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Two-wheeled Robot Control Based on
Self-tuning Output Recurrent CMAC

Chih-Hui Chiu, Wen-Ru Tsai, Ming-Hung Chou, and Y a-Fu Peng

Abstract—In this study, a self-tuning output recurrent
cerebellar model articulation controller (SORCMAC) is
investigated to control a two-wheeled robot. Since it captures
the system dynamics, the proposed SORCMAC has superior
capability to the conventional cerebellar model articulation
controller in efficient learning mechanism and dynamic
response. Thedynamic gradient descent method is also adopted
to online adjust the SORCMAC parameters. Finally, the
effectiveness of the proposed control system is verified by the
simulations of two-wheeled robot control. Simulation results
show that the two-wheeled robot can be controlled stably with
uncertainty distur bance by using the proposed SORCMAC.

Index Terms— SORCMAC, two-wheeled robot, gradient
descent method.

|. INTRODUCTION

In the past several years, there are several literatures to
study the topic “wheeled robot”. The main topic of this
research is how to keep the robot’s balance. Such a system
would become a primary tool for studying balance in active
balancing system. It isalso to be animportant precursor to the
field of legged machines and locomotion studies for robotics.
There are many researches in this filed. In [1], a trajectory
tracking algorithm based on a linear state space model was
proposed to control mobile robot. Graser et al. [2] used
Newtonian approach and linearization method to get a
dynamic model to design a controller for amobile. In[3], a
dynamic model was derived with respect to the wheel motor
torques as input while taking the nonholonomic no-dip
constrains into considerations. Furthermore, two controllers
were proposed to stabilize the vehicle’s pitch and position.

Until now, at least one commercia product is available
such as “Segway”.

Modern control system often requires high-speed
high-accuracy linear motions. These linear motions are
usualy realized using the rotary motors with a mechanical
transmission, such as reduction gears and lead screw. These
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transmission mechanisms not only significantly reduce the
linear motion speed and dynamic response, but also introduce
the backlash and large friction. A two-wheeled robot can
besmply considered as an inverted pendulum on a two
coaxia wheelswhich haveindependent drives. Thissystemis
composed of a chassis carrying a dc motor coupled to a
gearbox for each wheel. The two dc motors are all the rotary
motors. Itisobviously thetransmissionlossexists. Therefore,
its mathematical model will be complex and the motor
parameters are time-varying due to increasing in temperature
and changing in motor drive operating condition [4,5]. For
control viewpoint, the conventional control technologies
aways need a good understanding of the plant models. Since
atwo-wheeled robot dynamic model is difficult to obtain, itis
very difficult to control a two-wheeled robot using the
conventional control technologies. In recent years, many
advanced control techniques have been adopted for a
two-wheeled robot control [1-3,6]; however, most of these
methods need the plant model and some of these design
procedures are overly complex.

Recently, many researches have been done on the
applications of neural networks (NNs) for identification and
control of dynamic systems [7-12]. Many authors have
suggested NNs as powerful building blocks for awide class of
complex nonlinear system control strategies when there exists
no complete model information or, even, acontrolled plant is
considered as a “black box” [7]. According to the structure,
the NNs can be mainly classified as feedforward neural
networks (FNNs) [8], [9] and recurrent neural networks
(RNNSs) [10,11]. The most useful property of NNs is their
ability to uniformly approximate arbitrary input-output linear
or nonlinear mappings on closed subsets. Based on this
property, the NN-based controllers have been developed to
compensate the effects of nonlinearities and system
uncertainties in control system, so that the stability,
convergence and robustness of the system can be improved.
Moreover, RNN has capabilities superior to FNN, such asthe
dynamic response and information storing ability [10,11].
Since an RNN has an internal feedback loop, it captures the
dynamic response of system with external feedback through
delays. Thus, the RNN is a dynamic mapping and
demonstrates good control performance in presence of
unmodelled dynamics. However, no matter FNNs or RNNSs,
the learning is slow since all the weights are updated during
each learning cycle. Therefore, the effectiveness of NN is
limited in problems requiring on-line learning.

