
 
 

 

  
Abstract—The three-dimensional incremental finite element 

formulation previously developed for the multiaxial behaviors 
of shape memory alloy devices by authors is extended to the 
geometrically nonlinear analysis and applied to the analyses on 
the superelastic behaviors of SMA devices. The calculated 
results are compared with the experimental results in the 
literature to illustrate the validity of the proposed 
computational modeling. It is expected that the present 
three-dimensional finite element tool will be useful to predict 
the superelastic behaviors of various shape memory alloy 
devices. 
 

Index Terms—Shape Memory Alloys, Finite Element Method, 
Structure Analysis, Superelasticity, Computational Mechanics. 
 

I. INTRODUCTION 
The shape memory alloys (abbreviated as SMAs) have 

been extensively studied as functional materials for a variety 
of applications, including medical, structural, and other 
advanced devices. The SMAs have the superelasticity (shape 
recovery by the unloading) as well as the shape memory 
effect (shape recovery by the heating). Elements which are 
formed out of these materials are typically subjected to 
multiaxial stress-states during their operation. The 
development of a computational tool to support the design 
process is necessary for the efficient development of the 
SMA devices with a complicated shape and mechanical 
characteristics. 

Since the discovery of the shape memory alloys in the 
1960s, researchers have been investigating both experimental 
aspects of their behaviors as well as their constitutive 
modeling. Auricchio [1], Lim and McDowell [2], Dettmer 
and Reese [3], Auricchio and Petrini [4], Pan, Thamburaja, 
and Chau [5], Reese and Christ [6] formulated the 
constitutive equations of the SMAs, some of which have 
been applied to the finite element analysis. However, the 
standard computational procedure has not yet been 
established. 

The authors proposed a method of finite element analysis 
for the multiaxial behaviors of SMA devices of three- 
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dimensional shape and experimentally verified the validity of 
the proposed method [7]. In the present study, the proposed 
method is extended to the geometrically nonlinear analysis 
and applied to the analyses on the superelastic behaviors of a 
SMA microtube, a SMA column, and a SMA stent. The 
calculated results are compared with the experimental results 
to show the validity of the proposed constitutive modeling. 

II. CONSTITUTIVE EQUATION OF THE SMAS 
The mechanical properties of the SMAs discussed in the 

present study are schematically shown in Fig. 1. Fig. 1(a) 
shows the superelastic behavior (bold line arrow) and the 
shape memory effect (dotted line arrow), while Fig. 1(b) is 
the relation between the critical transformation stresses and 
the temperature. The following notations are used in Fig. 1: 
σ ; the stress, ε ; the strain ; the temperature,  and 

; the critical stresses for finishing and starting martensite 
ansformation,  and ; the temperatures for finishing 

and starting martensite ansformation,  and ; the 
temperatures for starting and finishing enite 
transformation.  
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(a) Superelastic behavior and shape memory effect 
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(b) Critical stresses for transformation vs. temperature 
Fig. 1   Mechanical properties of shape memory alloys 
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The superelastic behavior as shown in Fig. 1(a) occurs, 
when the stress loading and unloading take place at the 
constant temperature higher than n Fig. 1(b).  and 

are the gradients of the critical stresses for starting and 
ing martensite transformation with respect to the 

erature, while  and  are the gradients of the 
critical stresses for starting and finishing austenite 
transformation with respect to the temperature. 

The formal extension of the one-dimensional stress-stain 
relation for the SMAs leads to the three-dimensional 
modeling as given by the following equations: 

 

fA  i
sMC

fMC  
finish
temp

sAC
fAC

{ } [ ]{ } { } { }θΩξεσ TD S ++=                                           (1) 

{ } ⎣ ⎦zxyzxyzyx
T τττσσσσ =                           (2) 

{ } ⎣ ⎦zxyzxyzyx
T γγγεεεε =                             (3) 

 
where the following notations are used: ; the stress 
vector, 

{ }σ
{ }ε ; the strain vector the stress-strain matrix, 

; the transformation vector
, [ ]D ; 

{ }Ω , Sξ ; the stress-induced 
martensite volume fraction, { }θ ; the thermal elastic 
coefficient and ; the temperature. 

