
 
 

 

  
Abstract— Clustering (or cluster analysis) has been used 

widely in pattern recognition, image processing, and data 
analysis. It aims to organize a collection of data items into 
clusters, such that items within a cluster are more similar to 
each other than they are items in the other clusters. A Modified 
fuzzy possibilistic clustering algorithm was developed based on 
the conventional fuzzy possibilistic c-means (FPCM) to obtain 
better quality clustering results. Numerical simulations show 
that the clustering algorithm gives more accurate clustering 
results than the FCM and FPCM methods. 
 

Index Terms—Fuzzy C-Means, Fuzzy Possibilistic C-Means, 
Modified Fuzzy Possibilistic C-Means, Possibilistic C-Means.  
 

I. INTRODUCTION 
Data analysis is considered as a very important science in 

the real world. Cluster analysis is a technique for classifying 
data; it is a method for finding clusters of a data set with most 
similarity in the same cluster and most dissimilarity between 
different clusters. The conventional clustering methods put 
each point of the data set to exactly one cluster.  Since 1965, 
Zadeh proposed fuzzy sets in order to come closer of the 
physical world [9]–[10]–[17]. Zadeh introduced the idea of 
partial memberships described by membership functions. A 
fuzzy version of clustering appeared; it is Fuzzy C-Means 
with a weighting exponent m>1, that uses the probabilistic 
constraint that the memberships of a data point across classes 
sum to one [3]–[4]–[6]. The FCM is sensitive to noise. To 
mitigate such an effect, Krishnapuram and Keller throw away 
the constraint of memberships in FCM and propose the 
Possibilistic C-Means (PCM) algorithm [14].Pal deducted 
that to classify a data point, cluster centroid has to be closest 
to the data point, and it is the role of membership. Also for 
estimating the centroids, the typicality is used for alleviating 
the undesirable effect of outliers. So Pal defines a clustering 
algorithm called Fuzzy Possibilistic C-Means that combines 
the characteristics of both fuzzy and possibilistic c-means 
[7]–[12]. The proposed algorithm called Modified Fuzzy 
Possibilistic C-Means (MFPCM) aims to give good results 
relating to the previous algorithms by modifying the 
Objective function used in FPCM.  

The remainder of this paper is organized as follows. In 
section II, preliminary theory algorithms are presented; 
some drawbacks of them are also mentioned. In section III, 
the Modified Fuzzy Possibilistic C-Means is proposed. The 
proposed MFPCM can solve these drawbacks mentioned in  
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section II,   and   obtain better quality clustering results.  In 
section IV, we present several examples to assess the 
performance of MFPCM. The comparisons are made 
between FCM, FPCM and MFPCM. Finally, conclusions 
are made in Section V. 

II. PRELIMINARY THEORY  

The Fuzzy c-means (FCM) can be seen as the fuzzified 
version of the k-means algorithm. It is a method of clustering 
which allows one piece of data to belong to two or more 
clusters. This method (developed by Dunn in 1973 [3] and 
Modified by Bezdek in 1981 [7]) is frequently used in pattern 
recognition. The algorithm is an iterative clustering method 
that produces an optimal c partition by minimizing the 
weighted within group sum of squared error objective 
function JFCM: 
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Where X = {x1, x2,...,xn} ⊆ Rp is the data set in the 
p-dimensional vector space, p is the number of data items, c 
is the number of clusters with 2 ≤ c ≤ n-1.  V = {v1, v2, . . . , 
vc} is the c centers or prototypes of the clusters, vi is the 
p-dimension center of the cluster i, and  d2(xj, vi) is a distance 
measure between object xj and cluster centre vi. U = {μij} 
represents a fuzzy partition matrix with uij = ui (xj) is the 
degree of membership of xj in the ith cluster; xj is the jth of 
p-dimensional measured data. The fuzzy partition matrix 
satisfies: 
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The parameter m is a weighting exponent on each fuzzy 
membership and determines the amount of fuzziness of the 
resulting classification; it is a fixed number greater than one. 
The objective function JFCM can be minimized under the 
constraint of U. specifically, taking of JFCM with respect to uij 
and vi and zeroing then respectively, tow necessary but not 
sufficient conditions for JFCM to be at its local extrema will be 
as the following:     
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Although FCM is a very useful clustering method, its 
memberships do not always correspond well to the degree of 
belonging of the data, and may be inaccurate in a noisy 
environment, because the real data unavoidably involves 
some noises. To improve this weakness of FCM, and to 
produce memberships that have a good explanation for the 
degree of belonging for the data, Krishnapuram and Keller 
[13] relaxed the constrained condition (3) of the fuzzy 
c-partition to obtain a possibilistic type of membership 
function and propose PCM for unsupervised clustering. The 
component generated by the PCM corresponds to a dense 
region in the data set; each cluster is independent of the other 
clusters in the PCM strategy. The objective function of the 
PCM can be formulated as follows: 
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is the scale parameter at the ith cluster, 
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(8) 
is the possibilistic typicality value of training sample xj 
belonging to the cluster i. m ∈  [1,∞)  is a weighting factor 
called the possibilistic parameter. Typical of other cluster 
approaches, the PCM also depends on initialization. In PCM 
techniques, the clusters do not have a lot of mobility, since 
each data point is classified as only one cluster at a time 
rather than all the clusters simultaneously. Therefore, a 
suitable initialization is required for the algorithms to 
converge to nearly global minimum. 

