation conditions are adopted.
Moreover, the external disturbance d is added and is assumed
to be 0.0873 during the all simulations. Fig. 4 is the
performance of the robot in the normal condition. The target
position of the robot is 1.5m. Also, Conditions S1 denotes the
extra mass 5Kg is added on the robot. Conditions S2 denotes
the existence of the extra mass as S1 with the difference center
of mass of the robot body about 3L (half length of the robot).
The simulation results are given in Fig. 5 to Fig. 6,
respectively. These simulation results show that favorable
control performance can be achieved by using the optimal
learning-rates SORCMAC. Thus, this SORCMAC control
system can satisfy the requirement of the two-wheeled robot
control.
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Fig. 4 Tracking response, self-tuning cerebellar model
articulation controller in normal condition for
two-wheeled robot
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Fig. 5 Condition S1, self-tuning output recurrent cerebellar

model articulation controller with an extra mass (5Kg)
for two-wheeled robot
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Fig. 6 Condition S2, self-tuning output recurrent cerebellar

model articulation controller with an extra mass (5Kg)
and the difference center of mass of the robot body (3L)
for two-wheeled robot

V.CONCLUSIONS

In this paper, the controller design of the two-wheeled
robot is studied. An self-tuning output recurrent cerebellar
model articulation controller (SORCMAC) has been
proposed for the two-wheeled robot control, in which the
dynamic model of the robot is unknown. In the SORCMAC,
the parameters of ORCMAC are on-line adjusted.  Finally, the
simulation results show that the robot can stand upright and
move forward and backward stably with uncertainty
disturbance.
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