
Abstract -  
The learning effects are widely studied in scheduling 
problems recently. Biskup [1] classified the learning effect 
models into two diverse approaches, namely the position 
-based and the sum-of-processing-time-based learning 
effect models. He further claimed that the position-based 
learning effect model seems to be a realistic assumption for 
the case that the actual processing of the job is mainly 
machine-driven, while the sum-of-processing-time -based 
learning effect model takes into account the effects that the 
human gains from the experience of operating similar tasks. 
In this paper, we propose a learning model which considers 
both the machine and human learning effects simultaneously. 
We will show that the position-based learning and the 
sum-of- processing-time-based learning effect models are 
special cases of the proposed model. Moreover, we will 
derive the optimal solutions for some single-machine 
problems. 
 
Keywords: scheduling; learning effect; single-machine;   

flowshop 
 

1. Introduction 
Conventionally, it is assumed that the job processing 

times are fixed and known from the first job to be processed 
to the last job to be completed. However, this assumption 
might not be realistic in many situations. Biskup [2] claimed 
that unit costs decline as firms produce more of a product 
and gain knowledge or experience in several industrial 
empirical studies. For instance, repeated processing of 
similar tasks improves worker skills; workers are able to 
perform setup, to deal with machine operations and 
software, or to handle raw materials and components at a 
greater pace. This phenomenon is known as the “learning 
effect” in the literature. 

The learning effect is relatively unexplored in the 
scheduling fields until recently although it has been 
investigated in a variety of industries. Biskup [2] was the 
first author to bring the concept of learning effect into 
scheduling problems. He proposed a position-based learning 
model and showed some single-machine scheduling 
problems remain polynomially solvable. Since then, many 
researchers have  
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paid more attention on the relatively young but very vivid 
area. Mosheiov [3] showed that solving scheduling 
problems with a learning effect requires more computational 
effort than that required for solving the original problem. 
Mosheiov [4] further considered the flow-time problem on 
parallel identical machines. Lee et al. [5] studied a 
single-machine bi-criterion scheduling problem. Zhao et al. 
[6] developed the optimal solutions for some single machine 
and flowshop problems under some special cases. Lee and 
Wu [7] considered the two-machine flowshop total 
completion problem, while Chen et al. [8] considered a 
bi-criterion flowshop problem. Wang and Xia [9] 
demonstrated that Johnson’s rule for the two-machine 
flowshop makespan problem does not necessarily lead to an 
optimal schedule if the learning effect is present. Wu et al. 
[10] considered the maximum lateness problem. Eren and 
Güner [11] addressed the single-machine total tardiness 
problem. Wu and Lee [12] considered single-machine 
scheduling with learning effect and an availability 
constraint. Lee and Wu [13] presented the optimal solutions 
for some single-machine group scheduling problems. Wu 
and Lee [14] studied the multiple-machine flowshop total 
completion time problem. Other extensions of the 
position-based learning models can be found in Cheng and 
Wang [15], Bachman and Janiak [16], Wang [17] and Wang 
[18]. 

 On the other hand, Kuo and Yang [19] proposed a 
sum-of-processing-time- based learning effect model. He 
showed that the makespan and the total completion time 
problems are polynomially solvable. Other form of the 
sum-of-processing-time- based learning model can be found 
in Koulamas and Kyparisis [20]. Wu and Lee [21] studied 
some single-machine scheduling problems with the sum-of 
-processing-time-based learning effect. Recently, Biskup [1] 
provided an extensive review of scheduling with learning 
effects. He claimed that the position-based learning effect 
model assumes that learning takes place by processing time 
independent operations like setting up the machines. This 
seems to be a realistic assumption for the case that the actual 
processing time of the job is mainly machine-driven and has 
(near to) none human interference. The sum-of-processing 
-time approach takes into account the experience the 
workers gain from producing the jobs. This might, for 
example, be the case for offset printing, where running the 
press itself is a highly complicated and error-prone process. 
In many realistic situations, both the machine and human 
learning effects might exist simultaneously. In this paper, we 
propose a new model which considers both the human and 
the machine learning effects at the same time.  