The stress-strain matrix  is given by the following 
equation: 
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where E  and ν  are Young’s modulus and Poisson’s ratio, 
respectively. Young’s modulus E  is expressed by the 
following equation as a functio f the total martensite 
volume fraction 

n o
ξ : 

 
)( ama EEEE −+= ξ                                                       (5) 

 
where  and are Young’s modulus of the martensite 
phase and the austenite phase, respectively. 

The total martensite volume fraction

mE aE  

 ξ  is expressed as 
follows: 

 
TS ξξξ +=                                                                        (6) 

 
where  is the temperature-induced martensite (twinned 
mart ) volume fraction. 

Tξ
ensite ξ , Sξ , and are all functions 

of the temperature and the stresses. 
The transformation vector is expressed as follows, 

using the maximum residual n vector 

Tξ  

{ }Ω  
 strai { }Lε  and the 

residual strain direction matrix
 

 [ ]SR : 

{ } [ ][ ]{ }LSRD εΩ −=                                                         (7) 
 

The maximum residual strain vector { }Lε  is expressed as 
follows: 

 
{ } ⎣ ⎦LLLLLL

T
L γγγεεεε =                            (8) 

 
where  and are the maximum residual normal strain 
and the maximum residual shear strain, respectively. 

The residual strain direction matrix is given by the 
following equation expressed in t s of the stress 
components: 
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where 

eqσ  is von Mises equivalent stress. 

The thermo-elastic coefficient vector { }θ  is expressed as 
follows: 

 
{ } [ ]{ }αθ D−=                                                                 (10) 

 
where the thermal expansion coefficient vector { }α  is given 
as follows: 

 
{ } ⎣ ⎦000αααα =T                                     (11) 

 
Drucker-Prager equivalent stress is used instead of von 

Mises equivalent stress in the evolution equation for ξ , Sξ , 
and  in order to consider the asymmetric tensile and 
compressive behaviors. 

Details of the evolution equation for the martensite 
transformation process and the inverse austenite 
transformation process are given by Toi and Choi [7]. 

 

III. FINITE ELEMENT FORMULATIONS 
The stress-strain relation (1) is rewritten to the following 

incremental form of equation to formulate the incremental 
finite element procedure by the tangential stiffness method: 
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(12) 
where 
 

]                                                             (13) [ ] [ 1DD ∆ξ∆∆ =

[ ]{ } [ ]{ }σ∆ε∆ε∆ LSLS RR =                                             (14) 
 

Using DPσ∆ , ξ∆ , and Sξ∆  are expressed as follows: 
 

[ ]{ } TAA DP ∆σ∆σξ∆ 21 +=                                          (15) 
                                       (16) 

 
Substituting (15) and (16) into (12), the incremental 

stress-strain relation is expressed by the following equation: 
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where  and  are defined by the following equations: 
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Details of the finite element formulation described above 

are given by Toi and Choi [7]. 
The incremental relation between Green’s strains and 

nodal displacements is written in a matrix form as follows: 
 

{ } [ ]{ } [ ] [ ]( ){ }uBBuB L ∆∆ε∆ +== 0                              (20) 
 

where the following notations are used: [ ]B ; the strain-nodal 
displacement matrix, ; the strain-nodal displacement 
matrix without the initial displacement, ; the 
strain-nodal displacement matrix containing the initial 
displacement, ; the nodal displacement increment 
vector. 

The following element stiffness equation in an incremental 
form is obtained by the finite element formulation based on 
the total Lagrangian approach using the incremental 
constitutive equation (17). 
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The following symbols are used: ; the incremental 

stiffness matrix, 
 [ ]0K

[ ]LK ; the initial displacement matrix, 
[ ]GK ; the initial stress matrix ; the external force 
increment vector, 

, { }f∆
{ }Rf ; the unbalanced force vector, [ ]TD ; 

the superelastic stress-strain matrix ; the gradient matrix, , [ ]G
[ ]S ; the initial stress matrix, and ; the element volume. 
The three-dimensional, eight node isoparametric element is 
used in the analysis. 

 

IV. RESULTS OF FINITE ELEMENT ANALYSIS 

A. Multiaxial behavior of the SMA microtube 
In the present subsection, the calculated results for the 

SMA microtube (56.0Ni-44.0Ti (at. %)) under an axial force 
and torsion are compared with the experimental results given 
by Sun and Li [8].  

