
 
 

 

  
Abstract— In this paper, a gas-kinetic solver is developed to 

solve Reynolds Averaged Navier-Stokes (RANS) equations in 
two-space dimensions generalized coordinates. The convection 
flux terms which appear on the left hand side of the RANS 
equations are discretized by a semi-discrete finite difference 
method. Then, the resulting inviscid flux functions are 
approximated by gas-kinetic BGK scheme which is based on the 
BGK model of the approximate collisional Boltzmann equation. 
The cell interface values required by the inviscid flux functions 
are reconstructed to second-order spatial accuracy via the 
MUSCL (Monotone Upstream-Centered Schemes for 
Conservation Laws) variable interpolation method coupled 
with a minmod limiter. As for the diffusion flux terms, they are 
discretized by a second-order central difference scheme. To 
account for the turbulence effect, a combined k-ε / k-ω SST 
(Shear-Stress Transport) two-equation turbulence model is 
used in the solver. An explicit-type time integration method 
known as the modified fourth-order Runge-Kutta method is 
used to march the solution to steady-state. Computation over 
the RAE2822 airfoil flow corresponding to transonic speed has 
been solved using the developed gas-kinetic solver. Accuracy of 
BGK scheme in solving viscous transonic turbulent flow over 
the airfoil will be examined. Results obtained from the 
computations are also compared with experimental data and 
will demonstrate that a very good agreement has been achieved. 
 

Index Terms—BGK scheme, compressible turbulent flow, 
finite difference method, high-order accuracy, transonic airfoil.  
 

I. INTRODUCTION 
  Throughout the history of computational fluid dynamics 
development, many numerical schemes have been created to 
solve practical application of gas dynamics. The key design 
criterion of any numerical schemes is to maximize robustness 
and accuracy. This requirement is particularly important in 
compressible flows involving high-speed flow where intense 
shock waves and boundary layers may simultaneously exist. 
Among those notable and successful are the Godunov-type 
and flux vector splitting schemes. Besides these numerical 
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schemes that stem from the discretization of the convective 
terms, the gas-kinetic schemes have attracted much attention 
in recent years due to their high robustness and accuracy.  

Recent developments have seen the emergence of another 
class of scheme known as the gas-kinetic schemes that are 
developed based on the Boltzmann equation [1], [2]. Mainly, 
there are two groups of gas-kinetic schemes and the 
difference lies within the type of Boltzmann equation use in 
the gas evolution stage. One of them is the well-known 
KFVS (Kinetic Flux Vector Splitting) scheme which is based 
on the collisionless Boltzmann equation and the other is 
based on the collisional BGK (Bhatnagaar-Gross-Krook) 
model [3] where the BGK scheme is derived. Like any other 
FVS method, the KFVS scheme is very diffusive and less 
accurate in comparison with the Roe-type FDS method. The 
diffusivity of the FVS schemes is mainly due to the particle 
or wave-free transport mechanism, which sets the CFL time 
step equal to particle collision time [4]. In order to reduce 
diffusivity, particle collisions have to be modeled and 
implemented into the gas evolution stage. One of the distinct 
approaches to take particle collision into consideration in gas 
evolution can be found in [1]. In this method, the collision 
effect is considered by the BGK model as an approximation 
of the collision integral in the Boltzmann equation. It is found 
that this gas-kinetic BGK scheme possesses accuracy that is 
superior to the flux vector splitting schemes and avoids the 
anomalies of FDS-type schemes [5]-[9].  

Turbulent flow motions occur in vast majority of fluid 
applications. To name a few: fluid flow in a pipe, flow 
processes in combustion chamber and even flow over an 
airfoil will exhibit a chaotic complex motion defined as 
turbulent flow. The most elegant solution to any turbulent 
flow is via the Direct Numerical Simulation (DNS) of 
turbulence. This approach is implemented by discretizing the 
Navier-Stokes equations with higher order accurate 
numerical scheme and solved using extremely fine grid mesh. 
An alternative approach to the DNS technique would be the 
adoption of Large Eddy Simulation (LES), which draws the 
advantages of the direct simulation of turbulence flows and 
the solution of the Reynolds averaged equations through 
closure assumptions. Although the popularity of DNS and 
LES have become noticeable [10]-[12] due to rapid 
development of high performance computing technology, the 
general trend of computing turbulent flows still remain with 
the solution of Reynolds-Averaged Navier-Stokes (RANS) 
equations with the inclusion of Reynolds stresses into the 
original full Navier-Stokes equations. Resolving the 
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turbulent flows via this means proved to be computationally 
cheaper [13], [14]. The closure equations that provide the 
additional Reynolds stresses in the RANS equations are 
calculated from turbulence models. 

