
 
 

 

  
Abstract—In this paper we try to shed light on whether and 

where it is σ2 or µ that is more important in supply chain 
management. We first show that the best reorder point, z, may 
depend on the order quantity, Q, by examining the (z, Q) 
inventory system whether the demand and lead time are 
constant or stochastic. Then we illustrate that for a 
predetermined Q, reducing reorder point z may increase the 
total inventory cost. Finally we demonstrate by means of a 
truncated lead time (z, Q) model that it is lead time variability, 
not average lead time, which affects the inventory policy and 
the total relevant cost.. 
 

Index Terms—Lead Time Variability, Stochastic Inventory 
Systems  
 

I. INTRODUCTION 

This research investigates whether it is the lead time 
variance, σ2, or the mean lead time, µ, that is more important 
in supply chain management. According to Chopra et al. [1], 
given some threshold service levels, “decreasing (mean) lead 
time is the right lever if they (the firms) want to cut 
inventories (safety stocks), not reducing lead time 
variability.” That is, reducing the lead time variability is more 
important than reducing the mean lead time under certain 
conditions and the reverse is true otherwise. But this 
contradicts to the main stream research results in the area 
where the effect of the mean lead time, µ, on total inventory 
cost is usually insignificant, as compared with the variance, 
σ2. For example, He et al. [2] find that “it is σ2 and not µ that 
affects the inventory policy and the total relevant cost in 
stochastic lead-time inventory systems,” and also that the 
cost of lead-time variability is approximately linear in σ, with 
nary a mention of µ. And in examining the deterministic 
backlogging model, Kim et al. [3] find that neither the 
optimal order quantity nor the optimal inventory cost is 
affected by the length of the lead time and go on to show 
(pp.909-910) in an upper-bound analysis that the increase in 
expected inventory cost due to stochastic lead time is linear in 
σ.  

While recognizing that the reorder point, z, is not 
independent from the order quantity, Q, Chopra et al. assume 
that safety stock is a function of the service level, demand 
uncertainty, and lead time and lead time variability. These 
authors use a predetermined Q to analyze the reorder point s 
in order to reduce the safety stock for a given service level. 
But in the present paper, we first show that the two decision 
variables in a (z, Q) inventory system even with constant 
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demand and instantaneous lead time are not independent. 
That is, the best reorder point, z, does depend on the order 
quantity, Q. Then we extend this model into a stochastic lead 
time (z, Q) inventory system and show that for a 
predetermined Q, reducing the reorder point z would in fact 
increase the total inventory cost. Finally we use a model 
developed by He et al. to demonstrate that it is lead time 
variability, not the average lead time, which affects the 
inventory policy and the total relevant cost.  

The rest of the paper is organized as follows. Section 2 
reviews the existing literature. Section 3 analyzes the models. 
Section 4 analyzes the impact of lead time variability. Section 
5 summarizes the findings. 

 

II. LITERATURE REVIEW 

After examining the standard procedure of the (z, Q) 
inventory model in the literature, Eppen and Martin [4] 
believe that using the economic order quantity (EOQ) 
formula as the order quantity Q is an acceptable common 
practice to calculate the reorder point z when the demand and 
lead time are both stochastic. Based on a normal 
approximation to estimate the relationship between safety 
stock and lead time uncertainty, these authors report that 
reducing lead time variability decreases the reorder point and 
safety stock. Furthermore, they believe reducing lead time 
variability is more effective than reducing lead times because 
it decreases the safety stock by a larger amount. However 
they caution that using a normal approximation for the lead 
time distribution to compute the reorder point z for a given 
cycle service level, which measures the proportion of 
replenishment cycles in which a stockout does not occur, 
would lead to certain computational error. Thus they propose 
two correction procedures for inventory systems with both 
known and unknown parameters, respectively. 

Based on Eppen and Martine research, Chopra el al. 
suggest that for a given order quantity Q and service level in 
an inventory system with variable demand and stochastic 
lead time, reducing the lead time variability may or may not 
reduce the inventory (safety stock). Of the two most 
commonly used service measures, cycle service level (CSL) 
and fill rate (P), CSL is in general easier to analyze for the 
inventory system since it does not have obvious relationship 
with either holding cost or shortage cost; whereas P, which 
measures the proportion of demand that is met from stock, is 
more difficult to analyze but it can be readily derived with 
given holding and shortage costs. According to Chopra and 
Meindl [5], “the two measures are very closely related 
because raising the cycle service level will also raise the fill 
rate for a firm.” For a given order quantity, Q, in a (z, Q) 
inventory system, Chopra el al. [1] try to analyze the reorder 
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point z = µL + kσL, where µL is the mean, σL the standard 
deviation of demand during lead time, and kσL the safety 
stock. They find that for CSL > 0.5 but below a threshold, 
reducing σ increases z, whereas reducing lead time decreases 
z. In addition, Chopra et al. suggest that the impact of lead 
time variability and mean lead time on inventory policy 
(safety stock) and the total inventory cost varies, depending 
on the cycle service levels. That is for certain cycle service 
levels, reducing lead time variability increases the safety 
stock and total inventory cost; whereas reducing mean lead 
time decreases the safety stock and total inventory cost.   