The cerebellar model articulation controller (CMAC) has
been adopted widely for the closed-loop control of complex
dynamical systems owing to its fast learning property, good

IMECS 2009



generalization capability, and simple computation [13,14].
The CMAC is a non-fully connected perceptron-like
associative  memory  network  with  overlapping
receptive-fields. The application of CMAC isnot only limited
to control problem but aso to model-free function
approximation. This network has been already validated that
it can approximate a nonlinear function over a domain of
interest to any desired accuracy. The advantages of using
CMAC over conventional NN in many practical applications
have been presented in recent literatures [15-16]. The
conventional CMAC uses constant binary or triangular
receptive-field basis functions. The disadvantage is that their
derivative information is not preserved. For acquiring the
derivative information of input and output variables, Chiang
and Lin developed a CMAC with differentiable Gaussian
receptive-field basis function, and provided the convergence
analyses of this network [17]. In [18], an optimal CMAC has
been proposed for the robot manipulator control. However,
the mgjor drawback of existing CMAC is that they belong to
static networks. In other words, the application domain of
CMAC will be limited to static mapping due to its
feedforward network structure [19,20].

In this study, an self-tuning output recurrent cerebellar
model articulation controller for a two-wheeled robot is
investigated. Its architecture is a modified model of the
conventional CMAC network to attain a small number of
receptive-fields for capturing the system dynamics and
converting the static CMAC into a dynamic one. Since it
captures the dynamic response, the SORCMAC will
demonstrate good control performance in presence of
unmodelled system. The parameters of SORCMAC are
on-line tuned by the derived adaptive laws automatically.
Finally, simulation results show the proposed SORCMAC can
move the robot forward and back ward stably with the
uncertainty disturbance.

Il.  ARCHITECTURE OF TWO-WHEELED ROBOT

Figure 1 showsthe robot with itsthree degree of freedom.
The robot can be able to rotate around the z axis and its
vertical axis. The whole system needs six state space
variables to fully describe the dynamics of three degree of
freedom [2]. The movement of the rotation around the z axis
(pitch) can be described by the angle 6, and the
corresponding angular velocity op . The linear movement of
the chassis is the position Xg, and the speed vgy .
Moreover, the robot can rotate around its vertical axis (yaw)
with the associated angle 8 and angular velocity & .
fap, fagr @d fygg are the forces applied to the center of
gravity of the robot, to the center of the left whedl, to the
center of the left wheel, respectively [2]. The dynamic
mathematical model of the left-hand wheel can be described

asfollow: [2]
XaMp = fge —H_ +Hp D
YaMg =Vy -M RLg -V, (2
e"RLJRL =C_ -HpR (3
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where Jg is the moment of inertia of the rotating masses
with respect to the z axis, M g is the mass of the rotating
masses connected to the left and right wheels; J 5 is moment
of inertia of the chassis with respect to the z axis; J 5 is
moment of inertia of the chassis with respect to the z
axis, M p is mass of the chassis;

R : Radius of the wheels; D is lateral distance between the
contact patches of the wheedls; L is distance between the z
axis and CG of the chassis. For the chassis,

XpMp = fgp —Hg+H__ (4)

YoM =Vg +V —Mpy —F¢y )

0pJpy = (Vg +V, )LSNOp —(H +Hg)LcosOp ®)
—(CL +CR)

. D

0Jps =(HL_HR)E (1

where H ,Hg,Hy ,Hg, V|, Vg, Vo, and Vi represent
reaction forces between the different free bodies.

Fig. 1 Two-wheeled robot with its three degree of freedom

Obviously, the linear motion is realized using the rotary
motors with reduction gears. These reduction gears not only
significantly reduce the linear motion speed and dynamic
response, but also introduce the backlash and largefriction. It
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is obvioudly the transmission loss exists. Therefore, the
mathematical model of such a system is complex and the
motor parameters are time-varying due to increasing in
temperature and changing in motor drive operating condition.
For control viewpoint, the conventional control technologies
always need a good understanding of the plant models. Since
the accurate dynamic model is difficult to obtain, it is very
difficult to control a two-wheeled robot using the
conventional control technologies.

In this study, a model free self-tuning output recurrent
cerebellar model articulation controller for a two-wheeled
robot isinvestigated.

I1l. SORCMAC CONTROL SYSTEM

An SORCMAC control system is proposed in this
section. The configuration of the proposed control system is
shown in Fig. 2, where the reference angle signal 6 is
specified by a reference model following a command input
6" and 0, is the angle output of the two-wheeled robot

system. Moreover, the reference signal A0 is specified by a
reference model following a position command input X, and
the position output of the robot x. Clearly, A9 is obtained
from the robot’s position error. It is a virtual angle which is
used to move the robot forward or backward to the target
position. In this paper, a virtual angle can be gotten as
AB (N) =k, (X (N) — x(N)) where k, is a small positive
constant. Obvioudly, A6 (N) will bezerowhen x(N) equals
to x,,(N) . It meansthat the robot movesto the target position
already. Theinputsof SORCMAC are the mix angle tracking
error of the robot’s body e,,(N) =6(N)-6 ,(N)-A6(N) and
change-of-error Ae,(N) = e,,(N) —e, (N —1) ; the output of
SORCMAC is the control signal U. Here, the model of the

robot system is unknown.