In the present work, a flow solver based on the gas-kinetic 
BGK scheme is developed and tested. The BGK scheme is 
used to approximate the convective flux terms, while a 
second-order central scheme is used to discretize the 
diffusive flux terms of the RANS equations, coupled with a 
combined k-ε / k-ω SST two-equation turbulence model to 
provide the required Reynolds stresses to resolve the 
turbulent flow. The numerical solver is tested with a 
transonic flow over a RAE2822 airfoil according to the 
AGARD test case 9 in order to assess its computational 
capabilities. The computed results are compared with 
existing experimental data taken from [15] and demonstrated 
that a very good agreement is obtained. 

II. NUMERICAL METHODS 
The two-dimensional normalized Reynolds-averaged 

Navier-Stokes equations in the computational space can be 
written in strong conservation form as 
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With ρ, U, V, p and ε are the macroscopic density, 
x-component of velocity, the y-component of velocity, the 
pressure and total energy, respectively. While, τxx, τxy, τyy are 
the shear stress terms and qx, qy are the heat conduction terms 
along the x- and y-directions, respectively. A detailed 
description about the viscous shear stresses appearing in the 
above equations can be found in [16]. 

From the perspective of RANS computation, the viscosity 
μ in the stress terms and the term (μ / Pr) in the heat 
conduction terms are modeled as 
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where the subscripts l and t represent laminar and turbulent 
contributions, respectively. The parameter (Pr)t is called the 
turbulent Prandtl number and for air it is generally taken to be 
0.9 for wall bounded flows. The closure model chosen to 
yield the turbulent viscosity μt that appears in the RANS 
equations is the combined k-ε / k-ω SST two-equation 
turbulence model which is given as 
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where the production of turbulence Pk is defined as 
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The closure constants used in the preceding equations are 
outlined clearly in [17]. 

A standard BGK scheme is based on the collisional 
Boltzmann equation and it is written in two dimensions as [1] 
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where f is the real particle distribution function and g is the 
equilibrium state approached by f within a collision time 
scale τ. Both f and g are functions of space x, y; time t; 
particle velocity u, v; and internal degrees of freedom ς. The 
equilibrium state g in the 2D BGK model is the 
Maxwell-Boltzmann distribution function and it has the 
following form 

( )
( ) ( )2 2 22 2K
u U v V

g e
λ ςλρ

π

+
⎡ ⎤− − + − +⎢ ⎥⎣ ⎦⎛ ⎞= ⎜ ⎟

⎝ ⎠
 (7) 

where λ is a function of density and pressure, λ = ρ / 2p. ς is a 
K dimensional vector which accounts for the internal degrees 
of freedom such as molecular rotation, translation and 
vibration. The dimensional vector, K is related to the specific 
heat ratios and the space dimension by the relation K = (4 - 
2γ) / (γ - 1), where for a diatomic gas γ = 1.4. The relations 
between the densities of mass ρ, momentum (ρU,ρV), and 
total energy ε with the distribution function f are derived 
from the following moment relation 
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where dΞ = dudvdς is the volume element in the phase space 
while Ψ is the vector of moments given as 
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With the moment relation defined in (8), a similar approach 
could be adopted in obtaining the numerical fluxes across cell 
interfaces and they are given as 
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where Fx and Gy are the physical flux in the x- and 
y-direction, respectively. A general solution for f of (7) at the 
cell interface (xi+1/2, yj) in two dimensions is obtained as [7] 
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where φ = e-t/τ is an adaptive parameter. For a first-order 
scheme φ can be fixed in the numerical calculations. When 
the BGK scheme is extended to high-order, the value of φ 
should depend on the real flow situations. Finally, the 
gas-kinetic BGK numerical flux across the cell interface in 
the x-direction can be computed as 
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where Fe
x is the equilibrium flux function and Ff

x is the 
non-equilibrium or free stream flux function. Hence, the 
numerical flux for the BGK scheme at the cell interface in the 
x-direction are obtained from (12) as 
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While the numerical flux at the cell interface in the 
y-direction is obtained in a similar manner and the resulting 
relation is presented as 
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In extending the numerical scheme to high-order spatial 
accuracy, the MUSCL approach [18] is adopted together with 
the minmod limiter. Hence, the left and right states of the 
primitive variables ρ, U, V, p at a cell interface could be 
obtained through the non-linear reconstruction of the 
respective variables and are given as 
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where Q is a primitive variable and the subscript l, and r 
correspond to the left and right side of a considered cell 
interface. In addition, ΔQi+1/2,j = Qi+1,j – Qi,j. The minmod 
limiter used in the reconstruction of flow variables in (15) is 
given as 