The remainder of this paper is organized as follows. The 
problem formulation is given in the next section. In Section 
3, the solution procedures for some single-machine 
problems are presented. The conclusion is given in the last 
section. 
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2. Problem formulation 
Formulation of the proposed learning effect model is as 

follows. There are n  jobs ready to be processed on a single 
machine. Each job j has a normal processing time jp  and a 

due date jd . Due to the learning effect, the actual 

processing time of job j is 
1 2

1

[ ] [ ]
1

(1 )
ra a

j r j l
l

p p r p
−

=
= + ∑ , 

if it is scheduled in the rth position in a sequence, where [ ]lp  

is the normal processing time of the job scheduled in the lth 
position in the sequence, 0 0c >  is a constant, r  is the 

scheduled position, 1 0a ≤  and 2 0a ≤  are the learning 
indices. For convenience, we denote the learning model by 
LE [3]. For instance, the single-machine makespan problem 
is denoted as max1 | |LE C  using conventional notation 
(Graham et al. [22]) for describing scheduling problems. 
This scheduling model unifies the job-position-based 
learning effect and the sum-of- processing-time-based 
learning effect models. For instance, it is the position-based 
learning effect model 1

[ ]
a

j r jp p r=  if 2 0a = , while it is 

the sum-of-processing -time-based learning effect model   
2

[ ] [1] [ 1](1 ... )a
j r j rp p p p −= + + +  if 1 0a = . 

 
3. Some single-machine problems  

In this section, solutions of several single-machine 
problems under the proposed learning model are developed. 
Before presenting the main results, we first state the lemmas 
that will be used in the proofs of the properties in the sequel. 
The proofs are given in the appendix. 
Lemma 1. 11 (1 ) (1 ) 0a aacx x c x−+ + − + ≥  for 0a < , 
0 1c< <  and 0x ≥ . 
Lemma 2. 1 (1 ) (1 ) 0a ac x c xλ λ λ− + + − + ≥  for 1λ ≥ , 

0a < , 0 1c< <  and 0x ≥ . 
Lemma 3. 11 [1 (1 ) ] (1 ) 0a ak c x acx kx −+ − + + + ≥ for  

1k ≥ , 0a < , 0 1c< < , and 0x ≥ . 
Lemma 4. [1 (1 ) ] [1 (1 ) ] / 0a ak c x c kx k− + − − + ≥  for 

1k ≥ , 0a < , 0 1c< < , and 0x ≥ . 
Lemma 5. 
( 1) [1 (1 ) ] [1 (1 ) ] / 0a ak c x c kx kλ λ λ− + − + − − + ≥ for 

1λ ≥ , 1k ≥ , 0a < , 0 1c< < , and 0x ≥ . 
   

We will prove the properties using the well-known pairwise 
interchange technique. Suppose that S and S ′  are two job 
schedules and the difference between S and S ′  is a pairwise 
interchange of two adjacent jobs i and j, i.e.,  

( , , , )S i jπ π ′=  and ( , , , )S j iπ π′ ′= , where π  and π ′  
each denote a partial sequence.  Furthermore, we assume 
that there are r-1 scheduled jobs in π  and A  is the 
completion time of the last job in π . Under S, the 
completion times of jobs i and j are respectively 
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Similarly, the completion times of jobs j and i in S ′  are 
respectively 
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and 
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Property 1. For the max1 | |LE C  problem, the optimal 
schedule is obtained by sequencing jobs in the shortest 
processing time (SPT) order. 
Proof: Suppose that i jp p≤ . To show that S  dominates 

S ′ , it suffices to show that ( ) ( )j iC S C S ′≤ . 

Taking the difference between Equations (2) and (4), we 
have 

1 2
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−
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′ − = + ∑
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Substituting /j ip pλ = , 1(1 1/ )ac r= + , and 
1
1 [ ]/(1 )r

li lx p p−
== + ∑  into Equation (5), it is derived from 

Lemma 1 that 
( ) ( )i jC S C S′ − =  

1 2 2 2
1

[ ]
1

(1 ) { 1 (1 ) (1 ) }
ra a a a

i l
l

p r p c x c xλ λ λ
−

=
+ − + + − +∑ 0≥  

since / 1j ip pλ = ≥ , 0 1c< < , 0x ≥ , 1 0a ≤  and 

2 0a ≤ .  Thus, S  dominates S ′ . Therefore, repeating this 
interchange argument for jobs not sequenced in the SPT 
order completes the proof of the property. 
 
