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Abstract—This paper proposes a direct adaptive
backstepping control scheme for a class of multi-input-multi-
output nonlinear uncertain non-affine systems using output
recurrent wavelet neural networks (ORWNNs), called
DABCgrwnn. The proposed ORWNN combines the advantages
of wavelet-based neural network, fuzzy neural network (FNN),
and output feedback layer. For the tracking of nonlinear
non-affine systems with non-triangular form, we first transform
it into a strict-feedback-like form. Subsequently, the neural
network based backstepping controller is developed. The ideal
virtual controllers and actual controller are approximated by
ORWNNSs. In addition, a robust controller is designed to
compensate the approximated error of ORWNNSs. Based on the
Lyapunov approach, the adaptive laws and stability analysis of
closed-loop system is obtained. Finally, simulation results of
non-affine double-pendulums system is shown to demonstrate
the performance of our approaches.

Index Terms— Multiple-input-multiple-output, nonlinear
non-affine system, backstepping, wavelet neural network,
adaptive control, Lyapunov theorem

. INTRODUCTION

In this paper, the backstepping technique is used to design
adaptive controller for a class of MIMO nonlinear uncertain
non-affine systems. The backstepping technique provides a
systematic framework and recursive design methodology for
nonlinear systems [1, 4, 18]. The design procedure treats the
state variables as virtual control inputs; then, the virtual
controllers is designed step by step. Finally, the actual control
input can be obtained. It illustrates the stability by Lyapunov
stability theorem. However, the major constraint is that the
system functions must be exactly known. If the internal
uncertainty and external disturbance exist, then they may
result in an unstable system. Therefore, we propose an
output-recurrent wavelet neural network (ORWNN) system
to approximate the unknown functions to solve this problem.
Previous literatures developed fuzzy systems and neural
networks to approximate the unknown functions [1-4, 6, 20].
Many researchers have shown that using wavelet basis can
achieves superior performance in network size and learning
ability [6, 13, 24]. Therefore, wavelet functions are combined
with the fuzzy neural network to construct the wavelet based
neural network. In order to meet our requirement, the output
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feedback scheme is used to develop an output recurrent
wavelet neural network (ORWNN) [22-23].

Recently, newly neural network based backstepping
control schemes were proposed for nonlinear affine uncertain
systems [1, 4]. According to the idea of literatures [3, 8, 21],
the non-affine form system can be transferred into
strict-feedback-like form system, in which each subsystem
can be viewed as an affine-like system. Thus, there exists
stabilizing controller for this type of transforming system by
implicit function theorem [21, 30]. According to the results
of [3, 8, 21], the MIMO nonlinear, non-affine, and
non-triangular can be transferred into a like MIMO
strict-feedback-like system; therefore, it can simplify the
complexity of controller design, e.g.,, non-affine
double-pendulum system [28]. Besides, these ideas can also
cope with MIMO affine form systems. Literature [29]
proposed a NN-based controller to deal with the
state-feedback linearizable system, and two NNs to be used
to approximate two unknown functions, i.e., gain matrix
function and uncertain functions in system dynamic. The
direct adaptive backstepping control using output-recurrent
wavelet neural network, DABCorwin, 1S Proposed to deal with
a class of MIMO nonlinear uncertain non-affine systems. The
ORWNN:Ss are used to learn the ideal virtual controllers and
actual controller [23, 25-26]. A robust controller is designed
to attenuate effect of all the unmodeled dynamic, modeling
errors, and external disturbances on tracking error.
According to the Lyapunov stability approach, the adaptive
laws and stability of closed-loop system are guaranteed.

This paper is organized as follows. Section Il introduces
the problem formulation and the proposed output recurrent
wavelet neural network (ORWNN) system. The DABCorwnn
control schemes are introduced in Section Ill. Section IV
shows the simulation results of three-order non-affine system
in non-triangular form are shown to demonstrate the
performance of the proposed DABCorwnn. Finally,
conclusion is given.

I1.PRELIMINARIES
A. Problem Formulation
Consider the following MIMO nonlinear uncertain system
in state-space representation

x, =F (x,,x,,,d,), fori=1 ..., n-1
x,=F (x,,u,d)), (1)
y=Xx5
where x; =[x, X,;, ..., X,;]' €R", i=1 ..., n, are the
vector of denoting the states of system (1),

Fi (ii 9 Xi+1’ di ) = [Fl,i (ii,i 1 Xi,i+1‘ di,i )‘ I:Z,i (iz,i 1 X2,i+1’ dZ,i )’ e
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Foo(Xoi X d, )] €R™, i=1, ..., n-1, are smooth

vector function, u=[u,u,, ..