Research in stochastic inventory systems often focuses on 
the impact of lead-time variability on inventory cost by 
examining its effect on a (z, Q) policy with planned 
shortages, otherwise known as the EOQ model with 
backlogging. When demand is constant and lead time is 
instantaneous, a (z, Q) system reduces to an (s, Q) where an 
order of size Q is placed each time the inventory position 
reaches the reorder point, z=s for s < 0. However, when both 
the lead time and the demand rate are stochastic, such an 
inventory model becomes extremely complicated. 
Nonetheless, while they believe that the effects of the two 
decision variables, z and Q, are not independent (i.e., the best 
value of Q depends on the z, and vice versa), Silver and 
Peterson [6] suggest that it is a practical assumption for a 
predetermined Q without knowledge of z. However, this 
approximation is never intended to derive an exact solution 
for the reorder point z.   

The main reason for assuming a predetermined Q when the 
lead time is stochastic is the computational complexity in 
searching for optimal inventory policies for the (z, Q) model 
where a closed-from expression cannot be derived. 
Liberatore [7] developed such a model under the assumption 
that orders will not cross, i.e., orders will be received in the 
same order sequencing in which they are placed. In 
examining a (z, Q) model with constant demand rate and 
truncated stochastic lead times, He et al. [2] conclude that to 
achieve zero inventory (ZI) in a stochastic lead-time setting, 
both the setup cost and lead-time variability would have to be 
eliminated. Furthermore, it is the lead-time variance and not 
the mean lead time that affects the total relevant cost in a 
stochastic lead-time model. 

 

III. MODEL ANALYSIS 

We investigate the impact of lead-time variability on 
inventory cost by examining its effect on an (s, Q) policy with 
planned shortages, or the EOQ model with backlogging, as 
our base model. Let 

b = shortage cost per unit per unit time, 
D = constant demand per unit time, 
h = holding cost per unit per unit time,  
K = ordering cost per order, 
P = fill rate, which is equivalent to b/(b+h). 

The total relevant cost is [6] 
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Figure 1 describes the (s, Q) inventory system with 
instantaneous lead time and backlogging, with s < 0 the 

planned shortage. Solving Eq.(1) for the optimal decision 
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Figure 1: An (s, Q) System with Instantaneous Lead Time and Backlogging 
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q = Q/D, the cycle time to consume Q units of inventory 
Q = Order Quantity 
s = Reorder Point 
 

Note that Eq.(4) convergences to the traditional EOQ model 
without shortage when b ∞→  or P 1→ , with s → 0, 

Q hKDEOQ /2=→ , and TRC KDh2→ . 
 This model can be extended to include deterministic lead 

time, L, by adjusting s upward with respect to the demand 
during the lead time, or  

 z =LD+s.                (5)  

Now (z, Q) is the inventory policy for the inventory system 
with deterministic lead time, where z is the new reorder point, 
LD is the demand during lead time, and s is again the planned 
shortage. In other words, (1)-(4) can be used for deterministic 
lead time inventory systems, so long as we relabel TRC(s, Q) as 
TRC(z, Q) and use z = LD+s as the adjusted reorder point.  

When lead times are stochastic, the (z, Q) inventory system 
is much more difficult to analyze. Liberatore [7] developed a 
stochastic lead time model with constant demand if demands 
are assumed noninterchangeable: 
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where 

E(r, q) = expected inventory cost per unit time, 
f(x)    = probability density function (pdf) of the lead time, 
x       = independently and identically distributed (iid) lead time 

variable,  
q       = Q/D, cycle time to consume Q units of inventory, 
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r       = z/D 

In this paper we apply the model in Eq. (6) to evaluate the 
impact of a predetermined Q’ (say EOQ) and the corresponding 
reorder point z’ on total inventory cost E(z’, Q’). 

Table 1 shows that a predetermined Q’ from the EOQ 
model in Eq.(2) would significantly underestimate the 
optimal order quantity, Q, which leads to higher total 
inventory cost.   