< Two-wheeled | u
robot system [

AWy, Ay, AV, A

model +T _
X 0 Online EW’Bm’BV’BI’
Referenc learning
emodel 8,
em’AeIg Propagation
error term
0* € AS[  Optimal PP
| learning-rate |q—2—Mm"

I:)V 4 Pr
Fig. 2 Block diagram of two-wheeled robot control system

3.1 Description of ORCMAC

An output recurrent cerebellar model articulation
controller (ORCMAC) is proposed and shown in Fig. 3a. The
signal propagation and the basic function in each space are
introduced as follows.
1) Input space X: For a givenx =[xy, X,,-, X,]" € R",
each input state variable x; must be quantized into discrete
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regions (called elements) according to given control space.
The number of elements, ng, istermed as aresolution.

2) Association memory space A: Several elements can be
accumulated as a block, the number of blocks, ng, in
ORCMAC is usualy greater than two. The A denotes an
association memory space with n, ( hy=nxng )
components. In this space, each block performs a
receptive-field basis function, which can be defined as
rectangular or triangular or any continuously bounded
function (e.g., Gaussian[18], [19] or B-spline[13], [21]). The
Gaussian function is adopted here as the receptive-field basis
function, which can be represented as

2
i = expl:—_ (Xri ;mk) } fork=12ng (8
ik
where ¢;, representsthe kth block of theithinput x; withthe
mean my, and variance v, . In addition, the input of this
block for discrete time N can be represented as
Xi (N) =% (N)+r; y(N-1) )

where r; is the recurrent weight of the recurrent unit. It is
clear that the input of this block contains the memory terms
y(N -1), which store the past information of the network.

This is the apparent difference between the proposed
ORCMAC and the conventional CMAC. Figure 3b depicts
the schematic diagram of two-dimensional ORCMAC
operations with ng =9 and p=4 ( p is the number of

elementsin a complete block).

A

[k

Input

variablex, 4

n

/D%
ié' variablex,
| N

= A

Fig. 3 a Architecture of SORCMAC, b A two-dimensional
SORCMAC with p =4 and ng =9

3) Receptive-field space T: The number of receptive-field,
Nk, is egual to ng in this study. Each location of A
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corresponds to a receptive-field. The multidimensional
receptive-field function is defined as

n n B 2
h((xlmkyvk|rk) = H¢ik = EX{—{Z (Xfikvzmk) J (10)
i=1 i=1

ik

where b, is associated with the kth receptive-field,

My ]™ e R", Vi =i, Vo, Vil
eR"and ry =[r;, 1y, -, r,]" eR". The multidimensional
receptive-field function can be expressed in a vector form as

My =[My, My, oo,

rx,m,v,r)=[by, -, by, b, 1" (1)
T T T 4T
Wherem:[ml’...,mk,...,mnR] EmnnR , V:[VI,"',
Vi v 1T e RMRandr =[r] - rd, g 1T e R,

4) Weight memory space W: Each location of T to aparticular
adjustable valuein the wei ght memory space can be expressed

asw=[w, -, W, W, ] eR™ where w, denotes the

connecting weight value of the output associated with the kth
receptive-field.
5) Output space Y: The output of ORCMAC is the algebraic
sum of the activated weightsin the weight memory space, and
is expressed as
Ng
y=w' Te,m,v,r) = > W b (X My, Vi) (12)
k=1
A two-dimensional ORCMAC is shown in Fig. 8b.