The material constants used in the analysis are shown in 
Table 1. The elastic constants of the austenite phase and the 
temperatures for the phase transformation in Table 1 are from 
the literature [8], while the other material constants have been 
determined so as to fit the constitutive equation proposed in 
the section II with the experimental results [8]. The 
temperature in the analysis is 23℃ which is higher than the 
temperature for finishing austenite transformation ).  

Fig. 2(a) shows the dimensions and th  
conditions of the SMA bar for the uniaxial tensile analysis. 

 
Table 1   Material constants of the SMA microtube  

                 (56.0Ni-44.0Ti (at. %))    (*: Reference [8]) 
30000 * 

 V

 (
fA

e boundary

)(MPaEa  

)(MPaEm  20000 
)/( CMPaC

sM °  5.7 
)/( CMPaC

fM °  5.7 
)/( CMPaC

sA °  8.5 
)/( CMPaC

fA °  36.0 

ν  0.3 

Moduli 

β  0.15 
)( CM f °  -67.6 * 
)( CM s °  -54.2 * 
)( CAs °  -3.26 * 

Transformatio
n Temperatures

17.4 * )( CA f °  

)(MPacr
sσ  0.0 Critical 

stresses 20.0 )(MPacr
fσ  

Lε  0.044 Maximum 
residual strains 0.044 Lγ  
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The numbers of elements and nodes are 16 and 45, 
respectively. The calculated and experimental stress-strain 
curves are shown in Fig. 3.  

Fig. 2(b) shows dimensions ( 5.0mm=L , 5mm.1=outD , 
mm2.1=inD

microtube for t
numbers of elem
The calculated and experim
shown in Fi
observed as in
is 23℃ which i

) and the boundary conditions of the SMA 
he torsional deformation analysis. The 

ents and nodes are 240 and 520, respectively. 
ental stress-strain curves are 

g. 4. The perfect superelastic behavior is 
 the uniaxial tensile analysis as the temperature 
s higher than . The agreement between the 

calculation and the experi  is not so good as in the 
uniaxial tensile analysis. In torsional analysis, the shear 
modulus for the austenite phase is assumed to be 18GPa 
referring Sun and Li [8], which does not correspond to the 
isotropi tion of the material (

fA
ment
 the 

G  
to 

c rela )1(2/ ν+= EG ). This is 
probably due to the effect of the anisotropy at the crystal 
scale as the specimen is very small. 

The boundary conditions for the tensile-torsional analysis 
are shown in Fig. 2(c). Fig. 5 shows the interaction curves of 
the critical stresses for martensite transformation given by the 
experiment of Sun and Li [8] and the model proposed in the 
present study. For comparison, von Mises equivalent stress 
curve is also shown with a bold line. Although the 
experimental results are only for the tensile side, it is 
observed that agreement between the model and the 
experiment is good when the normal stress is dominant. 
When the shear stress is dominant, there is about 30% 
difference at the maximum. This difference is probably due 
to the effect of anisotropy in small specimens [7]. 
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Fig. 2   Finite element models and boundary conditions 
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Fig. 3   Normal stress-normal strain curves of SMA bar     

under uniaxial tension 

B. Buckling behavior of the SMA column 
The buckling analysis of the SMA column (40.8Ni-49.3Ti- 

9.9Cu (at. %)) under compressive loading is conducted in the 
present subsection. The calculated result is compared with 
the experimental result of Urushiyama, Lewinnek, Qiu, and 
Tani [9]. 

The material constants used in the analysis are shown in 
Table 2. The elastic constants and the temperatures for the 
phase transformation in Table 2 are from the literature [9], 
while the other material constants have been determined so as 
to fit the constitutive equation proposed in the section II with 
the experimental results [9]. The temperature in the analysis 
is 22℃ which is lower than the temperature for finishing 
martensite transformation ( ). 