 
Table 1: Numerical Example of the (z, Q) Model 

       (D = 5000 h = $1  b = $10 K = $100 P=0.91) 
 
λ       z          Q       E(z, Q)      z’         z %     Q’      Q%    E(z’, Q’)   E%_ 
                 1128   -30.0%   1049          $3334    18.8% 
         1289   -20.0   1049            3167    12.8 
    1450   -10.0   1049              3049      8.6 
    1600     -0.7   1049   -43.3%    2977      6.1 
  5   1,611    1,850   $2,807  1611      0.0   1049                   2973      5.9 
    1772    10.0   1040             2931      4.4 
     1933  20.0   1049              2920      3.9 
    2094  30.0   1049              2940      4.7_ 
      435 -30.0%   1049          $1900     11.3% 

  498 -20.0   1049              1849       8.3 
  560 -10.0   1049               1812       6.2 

10      622    1,507    1,707   622       0.0   1049                   1786       4.6 
  640    2.9   1049   -30.4%    1781       4.3 

           684  10.0    1049              1771       3.7 
      746  20.0   1049              1764       3.3 
      809     30.0   1049              1766       3.5_ 
        51 -30.0%   1049          $1100       1.2% 

    58 -20.0   1049              1098       1.0 
        66 -10.0   1049              1096       0.8 
        72   -1.4   1049   -11.0%    1095       0.7 
30        73    1,178     1,087     73     0.0   1049                   1095       0.7 
        80   10.0   1049              1094       0.6 
        88   20.0   1049              1094       0.6 
        95   30.0   1049              1094       0.6 
  
Legend: 

λ = Parameter of the exponential lead time 
z = rD, the reorder point of the Liberatore’s model in Eq.(6) 
Q =  qD, the order quantity of the model in Eq.(6) 
Q’=Predetermined order quantity Q from the EOQ model in 

Eq.(2) 
z’=The new reorder point corresponding to the 
predetermined Q’=EOQ  
z%= Percentage difference between z’ and z 
Q%=Percentage difference between Q’ and Q  
E(z, Q) = Total relevant cost of the model in Eq.(6) 
E(z’, Q’) = Total relevant cost of the model in Eq.(6) with a 

predetermined Q’ and z’ 
E%=Percentage difference between E(z’, Q’) and E(z, Q) 

The first column in Table 1 shows the parameter of the 
exponential lead time, λ, where the mean lead time is μ=1/λ 
and the standard deviation of the lead time is σ =. For a given 
λ, columns 2-4 are the resulting the optimal inventory policy 
in terms of the reorder point, z, the order quantity, Q=1/λ, and 
the total relevant inventory cost, E(z, Q), via numerical search 
on Eq.(6). Column 5 is the reorder point z’ that Chopra et al. try 
to analyze based upon a predetermined order quantity, Q’. 
Column 6 is the percentage difference between the optimal z 
and the z’. Column 7 is the predetermined order quantity, Q’, 
which is based on the EOQ model in Eq. (2). Column 8 is the 
percentage difference between the optimal Q and the Q’. 
Column 9 is the total relevant cost, E(z’, Q’) and column 10 is 
the percentage difference between the optimal total relevant 
cost E(z, Q) and the E(z, Q’). 

For example, when λ=5, demand D=5,000 per unit time, 
setup cost K=$100 per order, holding cost h=$1 per unit, and 
shortage cost b=$10 per unit, the fill rate can be derived as 
P=b/(b+h)=0.91 and Q’=EOQ=1,049. Line 5 of columns 2-4 
in Table 1 shows that the optimal order quantity is Q= 1,850, 
the optimal reorder point is z= 1,612, and the optimal total 
relevant cost of the stochastic inventory system with 
exponential lead time with parameter λ=5 is E(z, Q)=$2,807. 
This optimal inventory policy is compared with the (z’, Q’) 
inventory system, where z’= μD+kσD=1,600 and where k is 
a function of p(k)=Q/(σD)(1-P) [6, p. 272] for a 
predetermined Q’=1,049. The resulting total relevant 
inventory cost is E(z’, Q’)=$2,977 (line 4 of column 9), 
which is 6.1% (line 4 of the last column) higher than the 
optimal E(z, Q)=$2,807 (line 5 of column 4). This is due to 
the fact that the predetermined Q’=1,049 is 43.3% smaller 
(line 4 of column 7) than the optimal Q=1,850 (line 5 of 
column 3) although the reorder point z’=1,600 (line 4 of 
column 5) using Chopra et al. approach is only 0.7% smaller 
(line 4 of column 6) than the optimal reorder point z=1,611 
(line 5 of column 2).  

It is worth noting that reducing the z’ in Table 1 will 
increase the corresponding total inventory cost, E(z’, Q’); 
whereas increasing the z’ will reduce the total inventory cost 
initially and then increase after the z’ is about 20% more than 
the initial estimate. For example, when z’ is reduced from 
1,600 to 1,450, 1,289, and 1,128 (lines 3, 2, and 1 of column 
5), the total inventory cost is increased from $2,977 to 
$3,049, $3167, and 3,334 (lines 3, 2, and 1 of column 9), 
respectively. However, when z’ is increased from 1,600 to 
1,772, 1,933, and 2,094 (lines 6, 7, and 8 of column 5), the 
total inventory cost is first reduced from $2,977 to $2,931 
and $2,920 (lines 7 and 8 of column 9), but then increased 
again from $2,920 to $2,940 (line 8 of column 9). 