Pal defines a clustering algorithm that combines the 
characteristics of both fuzzy and possibilistic c-means [7]: 
Memberships and typicalities are important for the correct 
feature of data substructure in clustering problem. Thus, an 
objective function in the FPCM depending on both 
memberships and typicalities can be shown as: 

 
                                                                                       (9) 
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A solution of the objective function can be obtained via an 
iterative process where the degrees of membership, typicality 
and the cluster centers are update via: 
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PFCM produces memberships and possibilities 

simultaneously, along with the usual point prototypes or 
cluster centers for each cluster. PFCM is a hybridization of 
possibilistic c-means (PCM) and fuzzy c-means (FCM) that 
often avoids various problems of PCM, FCM and FPCM. 
PFCM solves the noise sensitivity defect of FCM, overcomes 
the coincident clusters problem of PCM.  But the noise data 
have an influence on the estimation of centroids.     

III.  PROPOSED MODIFIED FUZZY POSSIBILISTIC CLUSTERING ALGORITHM 

The choice of an appropriate objective function is the key 
to the success of the cluster analysis and to obtain better 
quality clustering results; so the clustering optimization is 
based on objective function [16]. To meet a suitable objective 
function, we started from the following set of requirements: 
The distance between clusters and the data points assigned to 
them should be minimized and the distance between clusters 
should to be maximized [5]. The attraction between data and 
clusters is modeled by term (9); it is the formula of the 
objective function. Also Wen-Liang Hung proposed a new 
algorithm called Modified Suppressed Fuzzy c-means 
(MS-FCM), which significantly ameliorates the performance 
of FCM due to a prototype-driven learning of parameter α 
[15]. The learning process of α is based on an exponential 
separation strength between clusters and is updated at each 
iteration. The formula of this parameter is: 
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where β is a normalized term so that we choose β as a sample 
variance. That is, we define β: 
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But the remark which must be mentioned here is the common 
value used for this parameter by all the data at each iteration, 
which may induce in error. We propose a new parameter 
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which suppresses this common value of α and replaces it by a 
new parameter like a weight to each vector. Or every point of 
the data set has a weight in relation to every cluster. 
Therefore this weight permits to have a better classification 
especially in the case of noise data. So the weight is 
calculated as follows: 
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where wji is weight of the point j in relation to the class i.  this 
weight is used to modify the fuzzy and typical  partition.  
All update methods that were discussed in section II are 
iterative in nature, because it is not possible to optimize any 
of the objective functions reviewed directly. Or to classify a 
data point, cluster centroid has to be closest to the data point, 
it is   membership; and for estimating the centroids, the 
typicality is used for alleviating the undesirable effect of 
outliers. The objective function is composed of two 
expressions: the first is the fuzzy function and uses a 
fuzziness weighting exponent, the second is possibililstic 
function and uses a typical weighting exponent; but the two 
coefficients in the objective function are only used as 
exhibitor of membership and typicality.   

A new relation, lightly different, enabling a more rapid 
decrease in the function and increase in the membership and 
the typicality when they tend toward 1 and decrease this 
degree when they tend toward 0. This relation is to add 
Weighting exponent as exhibitor of distance in the two under 
objective functions.  The objective function of the MFPCM 
can be formulated as follows: 
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U = {μij} represents a fuzzy partition matrix, is defined as: 

             
1−

=

−

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∑

c

1k

1)2m/(m

ij ),vd?
),vd?

u
kj

ij

x
x                       (16) 

T = {tij} represents a typical partition matrix, is defined as: 
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V = {vi} represents c centers of the clusters, is defined as: 
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IV.  

VI. EXPERIMENTAL RESULTS 

In this section, we perform some experiments to compare 
the performances of these algorithms with some numerical 
datasets. All algorithms are implemented under the same 
initial values and stopping conditions. The experiments are 
all performed on a GENX computer with 2.6 GHz Core (TM) 
2 Duo processors using MATLAB (Mathworks, Inc., Natick, 
MA) version 7.0.4. 