Property 2. For the 1 | | jLE C∑  problem, the optimal 

schedule is obtained by sequencing jobs in the SPT order. 
Proof: The proof is omitted since it is similar to that of 
Property 1. 
 

The well-known weighted smallest processing time 
(WSPT) rule provides the optimal schedule for the classical 
total weighted completion time problem. However, the 
WSPT order does not yield an optimal schedule under the 
proposed learning model, as shown by the example below. 
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Example 1. Given 2n = , 1 3p = , 2 2p = , 1 2w = , 

2 1w = , 1 0.322a = − and 2 1a = − . The WSPT sequence (1, 
2) yields a total weighted completion time of 9.4, while the 
sequence (2, 1) yields the optimal value of 7.6. 

Although the WSPT order does not provide an optimal 
schedule under the proposed learning model, it still gives an 
optimal solution if the processing times and the weights are 
agreeable, i.e., / / 1j i j ip p w w≥ ≥  for all jobs i and j. The 

result is stated in the following theorem. 
Property 3. For the 1 | | j jLE w C∑  problem, the optimal 

schedule is obtained by sequencing jobs in non-decreasing 
order of /i ip w  if the processing times and the weights are 
agreeable. 
Proof: Suppose that / / 1j i j ip p w w≥ ≥ . Since i jp p≤ , it 

implies from Property 1 that ( ) ( )j iC S C S ′≤ . Thus, to show 

that S dominates S ′ , it suffices to show that 
( ) ( ) ( ) ( )i i j j j j i iw C S w C S w C S w C S′ ′+ ≤ + . From 

Equations (1) to (4), we have 
[ ( ) ( )] [ ( ) ( )]j j i i i i j jw C S w C S w C S w C S′ ′+ − +  
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                                        (6) 
Substituting /j i i jp w p wλ = , /j ik w w= , 1(1 1/ )ac r= + , 

and 1
1 [ ]/(1 )r

li lx p p−
== + ∑  into Equation (6), we have from 

Lemma 5 that  
[ ( ) ( )] [ ( ) ( )]j j i i i i j jw C S w C S w C S w C S′ ′+ − +  
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k
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since / 1j i i jp w p wλ = ≥ , 1k ≥ , 0 1c< < ,  0x ≥ , 

1 0a ≤  and 2 0a ≤ . Thus, S  dominates S ′ . Repeating this 
interchange argument for jobs not sequenced in the WSPT 
order completes the proof of Property 3. 
 

Let i i iL C d= −  denote the lateness of job i, for i = 1, 
2,…, n. Ordering jobs according to the earliest due-date 
(EDD) rule provides the optimal sequence for the classical 
maximum lateness problem. However, this policy is not 
optimal under the proposed learning model, as shown by the 
example below. 
Example 2. Given 2n = , 1 3p = , 2 2p = , 1 3d = , 

2 4d = , 1 0.322a = − and 2 1a = − . The EDD sequence (1, 
2) yields a maximum lateness of 0, while the sequence (2, 1) 
yields the optimal value of -0.2. 

Although the EDD order does not provide the optimal 
solution for the maximum lateness problem under the 

proposed model, it is still optimal if the job processing times 
and the due dates are agreeable, i.e., i jd d≤  implies 

i jp p≤  for all jobs i and j. The result is stated in the 

following theorem. 
Property 4. For the 1 | | maxLE L  problem, the optimal 
schedule is obtained by sequencing jobs in non-decreasing 
order of id  if the job processing times and the due dates are 
agreeable. 
Proof: Suppose that i jd d≤ . This implies that i jp p≤ . 

Thus, it is seen from Theorem 1 that ( ) ( )j iC S C S ′≤ . To 

show that S dominates S ′ , it suffices to show that 
max{ ( ), ( )} max{ ( ), ( )}i j i jL S L S L S L S′ ′≤ . By definition, 

the lateness of jobs i and j in S and jobs j and i in S ′  are 
respectively 

( ) ( )i i iL S C S d= − , 

( ) ( )j j jL S C S d= − , 

( ) ( )j j jL S C S d′ ′= − , 

and 
( ) ( )i i iL S C S d′ ′= − . 

