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Abstract— This paper proposes a new location
problem of competitive facilities, e.g. shops and
stores, with uncertain demands in the plain. By rep-
resenting the demands for facilities as random vari-
ables, the location problem is formulated to a stochas-
tic programming problem, and it is reformulated to
three deterministic programming problems: expec-
tation maximizing problem, probability maximizing
problem, and satisfying level maximizing problem. .
After showing that one of their optimal solutions can
be found by solving 0-1 programming problems, their
solution method is proposed by improving the tabu
search algorithm based on strategic vibration. The
efficiency of the solution method is shown by apply-
ing it to numerical examples of the facility location
problems.
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1 Introduction

Competitive facility location problem (CFLP) is one of
optimal location problems for commercial facilities, e.g.
shops and stores, and the objective of a decision maker
(DM) for the CFLP is mainly to obtain as many demands
for her/his facilities as possible. Mathematical studies on
CFLPs are originated by Hotelling [7]. He considered the
CFLP under the conditions that (i) customers are uni-
formly distributed on a line segment, (ii) each of DMs can
locate and move her/his own facility at any times, and
(iii) all customers only use the nearest facility. CFLPs
on the plain were studied by Okabe and Suzuki [12], etc.
As an extension of Hotelling’s CFLP, Wendell and McK-
elvey [20] assumed that there exist customers on a finite
number of points, called demand points (DPs), and they
considered the CFLP on a network whose nodes are DPs.
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Based upon the CFLP proposed by Wendell and McK-
elvey, Hakimi [5] considered CFLPs under the condi-
tions that the DM locates her/his facilities on a network
that other competitive facilities were already located.
Drezner [3] extended Hakimi’s CFLPs to the CFLP on
the plain that there are DPs and competitive facilities.
As extension of their CFLPs, CFLPs with quality or size
of facilities are considered by Uno et al. [16], Fernández
et al. [4], Bruno and Improta [2], and Zhang and Rush-
ton [21], CFLPs with fuzziness are considered by Moreno
Pérez et al [10], and CFLPs based on maximal covering
are considered by Plastria and Vanhaverbeke [13].

In the above studies of CFLPs, the demands of customers
for facilities is represented as definite values. Wagnera et
al. [19] considered facility location models with random
demands in a noncompetitive environment. For the de-
tails of location models with random demands, the reader
can refer to the study of Berman and Krass [1].

In this paper, we proposes a new competitive facility
location problem with random demands by extending
Drezner’s location model that introduces Huff’s attrac-
tive function [8]. Then, the location problem can be for-
mulated as a stochastic programming problem. The prob-
lem is reformulated to the three deterministic program-
ming problems: expectation maximizing problem, proba-
bility maximizing problem, and satisfying level maximiz-
ing problem. Because the problems are nonlinear pro-
gramming problems, it is difficult to find a strict optimal
solution of the problems directly. We show that the prob-
lems can be reformulated as 0-1 programming problems,
and propose their solution method improving the tabu
search algorithm with strategic vibration, which Hanafi
and Freville [6] proposed for multidimensional knapsack
problems. For details of the tabu search algorithms, the
readers can refer to the book of Reeves [14]. We ap-
ply it to numerical examples of the CFLPs with random
demands, and show its efficiency by comparing to other
solution algorithms.

The remaining structure of this article is organized as fol-
lows. In Section 2, we formulate the CFLP with random
demand as a stochastic programming problem. Since it is
difficult to solve the formulated problem directly, we show
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that one of its optimal solutions can be found by solv-
ing a 0-1 programming problem in Section 3. In Section
4, we propose an efficient solution method based upon
tabu search algorithms by utilizing characteristics of the
CFLPs. We show the efficiency of the solution method
by applying to numerical examples of the CFLPs with
random demands in Section 5. Finally, in Section 6, con-
cluding comments and future extensions are summarized.

2 Formulation of CFLP with random de-
mands

In the proposed CFLPs, we assume that all customers
only exist on DPs in plain R2. For convenience sake, by
aggregating all customers on the same DP, we regard one
DP as one customer.