As we can see from Table 1 when λ=10, the same Q’ = 
1049 is used, with a new z’ and E(z’, Q’), or z’= 
μD+kσD=5000/10+0.28x500=640 and E(z’, Q’)=$1,781. 
Thus we conclude that the characteristics described above 
when λ=5 hold true for λ=10 and λ=30. That is, a 
predetermined Q’ from the EOQ model underestimats the 
optimal order quantity, Q, when the lead time is stochastic. 
Consequently, the resulting total relevant inventory cost, 
E(z’, Q’) is higher than the corresponding optimal total cost, 
E(z, Q) even though the z’ derived based on Q’ is almost 
identical to the optimal z. 

Figure 2 shows that when λ=5, E(z’, Q’) > E(z, Q) within a 
reasonable range of z’ (z’ ≤ 2,227 or no more than 38% above 
the optimal z). Moreover, when z’ decreases, the gap between 
E(z’, Q’) and E(z, Q) increases. Similarly, Figure 3 shows 
that when λ=10, E(z’, Q’) > E(z, Q) within a reasonable 
range of z’ (for z’ ≤ 950 or no more than 53% above the 
optimal z). By the same token, Figure 4 shows when λ=30, 
E(z’, Q’) > E(z, Q) within a reasonable range of z’ (z’ ≤ 157 
or no more than 115% above the optimal z). 
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Figure 2. Total Inventory Cost with λ=5 and fill rate P=0.91
For Q=1850, the minimun cost is $2,807 when z=1611
For Q=1049, the minimun cost is $2,920 when z=1925
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Figure 3. Total Inventory Cost with λ=10 and fill rate P=0.91
For Q=1507, the minimum cost is $1,707 when z=622
For Q=1049, the minumun cost is $1,764 when z=775
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Figure 4. Total Inventory Cost with λ=30 and fill rate P=0.91
For Q=1178, the minimun cost is $1,087 when z=73
For Q=1049, the minimun cost is $1,094 when z=92
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IV. IMPACT OF LEAD TIME VARIABILITY 
Based on Liberatore’s model, He et al. develop an 

inventory system with constant demand and truncated 
stochastic lead time, r ≤ x ≤ r+q, with mean μ and variance 
σ2.  By introducing the lead-time variability factor, F, they 
find that this truncated stochastic lead time inventory system 
has a closed form solution similar to Eqs. 2-4, with 

)1( P2K

2Dh
+1=F

−

σ .                    (7) 

In other word, this model can be expressed in terms of F and the 
base model (s, Q) in Eqs.(2)-(4): 
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Consequently, the reorder point is 
 z(F) = μD+s(F). 

Now we analyze the impact of lead-time variability and its 
effect on the inventory policy, by means of what we call, for 
the lack of anything better, ‘the lead-time variability factor, 
F.  As we shall see, the lead-time variability factor, F, could 
measure the intensity of lead-time variability.  

From Eq.(7), F is a function of the variance, σ2, and the 
system parameters D, h, P, and K.  The mean, μ, does not show 
up in Eqs.(8)-(11), meaning that it is σ 2 and not μ that affects the 
inventory policy and the total relevant cost in a stochastic 
lead-time inventory system. For σ 2 > 0, F >1, and TRC(z, Q, F) 
> TRC(s, Q). When σ 2 approaches zero, F converges to 1. As 
seen in Eq.(11), F is increasing in σ 2, the rate of increase being 
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Thus, the higher the lead-time variability, the higher the total 
inventory cost. Likewise, the higher the lead-time variability, 
the higher the F, and the larger the reorder quantity, Q(F) (see 
Eq. (8)). And as we can see from Eq.(9), the impact of F on s(F) 
is negatively proportional to Q(F), with a discount rate of (1-P). 
Consequently, the impact of lead-time variability on the 
adjusted reorder point, z(F), depends both on the mean, μ, and 
the variance, σ 2.  

 

V. SUMMARY 
This research is significant since it aims at managerial 

prescriptions as to how to reduce inventories in terms of 
safety stocks and ultimately to reduce inventory costs without 
hurting the level of services provided to customers. Safety 
stock is a function of the cycle service level, the demand 
uncertainty, the replenishment lead time, and the lead time 
variability. Managers have been under increasing pressure to 
decrease inventories as supply chains attempt to become 
leaner by reducing lead time variability and average lead 
time. They believe these are two areas they are able to make a 
difference since the other two variables, the service level and 
the demand uncertainty, cannot be reduced due to global 
competition and shortened product life cycles.  
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