( ) [ ]),1min(,0max),1mod(min Ω=Ω=Ωφ  (16) 
For the time integration of steady state problems, an 

explicit formulation is chosen for the current solver which 
utilizes a fourth-order Runge-Kutta method. Applying this 
method to the generalized two-dimensional RANS equations 
provides the following results 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

Δ−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂Δ

−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂Δ

−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂Δ

−=

=

+

)4(

,

)4(

,

)4(

,

)4(

,
,

1
,

)3(

,

)3(

,

)3(

,

)3(

,
,

)4(
,

)2(

,

)2(

,

)2(

,

)2(

,
,

)3(
,

)1(

,

)1(

,

)1(

,

)1(

,
,

)2(
,

,
)1(

,

2

3

4

ji

v

ji

v

jiji

n
ji

n
ji

ji

v

ji

v

jiji

n
jiji

ji

v

ji

v

jiji

n
jiji

ji

v

ji

v

jiji

n
jiji

n
jiji

GFGFtWW

GFGFtWW

GFGFtWW

GFGFtWW

WW

ηξηξ

ηξηξ

ηξηξ

ηξηξ  (17) 

III. RESULTS AND DISCUSSIONS 
The transonic flow over RAE2822 airfoil test case is 

selected in order to demonstrate the application of the 
developed BGK flow solver incorporated with a turbulence 
model (i.e. combined k-ε / k-ω SST). Extensive experimental 
data are available for this airfoil (i.e. [15], [19], [20]), thus 
making it an ideal test case for validating the computed 
results. 

In this test case, flow conditions corresponding to AGARD 
test case 9 are used, namely, Mach number M∞  = 0.73, 
Reynolds number Re∞ = 6.5x106 and angle of attack α =  
2.8o. The free stream conditions used for initializing the flow 
domain are specified as: density ρ ∞  = 1.486 kg/m3, 
temperature T∞ = 255.6 K and reference length L∞ = 0.3048 
m. A structure C-grid with dimensions of 369 by 65 is 
generated by an algebraic grid generation method and is 
shown in zoom in view in Fig. 1. As for the specification of 
conditions along the boundaries, the following are enforced: 
viscous wall boundary condition is applied at the airfoil 
surface; averaging boundary condition is used along the 
wake cut to provide continuous flow variables; free stream 
condition is applied at the outer boundary; the boundaries 
located on the right are applied with outflow condition where 
static pressure is fixed to the free stream pressure. 

The computed pressure contours are shown in Fig. 2, 
which predicts a shock-boundary layer interaction occurring 
at location about 60% of chord length on the upper surface of 
the airfoil. The computed pressure distribution is compared 
with the experimental data extracted from [15] in Fig. 3. The 
results illustrated in the figure show that the rooftop pressure 
is accurately resolved and the pressure recovery which 
occurs after the shock is well predicted with remarkable 
accuracy. However, the shock location is slightly predicted 
down stream in comparison to the experimental data. For 
viscous flow computation, it is always useful to examine how 
well the skin friction coefficient along the surface is resolved. 
Hence, the computed skin friction coefficient distribution 
along the airfoil surface is compared with experimental data 
from [15] in Fig. 4. The resolution of the skin friction 
coefficient on the upstream side of the shock location on the 
top side of the airfoil surface is predicted with great accuracy. 
In addition, the skin friction coefficient is slightly 
over-predicted in the region after the shock. No detailed 
comment can be made with regards to the skin friction 
coefficient on the bottom side of the airfoil surface because 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-7-5 IMECS 2009



 
 

 

there is just one experimental data point available in that 
region. 

IV. CONCLUSION 
A numerical solver based on the collisional BGK model of 

the Boltzmann equation has been successfully developed to 
simulate two-dimensional compressible turbulent flow based 
on the Reynolds-Averaged Navier-Stokes equations which 
utilizes a combined k-ε / k-ω SST turbulence model to 
provide the turbulent eddy viscosity.  A transonic flow over a 
RAE2822 airfoil is selected in the current study to asses the 
numerical capabilities of this solver in computing 
compressible turbulent flow. The computed results for this 
test case clearly demonstrate that the BGK scheme is able to 
provide an accurate resolution of the flow, good prediction of 
shock location and remarkable post shock recovery of flow 
variables. These claims are justified by comparisons of the 
numerical findings of the BGK scheme with existing 
experimental data via examining the relevant flow properties 
such as pressure contours, pressure coefficient and skin 
friction coefficient. 
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Fig. 1: RAE2822 airfoil computational mesh, 369 x 65. 

 
Fig. 2: Pressure contours near the RAE2822 transonic airfoil. 
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Fig. 3: Pressure coefficient distribution on the RAE2822 airfoil: BGK 
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Fig. 4: Skin friction coefficient distribution on the RAE2822 airfoil: BGK 
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