A. Example 1 (Data sets in [6]) 
In the first experiment, we use a two-cluster data set as 

presented in [6] shown in Fig. 1. To demonstrate the quality 
of classification of our approach in relation to the other 
algorithms (FCM, FPCM) in a case data set without outlier. 
The clustering results of these algorithms are shown in Fig. 
1(a)~1(c) respectively, where two clusters from the 
clustering algorithms are with symbols “+” and “o” ; also the 
figure shows that our approach is better than others.  

Table I. shows that the degrees of membership and 
typicality are better in our approach. The degrees tend toward 
1 when the point is near the center class.  

In the second experiment, we use a two-cluster data set 
with outlier as presented in [6] shown in Fig. 2. The 
clustering results of these algorithms are shown in Fig. 
2(a)~2(c) respectively, shows that our approach is better than 
others. The last point (0, 10) is an outlier but it doesn't have 
an influence on centers although it has the same membership 
degrees. Table II. shows that the degrees of membership and 
typicality are better in our approach.  The point (0, 10) has a 
degree of typicality nearly equal to 0.  

The FCM, FPCM and MFPCM are compared in the two 
previous experiences, using the following criteria for the 
cluster centers locations: the mean square error (MSE) of the 

centers ( tcMSE vv −=
2

, where vc is the computed 

center and vt is the true center) [16] and the number of 
iterations (NI). The cluster centers found by MFPCM are 
closer the true centers, than the centers found by FCM and 
FPCM.  The number of iterations tends toward the same 
value. 

In the third experiment, we use a three-cluster data set as 
presented in [6] shown in Fig. 3. The clustering results of 
these algorithms are shown in Fig. 3(a)~3(c) respectively, 
shows that our approach is better than others.   

After a classifier or a cluster model has been constructed, 
one would like to know how “good” it is. Quality criteria are 
fairly easy to find for classifiers, Or according to Borgelt [2], 
the quality of a clustering result is calculated while using 
index of performances or validity index that are used to 
determine the number of classes. So we can say that MFPCM 
is better than FCM and FPCM while using criteria index of 
performances. 

B. Example 2 (Data sets in [1])  
In the experiment, we tested these methods on well-known 

data sets from the UCI machine learning repository [1] 
shown in Table III. The clustering results of these algorithms 
show that our approach is better than others by using the 
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Performance Index named Fukuyama-Sugeno index, who 
supposes that the algorithm which has the minimal value of 
index is the best in relation to others [12].  

V.  CONCLUSIONS 

In this paper we have presented a Modified fuzzy 
possibilistic clustering algorithm, which is developed to 
obtain better quality of clustering results. The objective 
function is based by adding new weight of data points in 
relation to every cluster and modifying the exponent of the 
distance between a point and a class. A comparison of the 
clustering algorithm and the FCM, FPCM algorithms shows 
that clustering algorithms will increase the cluster 
compactness and the separation between clusters. Finally, a 
numerical example shows that the clustering algorithm gives 
more accurate clustering results than the FCM and FPCM 
algorithms for typical problem.   
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Fig. 1. MFPCM, FPCM, FCM clustering results for the 
two-cluster data set without an outlier. 
 

 
Fig. 2. MFPCM, FPCM, FCM clustering results for the 
two-cluster data set with an outlier.  
 

 
Fig. 3. MFPCM, FPCM, FCM clustering results for the 
three-cluster data set. 
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TABLE I  

CENTERS, PERFORMANCE INDEX, MSE, NI, MEMBERSHIPS AND TYPICALITY GENERATED BY FCM, FPCM, MFPCM FOR THE EXPERIMENTS IN FIG. 1.
FCM 