There are n DPs in R2, and let D = {1, · · · , n} be the
set of indices of the DPs. Let m be the number of new
facilities that the DM locates, and k be the number of
competitive facilities which have been already located
in R2. The sets of indices of the new facilities and the
competitive facilities are denoted by F = {1, . . . ,m} and
FC = {m + 1, · · · ,m + k}, respectively.

Let ui ∈ R2 be the site of DP i ∈ D, and xj ∈ R2 and
qj > 0 be the site and quality of facility j ∈ F ∪ FC ,
respectively. Then, attractive power of facility j for DP
i is represented as the following function introduced by
Huff [8]:

ai(xj , qj) ≡


qj

||ui − xj ||2
, if ||ui − xj || > ε,

qj

ε2
, if ||ui − xj || ≤ ε,

(1)

where ε > 0 is an upper limit of the distance that cus-
tomers can move without any trouble. It is assumed that
all customers only use one facility with the largest at-
tractive power, and if the two or more attractive powers
are the same, they use the facility in reverse numerical
order of the indices of facilities; that is, in the order of
competitive facilities and new facilities.

Let x = (x1, . . . ,xm) be the location of the new facilities.
Then we use the following 0-1 variable for representing
whether DP i uses new facility j ∈ F :

φj
i (x) =

{
1, if DP i uses the new facility j,
0, otherwise. (2)

Let w̄i be the random variable meaning the buying power
(BP) of DP i. New facility j ∈ F can obtain the BP w̄i

if φj
i (x) = 1. The objective of the DM is maximizing the

sum of BP that all the new facilities obtain. Then, the
CFLP with random demand is formulated as the follow-
ing stochastic programming problem:

maximize f(x) =
n∑

i=1

m∑
j=1

w̄iφ
j
i (x)

subject to x ∈ R2m

 (3)

For finding an optimal solution of (3), we consider the
following three deterministic programming problems: (i)
expectation maximizing problem

maximize E[f(x)]
subject to x ∈ R2n

}
(4)

(ii) probability maximizing problem

maximize Pr[f(x) ≥ f0]
subject to x ∈ R2n

}
(5)

where f0 means a given satisfying level of obtaining BP,
and (iii) satisfying level maximizing problem

maximize f0

subject to Pr[f(x) ≥ f0] ≥ α
x ∈ R2n

 (6)

where α is a given satisfying level of probability that the
DM can obtain BP level f0.

Problems (4), (5), and (6) are nonconvex nonlinear pro-
gramming problems and we need to find at least one opti-
mal solution for each of the problems. However, for most
CFLPs [3, 16], it is difficult to find an optimal solution
by using general analytic solution methods with derived
functions of the objective function, Kuhn-Tucker condi-
tions, etc. Moreover, Uno and Katagiri [17] and Uno et
al. [18] show that it is also difficult to find an optimal so-
lution of such CFLPs by using heuristic solution methods
for nonlinear programming problems, e.g. genetic algo-
rithm for numerical optimization for constrained problem
(GENOCOP) [9]. In the next section, we show that the
above three problems can be reformulated as 0-1 pro-
gramming problems.

3 Reformulation to combinatorial opti-
mization problems

In the location model introduced in the previous section,
if the new facilities are located, then the values of (2) for
all facilities and DPs are given. On the other hand, we
propose the following solution method:

1. Decide the set of DPs that she/he wants to obtain
their BPs preferentially by giving the values of (2)
for all facilities and DPs, and

2. Find the location of the new facilities such that (2)
for each facility and DP is equal to or more than the
given value.

For DP i ∈ D, the largest attractive power among all
competitive facilities is denoted as follows:

aC
i ≡ min

j∈FC

{ai(xj , qj)}. (7)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-7-5 IMECS 2009



From (1), the set of DPs that new facility j ∈ F cannot
obtain their BPs wherever it is located is represented as
follows:

D△
j = {i ∈ D |

√
qj/aC

i ≤ ε}. (8)

Then, the set of DPs that there is at least one location
of facility j which can obtain their BPs is denoted by
Dj = D\D△

j . For new facility j, let D̄j ⊆ Dj be the
set of DPs that the DM wants to obtain their BPs by
locating it preferentially. Let

lij =
{

1, if i ∈ D̄j ,
0, otherwise. (9)

Then, D̄j can be represented as 0-1 vector lj =
(l1j , · · · , lnj). For new facility j and vector lj given by the
DM, we consider the following problem with an auxiliary
variable rj ≥ 0:

minimize r2
j

subject to ||xj − ui||2 ≤ qj

aC
i

· rj ,

∀i ∈ {̄i|l̄ij = 1},
xj ∈ R2, rj ≥ 0.