3.2 On-linelearning algorithm

Selections of the connective weight w , recurrent weight
r, mean m and variance v of the receptive-field basis
functions will significantly affect the performance of
ORCMAC. Inappropriate recurrent weights and receptive-
field basis functions will degrade the ORCMAC learning
performance. For achieving effective learning, an on-line
learning algorithm, which is derived using the supervised
gradient descent method, isintroduced so that it can real-time
adjust the recurrent weights and means and variances of the
receptive-field basis functions. Define the cost function E as

1 1
E:E(e —ep—Ae)Z:Eeﬁ1 (13)
The error term to be propagated is given by
OE _ OE oe, o6
pp:_az___m_p:em_p (14)

oe, 08, ou ou
and the learning a gorithm, based on gradient descent method
for w, , can be derived as
O0E J0E ou
AW, =~ =-
k Bw Bw ou @VV

where the positlve factor B is the learning-rate for the

—Bwppbk (15)

output weight w, . The connective weight can be updated
according to the following equation:

Wy (N +1) = w, (N) + Aw, (N) (16)
Moreover, the mean, variance and recurrent weight of the
Gaussian receptive-field basis functions can be also adjusted
in the following equation:
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2 . —m
Ay :—Bmaa%zﬁmp kabkw a7
ik ik
- By E pup i T g
Wi Vik
:_Br__Br _y(N—l) (19)

where the posutlve factors Bm, B, and B, arethe learning-

ratesfor the mean, variance and recurrent weight, respectively.
Then the updated laws of mean, variance and recurrent weight
are given asfollows:

my (N +1) = my (N) + Any, (N) (20)
Vi (N +1) = Vi (N) + Ay (N) (21)
f(N+1) = r, (N)+ Ar, (N) 22)

If the plant model is obtainable, then the Jacobian of the
system 69p/6u can be calculated. If the plant model is

unknown, then aep /8u cannot be obtained. Although

intelligent identifier [10] can be implemented to identify the
system model, heavy computation effort isrequired. A simple
approximation of the propagation error term of the system can
be used as follows [22]:

pPp = Ae, +epn (23)

According to Theorem 1, the optima learning-rate

parameters can be gotten automatically and the convergence
of tracking error is guaranteed.

IV. SIMULATIONS

In this section, the simulations of the two-wheeled robot
using the effective SORCMAC based on the proposed
learning laws will be demonstrated. The description of the
two-wheeled robot and its model are shown in Section 2. For
al the simulations shown in this section, the parameter values
of therobot arelisted in Table 1 [3].

Table 1. Simulation parameters

My 35Kg o 2.1073kgm?
M., 5Kg Ly 1.8299 kgm?
R 0.25m |, 0.6490 kg m?
C, R 3Rm | wa 0.1563 kg m?
b 0.2m | e 0.0781 kgm?

The SORCMAC used in this study can be characterized as
p=4, ng=5, ng=ng=2x4 . The inputs of the
SORCMAC are the angle error of the robot’s body, e,,, and
the change rate of the angle error, Ae,,. The receptive-field
basis functions are chosen as ¢, (X;; ) = expl—(Xy — My )
/vﬁ(] fori=12andk =12, ---,8. Additionaly, The initial
values of the parameters are chosen asr; =0.1,r, =0.1,
m;=—4,m,=-3, mg=-1, my=-05, my=05,
me=1,m; =3, mg=4and vy =2 forall i and k.

In order to exhibit the goodness control performance and
the robustness of the two-wheeled robot by the proposed
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SORCMAC, several simulation conditions are adopted. o Tracking response
Moreover, the external disturbance d is added and is assumed o T
to be 0.0873 during the al simulations. Fig. 4 is the &\

performance of the robot in the normal condition. The target 0

position of therobot is 1.5m. Also, Conditions S1 denotesthe 028 : - - " "
extramass 5K g is added on the robot. Conditions S2 denotes T

the existence of the extramass as S1 with the difference center g g g g g
of mass of the robot body about 3L (half length of the robot).

The simulation results are given in Fig. 5 to Fig. 6,
respectively. These simulation results show that favorable
control performance can be achieved by using the optimal D
learning-rates SORCMAC. Thus, this SORCMAC control @
system can satisfy the requirement of the two-wheeled robot
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Fig. 4 Tracking response, self-tuning cerebellar model
articulation controller in normal condition for
two-wheel ed robot
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Fig. 6 Condition S2, self-tuning output recurrent cerebellar
model articulation controller with an extramass (5K g)
and the difference center of mass of the robot body (3L)
for two-wheeled robot

V.CONCLUSIONS

In this paper, the controller design of the two-wheeled
robot is studied. An self-tuning output recurrent cerebellar
model articulation controller (SORCMAC) has been
proposed for the two-wheeled robot control, in which the
dynamic model of the robot is unknown. Inthe SORCMAC,
the parametersof ORCMAC areon-line adjusted. Finaly, the
simulation results show that the robot can stand upright and
move forward and backward stably with uncertainty
disturbance.
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