 
FPCM 

 
MFPCM 

 
Centers 

-3,1674 0,0000 
3,1673 0,0000  

-3,1980 0,0000 
3,1980 0,0000  

-3,2678 0,0000
3,2678 0,0000 

Performance Index 
-69,66 -130,93 -147,88 

MSE 
0,24418 0,20083 0,122 

NI 
11 14 14 

Vector 

Memberships and typicality 
Feature1 

X 
Feature2 

Y μ1j μ2j μ1j μ2j t1j t2j μ1j μ2j t1j t2j 

-5,00 0,00 0,952060 0,047935 0,953910 0,046089 0,006007300 0,000290310 0,998080 0,001923 0,000003017 0,000000006
-3,34 1,67 0,941220 0,058781 0,941890 0,058107 0,006944300 0,000428480 0,996390 0,003605 0,000003479 0,000000013
-3,34 0,00 0,999300 0,000703 0,999530 0,000471 0,967420000 0,000456440 1,000000 0,000000 0,999990000 0,000000014
-3,34 -1,67 0,941220 0,058781 0,941890 0,058107 0,006944300 0,000428480 0,996390 0,003605 0,000003479 0,000000013
-1,67 0,00 0,912560 0,087441 0,910310 0,089691 0,008354900 0,000823330 0,989150 0,010846 0,000004167 0,000000046
0,00 0,00 0,500000 0,500000 0,500000 0,500000 0,001907400 0,001907700 0,500000 0,500000 0,000000238 0,000000240
1,67 0,00 0,087431 0,912570 0,089685 0,910320 0,000823170 0,008356700 0,010842 0,989160 0,000000046 0,000004195
3,34 1,67 0,058780 0,941220 0,058106 0,941890 0,000428400 0,006945600 0,003605 0,996390 0,000000013 0,000003501
3,34 0,00 0,000704 0,999300 0,000472 0,999530 0,000456350 0,967410000 0,000000 1,000000 0,000000014 0,999990000
3,34 -1,67 0,058780 0,941220 0,058106 0,941890 0,000428400 0,006945600 0,003605 0,996390 0,000000013 0,000003501
5,00 0,00 0,047938 0,952060 0,046091 0,953910 0,000290250 0,006008400 0,001924 0,998080 0,000000006 0,000003035

 
 
 

TABLE II 
 CENTERS, PERFORMANCE INDEX, MSE, NI, MEMBERSHIPS AND TYPICALITY GENERATED BY FCM, FPCM, MFPCM FOR THE EXPERIMENTS IN FIG. 2.

FCM FPCM MFPCM 
Centers 

-2,98540 0,54351 
2,98540 0,54354  

-3,01160 0,50643 
3,01160 0,50646  

-3,2972 0,0017 
3,2972 0,0017  

Performance Index 
-11,064 -48,866 -107,45 

MSE 
0,76866 0,71622 0.1308 

NI 
11 13 13 

Vector 

Memberships and typicality 
Feature1 

X 
Feature2 

Y μ1j μ2j μ1j μ2j t1j t2j μ1j μ2j t1j t2j 

-5,00 0,00 0,93636 0,06364 0,93868 0,06132 0,0515460 0,0033676 0,99797 0,00203 0,000007739 0,000000016 
-3,34 1,67 0,96731 0,03269 0,96613 0,03387 0,1484700 0,0052047 0,99636 0,00364 0,000009364 0,000000034 
-3,34 0,00 0,98966 0,01034 0,99111 0,00889 0,5956900 0,0053453 1,00000 0,00000 0,999960000 0,000000039 
-3,34 -1,67 0,89937 0,10063 0,90296 0,09704 0,0447940 0,0048141 0,99633 0,00367 0,000009288 0,000000034 
-1,67 0,00 0,91558 0,08442 0,91513 0,08487 0,1055300 0,0097870 0,98952 0,01048 0,000011782 0,000000126 
0,00 0,00 0,50000 0,50000 0,50000 0,50000 0,0232690 0,0232690 0,49996 0,50004 0,000000656 0,000000660 
1,67 0,00 0,08443 0,91557 0,08487 0,91513 0,0097867 0,1055300 0,01048 0,98952 0,000000125 0,000011857 
3,34 1,67 0,03268 0,96732 0,03387 0,96613 0,0052045 0,1484700 0,00364 0,99636 0,000000034 0,000009420 
3,34 0,00 0,01034 0,98966 0,00890 0,99111 0,0053452 0,5956800 0,00000 1,00000 0,000000039 0,999960000 
3,34 -1,67 0,10064 0,89936 0,09704 0,90296 0,0048139 0,0447940 0,00367 0,99633 0,000000034 0,000009344 
5,00 0,00 0,06364 0,93636 0,06133 0,93867 0,0033675 0,0515470 0,00204 0,99797 0,000000016 0,000007783 
0,00 10,00 0,50000 0,50000 0,50000 0,50000 0,0021877 0,0021877 0,50000 0,50000 0,000000006 0,000000006 
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TABLE III PERFORMANCE INDEX GENERATED BY FCM, FPCM, MFPCM FOR DIFFERENT DATASETS.

Data set number of data number of 
clusters 

number of data 
items 

Performance 
Index 
FCM 

Performance 
Index 
FPCM 

Performance 
Index 

MFPCM 

Iris 
 150 3 4 -44527 -46847 -54036 

breast-cancer-wisconsin
-cont 683 4 9 -6299 -6402 -16623 

Wine 178 3 13 -10751000 -11334000 -21260000 

Yeast 528 11 10 117,62 119,28 -1071,6 

Auto MPG 398 8 3 -197210000 -202020000 -224870000 

Balance Scale 625 4 3 1698,20 1711,00 941,51 

Buta 345 7 2 81790 77319 20370 

glass 214 9 6 -610970 -668590 -789220 

hayes 132 5 3 -132980 -141360 -159520 

Monk’s Problem 432 7 2 1006,60 1013,00 821,87 

Lettre Image 16000 16 26 57556 57457 35644 
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