 (10)

Let (xlj

j , r
lj

j ) be an optimal solution of (10). Then, the
following theorem plays an important role to find an op-
timal location.

Theorem 1 For new facility j ∈ F , let D̄j be the set of
DPs given by the DM, lj be the 0-1 vector corresponding
to D̄j. Then, if r

lj

j < 1, the new facility j can obtain all

DPs in D̄ by locating it at x
lj

j .

Proof: For the constraint of (10) and r
lj

j < 1, the fol-
lowing relation is satisfied for all DPs in D̄j:

||xlj

j − ui||2 <
qj

aC
i

. (11)

Then, aC
i < qj/||x

lj

j − ui||2 is satisfied. From (1), this
equation means that the attractive power of new facility
j is more than that of competitive facilities if the site of
facility j is x

lj

l . �

Since (10) is a convex programming problem, (10) can be
solved by using the solution algorithms for convex pro-
gramming problems, such as successive quadratic pro-
gramming (SQP) method; for the details of the SQP
method, the reader can refer to the book of Nocedal and
Wright [11].

Theorem 2 Let L = (l1, . . . , lm)T ∈ {0, 1}mn and xL =
(xl1

1 , . . . ,xlm
m ). Then, there exists L such that xL is an

optimal solution of (4), (5), and (6).

Proof: Let x∗ be an optimal solution of (4). We define
the 0-1 matrix L̄ ∈ {0, 1}mn, each of whose element for
i ∈ D, j ∈ F is that l̄ij = φj

i (x
∗). Then, from Theorem

1, xL̄ is also an optimal solution of (4) because φj
i (x

L) =
φj

i (x
∗) for all i, j and r

lj

j < 1 for all j. This means that
L̄ is one of the matrices satisfying the condition of the
theorem. This is also satisfied for the cases of (5) and
(6). �

Let rL = (rlm
1 , . . . , rlm

m ) and 1 = (1, . . . , 1). From The-
orem (2), finding an optimal solution of (4), (5), and
(6) can be formulated as the following 0-1 programming
problems respectively:

maximize E[f(xL)]
subject to rL < 1,

L ∈ {0, 1}mn

 (12)

maximize Pr[f(xL) ≥ f0]
subject to rL < 1,

L ∈ {0, 1}mn

 (13)

maximize f0

subject to rL < 1,
P r[f(xL) ≥ f0] ≥ α,
L ∈ {0, 1}mn

 (14)

Because the number of solving (10) is 2mn, it is NP-hard
to find a strict optimal solution of the above three prob-
lems. In the next section, we propose an efficient solution
method to find an approximate optimal solution of the
problems.

4 Tabu Search method based on strategic
vibration

First, we introduce an important theorem showing a simi-
larity between the 0-1 programming problems in the pre-
vious section and multidimensional knapsack problems.
Let lk+

j := lj + ek, where ek is the k-th unit vector, and
Lk+

j := (l1, . . . , lk+
j , . . . , lm)T .

Theorem 3 Let L ∈ {0, 1}mn be the matrix that l̄ij =
φj

i (x
L) for all i, j and xL is an optimal solution of (12),

(13), or (14). Then, rlk+
j ≥ 1 if lkj = 0 for any k, j.

Proof: We assume that there exists k, j such that rlk+
j <

1. Then, from Theorem 2, facility j can obtain more
values of objective function being located at xlk+

j than xlj .
This contradicts that xL is an optimal solution. �

From Theorem 3, an optimal solution of the three 0-
1 programming problems exists on the neighborhood of
the constraints. This is similar to the multidimensional

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-7-5 IMECS 2009



knapsack problems whose optimal solution exists on the
neighborhood of its constraints.