Since i jp p≤ , we have from Property 1 that 

 ( ) ( )j iC S C S ′≤ .                                                            (7) 

With the condition that i jd d≤ , we have 

( ) ( )j iL S L S ′≤ .                                                              (8) 

From equation (7), and since job i is processed before job j 
in S, we have 
 ( ) ( )i iL S L S ′≤ .                                                              (9) 
From equations (8) and (9), we have 
 max{ ( ), ( )} max{ ( ), ( )}i j i jL S L S L S L S′ ′≤ . 

Thus, repeating this interchange argument for all the jobs 
not sequenced in the EDD rule completes the proof of 
Property 4. 
 
In the following, we will show the EDD rule provides the 
optimal solution for the total tardiness problem if the job 
processing times and the due dates are agreeable, i.e., 

i jd d≤  implies i jp p≤  for all jobs i and j.  

Property 5. For the 1 | | iLE T∑  problem, the optimal 
schedule is obtained by sequencing jobs in non-decreasing 
order of id  if the job processing times and the due dates are 
agreeable. 
Proof: Suppose that i jd d≤ . It also implies i jp p≤ . The 

total tardiness of the first r-1 jobs are the same since they are 
processed in the same order. Since the makespan is 
minimized by the SPT rule (Property 1), the total tardiness 
of partial sequence π ′  in S will not be greater than that of 
partial sequence π ′  in S ′ . Thus, to prove that the total 
tardiness of S is less than or equal to that of S ′ , it suffices to 
show that ( ) ( ) ( ) ( )i j j iT S T S T S T S′ ′+ ≤ + . 

From Equations (1) - (4), it is derived that the tardiness of 
jobs i and j in S are 
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Similarly, the tardiness of jobs i and j in S ′  are 
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To compare the total tardiness of jobs i and j in S and in 
S ′ , we divide it into two cases. In the first case that 

1 21
1 [ ](1 )a ar

lj l jA p r p d−
=+ + ≤∑ , the total tardiness of jobs i 

and j in S and in S ′  are 
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Suppose that neither ( )iT S  nor ( )jT S  is zero. Note that 

this is the most restrictive case since it comprises the case 
that either one or both ( )iT S  and ( )jT S  are zero. From 

Property 1 and i jd d≤ , we have 
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Thus, { ( ) ( )} { ( ) ( )} 0j i i jT S T S T S T S′ ′+ − + ≥  in the first 

case. In the second case that 
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and j in S and in S ′  are 
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Suppose that neither ( )iT S  nor ( )jT S  is zero. From 

Property 1 and i jp p≤ , we have 
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Thus, { ( ) ( )} { ( ) ( )} 0j i i jT S T S T S T S′ ′+ − + ≥  in the second 

case. This completes the proof of Property 5. 
 

4. Conclusions 
In many realistic situations, the learning effects of 

machines and humans exist simultaneously. In this paper, 
we propose a new learning model which considers the 
position- based learning effect and the 
sum-of-processing-time-based learning effect at the same 
time. We derived polynomial-time optimal solutions for two 
single-machine problems as to minimize the makespan and 
the total completion time. In addition, we show that the 
problems to minimize the total weighted completion time, 
the maximum lateness, and the total tardiness are 
polynomially solvable under certain agreeable conditions. 
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Appendix 

Lemma 1. 11 (1 ) (1 ) 0a aacx x c x−+ + − + ≥  for 0a < , 
0 1c< <  and 0x ≥ . 
Proof: Let 1( ) 1 (1 ) (1 )a af x acx x c x−= + + − + . Taking the 
first derivative of ( )f x  with respect to x, we have 

2( ) ( 1) (1 ) 0af x a a cx x −′ = − + ≥  
for 0a < , 0 1c< <  and 0x ≥ . Thus, this implies that 

( )f x  is a non-decreasing function on 0x ≥ . Since 
(0) 1 0f c= − >  for 0a <  and 0 1c< < , we have 
( ) 0f x ≥  

for 0a < , 0 1c< <  and 0x ≥ . This completes the proof. 
 