Fig. 5 shows the dimensi
fM

ons ( 50.0mm=L , mm0.5=D ) 
and the boundary conditions of the SMA column for the 
buckling analysis. The numbers of elements and nodes are 
1000 and 1717, respectively.  The SMA column model with 
the initial imperfections of 0.028mm is employed for the 
finite element analysis. The calculated and experimental 
load-displacement curves are shown in Fig. 7. Although the 
calculated result has all corresponded well with the 
experimental result, there is a large difference for the 
maximum buckling load (calculation = 14000N, experiment 
= 20000N). The difference is due to the fact that the buckling 
phenomenon is very sensitive to initial imperfection and the 
material constants. 
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Fig. 4   Shear stress-shear strain curves of SMA microtube 

under pure torsion 
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Fig. 5   Stress locus at the start of martensite transformation 
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Table 2   Material constants of the SMA column 
            (40.8Ni-49.3Ti-9.9Cu (at. %))   (*: Reference [9]) 
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Fig. 6   Finite element model and boundary condition              

for the SMA column 
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Fig. 7   Load-displacement curves of the SMA column      

under compressive loading 

C. Superelastic behavior of the SMA stent 
Stent is the technical word indicating self-expanding 

micro-structures, which are currently investigated for the 
treatment of hollow-organ or duct-system occlusions [10]. In 
the present subsection, the superelastic large deformation 
analysis of the SMA stent (Ni-Ti-10.0Cu (at. %)) being used 
for the medical engineering field is conducted. The 
calculated results are compared with the analytical results by 
the computational model of Auricchio and Taylor [10] which 
is employed in the commercial code ANSYS. 

The material constants used in the analysis are shown in 
Table 3. The elastic constant of the austenite phase, the 
material parameter β , and the temperatures for the phase 
transformation in Table 3 are from the literature [10], while 
the other material constants have been determined so as to fit 
the constitutive equation proposed in the section II with the 
experimental stress-strain curve [10]. 

A stent with a diamond pattern is given in Fig. 8 with 
dimensions ( mm35.01 =L , mm8.12 =L , mm28.03 =L , 

mm51.04 =L , °= 0.40θ , mm00.2=tinR , mm25.2=extR
of the SMA stent for ). Fig. 9 shows the boundary conditions 

the superelastic analysis. Due to the symmetry conditions, 
only one quarter of a diamond pattern need to be modeled. As 
output parameters, the axial load F and the displacement of 
node V are employed either in the axial direction or in the 
inward radial direction. The numbers of elements and nodes 
are 128 and 291, respectively. A loading-unloading history 
with a peak load of 50N is considered. Fig. 10 and 11 show 
the axial load-axial displacement curves and the axial 
load-radial displacement curves, respectively. Although the 
calculated results have all corresponded well with the 
analytical results by Auricchio and Taylor [10], there is a 
slight difference at the later stage of loading and the initial 
stage of unloading.  

 
Table 3   Material constants of the SMA stent 

                      (Ni-Ti-10.0Cu (at. %))   (*: Reference [10]) 
60000 * )(MPaEa  

)(MPaEm  20000 
)/( CMPaC

sM °  8.0 
)/( CMPaC

fM °  8.0 
)/( CMPaC

sA °  13.0 
)/( CMPaC

fA °  13.0 

ν  0.3 

Moduli 

β  0.15 * 
)( CM f °  T0-30.0 * 
)( CM s °  T0-44.6 * 
)( CAs °  T0-51.9 * 

Transformatio
n Temperatures

T0-64.9 * )( CA f °  

)(MPacr
sσ  100.0 Critical 

stresses 220.0 )(MPacr
fσ  

Lε  0.067 Maximum 
residual strains

Lγ  0.067 
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This difference is due to the fact that it is supposed that 
Young’s modulus of the austenite phase and martensite phase 
are equal in the modeling of Auricchio and Taylor [10] 
( ), while both moduli are assumed to be 
i  in the present formulation ( ).  

 

V. CONCLUSION 
The method of finite element analysis for the multiaxial 

behavior of SMA elements previously formulated by the 
authors [7] is extended to the geometrically nonlinear 
analysis in the present study. The present formulation has 
been applied to the superelastic behavior analyses for the 
SMA microtube, the SMA column, and the SMA stent. The 
calculated results have been compared with the experimental 
results. The present method is valid in practice as a 
computational procedure for the superelastic behavior of a 
SMA device. 

 

ma EE =
ndependent ma EE ≠

 

y

z

y

xθ

Rint

Rext

L1 L1L2

L3

L4

y

z

y

xθ

Rint

Rext

y

z

y

xθ

Rint

Rext

L1 L1L2

L3

L4

L1 L1L2

L3

L4

 
Fig. 8   Dimensions for the SMA stent 
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Fig. 9   Finite element model and boundary condition for the 
SMA stent 
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Fig. 10   Axial load-axial displacement curves 
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Fig. 11   Axial load-radial displacement curves 
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