Moreover, if the matrix L which has many elements that
lij = 1, there are many constraints of (10) for obtaining
many BPs. Then, if L and Lk+

j hold that rL < 1 and

rLk+
j < 1, xLk+

j is mostly superior to xL. Similarly, the
multidimensional knapsack problems has the character
that their objective values are improved or not changed
if an element of solutions is changed from 0 to 1.

From these two characteristics, we think that solution
methods for multidimensional knapsack problems are also
efficient for (12), (13), or (14). For multidimensional
knapsack problems, Hanafi and Freville [6] proposed the
tabu search algorithm with strategic vibration. We pro-
pose to improve the solution method by utilizing charac-
teristics of CFLP.

The tabu search is one of the local search methods. In
our solution method, we define moves from a current so-
lution, denoted by Lnow, as the increase or decrease of
its one element. The neighborhood of a current solution
in (12), (13), or (14) is represented as a set of all solutions
which can transfer by only one move from the solution.
In the tabu search including our solution method, the
next searching solution from Lnow, denoted by Lnext,
is basically chosen to the best solution for given criteria,
e.g. objective value, in the neighborhood of a current
solution. However, if we use such a search without mod-
ification, a circulation of certain chosen moves occurs on
the way of search and then it can only find one local opti-
mal solution. For preventing such a circulation, if a move
is chosen in the search, the tabu constraint for its op-
posite move is activated for given terms, called the tabu
term and denoted by T1. Then the activated move are
forbidden to choose in T1 terms, called tabu, even if such
a move makes the objective value of (12), (13), or (14) are
the best in all solutions in a neighbor-hood. Such tabu
moves are memorized in the tabu list for the search.

The tabu search method has advantage for searching in
local areas. In generally, there are generally many local
optimal solutions of (12), (13), or (14) existing on the
neighborhood of the constraints widely, because of the
above former characteristic of CFLP. We introduce the
strategic vibration to the tabu search for searching vari-
ous local optimal solutions efficiently. Then, our propos-
ing solution method is described as follows:

Tabu search algorithm with the strategic vi-
bration

Step 0: Generate the initial searching solution Lnow,
and initialize the tabu list and other variables. If
rLnow

< 1, then go to Step 4.

Step 1: Move Lnow to Lnext by decreasing an element

of Lnow so as to decrease rLnow
as much as possible.

This step is repeated until it is satisfied rLnow
< 1.

Step 2: Move Lnow to Lnow so as to improve the objec-
tive value of (12), (13), or (14). This step is repeated
at given certain terms, denoted by T2.

Step 3: Move Lnow to Lnow by decreasing an element
of Lnow so as to decrease rLnow

as much as possi-
ble. This step is repeated until rLnow

is less than a
certain vector, denoted by rlow.

Step 4: Move Lnow to Lnow by increasing an element
of Lnow so as to improve the objective value of (12),
(13), or (14). This step is repeated until it is not

satisfied rLnext
< 1.

Step 5: Do the same operations as Step 2.

Step 6: Move Lnow to Lnow by increasing an element
of Lnow so as to improve the objective value of (12),
(13), or (14). This step is repeated until rLnow

is
more than a certain vector, denoted by rupp.

Step 7: If the given terminal conditions are satisfied,
then this algorithm is terminated. The obtaining
approximate solution is the best solution about the
objective value of (12), (13), or (14) in all searched
solutions.

Otherwise, return to Step 1.

5 Numerical experiments

In this section, we show the efficiency of the solution al-
gorithm in the previous sections by applying to three ex-
amples of the CFLPs. In these examples, the numbers
of DPs are n = 30, 40, 50. The sites of DPs u1, . . . ,un

are given in [0, 100]× [0, 100] randomly, and their random
BPs w̄1, . . . , w̄n are represented as random variables each
of which have three scenarios whose probabilities are 0.5,
0.3, and 0.2, and BP of each DP for each scenario is given
in [5, 12] randomly. We give fifteen competitive facilities,
that is k = 15, and for competitive facility j ∈ FC , its site
xj is given in [0, 100] × [0, 100] randomly. In this plain,
the decision maker locates one facility, that is m = 1. For
(13) and (14), we give f0 = 30 + n and α = 0.8.