Lemma 2. 1 (1 ) (1 ) 0a ac x c xλ λ λ− + + − + ≥  for 1λ ≥ , 

0a < , 0 1c< <  and 0x ≥ . 
Proof: Let ( ) 1 (1 ) (1 )a ag c x c xλ λ λ λ= − + + − + . Taking 
the first and second derivatives of ( )g λ  with respect to λ , 
we have  

1( ) 1 (1 ) (1 )a ag acx x c xλ λ −′ = + + − +  
and 

2 2( ) ( 1) (1 )ag a a cx xλ λ −′′ = − + . 
Since 1λ ≥ , 0a < , 0 1c< <  and 0x ≥ , it implies that 

( ) 0g λ′′ ≥ . Therefore, ( )g λ′  is a non-decreasing function 
for 1λ ≥ . From Lemma 1, we have  

1(1) 1 (1 ) (1 ) 0a ag acx x c x−′ = + + − + ≥ . 
Using the fact that ( )g λ′  is a non-decreasing function 
for 1λ ≥ , this implies that 

( ) (1) 0g gλ′ ′≥ ≥ . 
Therefore, it also implies that ( )g λ  is a non-decreasing 
function for 1λ ≥ . Since (1) 0g = , we have 

( ) 0g λ ≥  
for 1λ ≥ , 0a < , 0 1c< <  and 0x ≥ . This completes the 
proof. 
 
Lemma 3. 11 [1 (1 ) ] (1 ) 0a ak c x acx kx −+ − + + + ≥ for 

1k ≥ , 0a < , 0 1c< < , and 0x ≥ . 
Proof: Let 1( ) 1 [1 (1 ) ] (1 )a af x k c x acx kx −= + − + + + . 
Taking the first derivative of ( )f x  with respect to x , we 
have 

1 1( ) (1 ) (1 )a af x kac x ac kx− −′ = − + + +  
2( 1) (1 )aa a ckx kx −+ − + . 

Since 1k ≥ , 0a < , and 0x ≥ , we have 
1 1(1 ) (1 )a ax kx− −+ > + . Thus, ( ) 0f x′ > . This implies that 

( )f x  is a non-decreasing function for 0x ≥ . Since 
(0) 1 [1 ] 0f k c= + − > , we have ( ) 0f x > . This completes 

the proof. 
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Lemma 4. [1 (1 ) ] [1 (1 ) ] / 0a ak c x c kx k− + − − + ≥  for 
1k ≥ , 0a < , 0 1c< < , and 0x ≥ . 

Proof: Let ( ) [1 (1 ) ] [1 (1 ) ] /a af x k c x c kx k= − + − − + . 
Taking the first derivative of ( )f x  with respect to x , we 
have 

1 1( ) (1 ) (1 )a af x kac x ac kx− −′ = − + + + . 
Since 1k ≥ , 0a < , 0 1c< < , 0x ≥ , we have  

1 1(1 ) (1 )a ax kx− −+ > + . Thus, ( ) 0f x′ > . This implies that 
( )f x  is a non-decreasing function for 1k ≥ , 0a < , 

0 1c< < , and 0x ≥ . Therefore, 
( ) (0) ( 1/ )(1 ) 0f x f k k c≥ = − − > . This completes the 

proof. 
 
 
 

Lemma 5. 
( 1) [1 (1 ) ] [1 (1 ) ] / 0a ak c x c kx kλ λ λ− + − + − − + ≥  for 

1λ ≥ , 1k ≥ , 0a < , 0 1c< < , and 0x ≥ . 
Proof: 
Let ( ) ( 1) [1 (1 ) ] [1 (1 ) ] /a ag k c x c kx kλ λ λ λ= − + − + − − + . 
Taking the first and second derivatives of ( )g λ  with 
respect to λ , we have  

1( ) 1 [1 (1 ) ] (1 )a ag k c x acx kxλ λ −′ = + − + + + , 
and  

2 2( ) ( 1) (1 )ag a a ckx kxλ λ −′′ = − + . 
Since 1λ ≥ , 1k ≥ , 0a < , 0 1c< < , and 0x ≥ , we have 

( ) 0g λ′′ ≥ . This implies that ( )g λ′  is a non-decreasing 
function for 1λ ≥ . From Lemma 3, we have 

1( ) (1) 1 [1 (1 ) ] (1 ) 0a ag g k c x acx kxλ −′ ′≥ = + − + + + ≥ . 
This implies that ( ) 0g λ′ ≥  and ( )g λ  is a non-decreasing 
function for 1λ ≥ , too. Therefore, we have from Lemma 4 
that 

( ) (1) [1 (1 ) ] [1 (1 ) ] / 0a ag g k c x c kx kλ ≥ = − + − − + ≥ . 
This completes the proof. 
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