Next, we give parameters about our solution method; for
the meanings of parameters of tabu searches, the reader
can refer to the book of Reeves [14]. We set the tabu
term T1 = n/2 − 10. The terminal condition in Step 7
is that the iteration of the tabu search algorithm is false
until 10 times. At Step 2, let T2 = 10. At Step 3 and 6,
let rlow1 = 0.3 and r

upp
1 = 3.

For showing the efficiency of our solution method, we
compare its computational results to that of the genetic
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algorithm; for details of the genetic algorithms, the read-
ers can refer to the studies of Sakawa et al. [15]. We
set generation gap G = 0.9, population size NGA = 150,
and terminal generation TGA = 2000. Probabilities of
crossover, mutation, and inversion are pC = 0.9, pM =
0.01, and pI = 0.03, respectively.

We apply the tabu search and the genetic algorithm to
three examples of the CFLPs, where each of these algo-
rithms is implemented 20 times for each example by using
DELL Optiplex GX620 (CPU: Pentium(R) 4 2.33GHz,
RAM: 512MB). The computational results of solving the
CFLPs are shown in Tables 1-6. From Tables 1-6, the
tabu search can obtain better solutions for (12), (13), and
(14) than those of the genetic algorithm with shorter com-
putational times. This means that our solution method
is efficient for the CFLPs with random demands.

Table 1: Computational results by the taboo search al-
gorithm with the strategic vibration for (12)

n 30 40 50
Best 64.87 67.79 86.77
Mean 64.87 67.79 86.77
Worst 64.87 67.79 86.77

CPU times (sec) 9.83 20.73 48.28

Table 2: Computational results by the genetic algorithm
for (12)

n 30 40 50
Best 64.87 67.79 86.77
Mean 64.87 66.30 84.78
Worst 64.87 64.54 70.07

CPU times (sec) 47.86 52.93 69.14

Table 3: Computational results by the taboo search al-
gorithm with the strategic vibration for (13)

n 30 40 50
Best 0.7 0.5 0.7
Mean 0.7 0.5 0.7
Worst 0.7 0.5 0.7

CPU times (sec) 10.41 22.73 53.70

Table 4: Computational results by the genetic algorithm
for (13)

n 30 40 50
Best 0.7 0.5 0.7
Mean 0.7 0.5 0.64
Worst 0.7 0.5 0.5

CPU times (sec) 47.86 59.20 77.79

6 Conclusions and future researches

In this paper, we have proposed a new CFLP on the
plain with random demands. We have formulated the

Table 5: Computational results by the taboo search al-
gorithm with the strategic vibration for (14)

n 30 40 50
Best 45.86 48.20 58.96
Mean 45.86 48.20 58.96
Worst 45.86 48.20 58.96

CPU times (sec) 11.47 29.20 48.81

Table 6: Computational results by the genetic algorithm
for (14)

n 30 40 50
Best 45.86 48.20 58.96
Mean 45.66 47.23 56.27
Worst 44.85 44.85 50.10

CPU times (sec) 54.11 61.70 80.28

CFLP as a stochastic programming problem, and for find-
ing an optimal solution of the problem, the three deter-
ministic programming problems: expectation maximizing
problem, probability maximizing problem, and satisfy-
ing level maximizing problem are reformulated. Because
these problems are difficult to find a strict optimal so-
lution of the problem directly, we have shown that the
problems can be reformulated as 0-1 optimization prob-
lems. Since the combinatorial optimization problems are
NP-hard, we have proposed an efficient solution method
based upon the tabu search algorithm with the strategic
vibration by utilizing characteristics of the CFLPs. The
efficiency of the solution method is shown by applying to
several examples of the CFLPs.

These three reformulated deterministic programming
problems have the characteristic that the more the new
facilities can obtain BPs, the more their objective values
improve. However, if the CFLPs with random demands
are reformulated to deterministic programming problems
with considering risk, e.g. variance or VaR, these prob-
lems do not necessarily have such a characteristic. There-
fore, to propose an efficient solution method for the de-
terministic programming problems is a future study.
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