., U, " eR" is the control
input, y =[Y,,, Y. ---» Youl €R" is the system output,
d =[d,.d, ...d T.i=12 ..
bounded disturbance satisfying ||d,| < p, , in which || is the

, n, denotes the external

Euclidean norm and p, > 0. Herein, system state variables

are also assumed to be measurable and x=0 is an
equilibrium point. Throughout this study, the following
assumptions to are needed ensure the controllability of the
system (1).

Assumption 1: The inequalities aF"J’(X‘*i’X"i*% >0,
i, j+1

hold VX e ®', i=12, ... m-1j=1 ..., n-1.

Assumption 2: The inequality aF""(Xi’"’U)%u. >0, i=1, ...,

m, holds for all (X, u)eQ xR" with a controllability
region Q_, i.e.,

i =1, %R (K “%ul >0,i =2, (Ko s ”%ul >0,
OF, (X, ., u,u,) .
CLAE 2AJZ>O, and ---i=m,

aFm,n(ym,n’u "“’um’dm,n)
1 %u1>0’ e
aFm,n(i u ”’um'dm,n)
%um>0.

m,n? ~1? :
Assumption 3: The designed trajectory vector y, is smooth

and bounded.
The control objective is to design the control input u such
that the output y follows a desired trajectory vector y,. Our

proposed controller design method is based on the concept of
[3, 8, 21]. Herein, we extend the SISO non-affine nonlinear
system to MIMO non-affine nonlinear system in triangular
form. It can be represented as follows:

y? =F(y,y?, -,y u) @
where x =[x, x,, -, x,]=[y, y*, -, y""]eR", ueR’
and F is smooth vector function. The reference signal y,

and its time derivates yf,l), yfiz), SRR yf,")

be bounded. Define the tracking error as e, =y, —y and the
corresponding error vector as € = [el,eil), --~,e§”_1)] .

Herein, we rewrite (2)
y™” =F(x,u) = cu +{F(x,u) - Cu}iCu +H(x,u) (3)

(n-1)

are assumed to

where ¢ is a design constant and H(x,u)=F(x,u) —cu. The
feedback linearization control input of (4) can be determined
as
1
u= _(u fic ~ U + u. (4)
c

where u, is a control input to stabilize linearized dynamic,
u__ is an adaptive recurrent neural network (RNN) control

mn

signal designed to cancel H(x,u), and u, is an additional

robust control input to compensate the approximation error.
Substituting (4) into (3) yields
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vy =u, +{H(x,u)—u
We design u,, as
u, =y" +ke (6)
where k =[k, ---k,], substituting (4) and (6) into (3) and
yields

nd U ()

e"+ke"'+--+k =0 (7)
which implies that !jnge(t):o . This can be done by

choosing proper k so that all roots of the polynomial that
s"+k,-s""+..-k, =0 are located in the open left-half

plane. Thus, if H(x,u) is perfectly canceled by u,_,, i.e.,
H(x,u) =u,_ ,and u,_ =0, the closed-loop system is stable.

As the discussion above, a RNN controller should be
employed to approximate H(x,u). The inputs to the RNN

arexand u (u=u, —u,_ +u,_). Obviously, the output of

the RNN u . isdirectly fed into RNN to produce the control
input u . According to the implicit function theorem [21, 30],
there exists a set Q, < R" and unique u,, which is a

function of x and u,=wu, +u_, such that u (x,u,)

rc

satisfies for all (x,u,)eQ xR".

B. Output
(ORWNN)

In this paper, to achieve highly approximated accuracy and
speed up the convergence, the FNN is modified as a novel
wavelet-based NN. Herein, we combine the advantages of
FNN with wavelet functions to propose a four-layer output
recurrent wavelet neural network (ORWNN). The schematic
diagram is depicted in Fig. 1, in which z* denotes a unit time
delay. This ORWNN is composed of an input layer, a wavelet
layer, a hidden layer, an output layer, and a recurrent layer.

Unlike the Gaussian membership functions used in
conventional FNNs, wavelet functions are spatially localized.
Therefore, the learning of ORWNN is more efficient than
FNNs in function approximation. Herein, the Gaussian
membership functions are replaced by wavelet basis
functions, and the self-recurrent layer is replaced by output
recurrent layer. We indicate the signal propagation and the
function of every node in each layer.

Recurrent Wavelet Neural Network

Layer 1: Input layer & feedback layer
The inputs of this layer are the current network input
x(t) and past network output y(t-—1) with weighting

vectors 0, , where x=[x,X,, ..., X, ..., X, ' eR" ,m is the
input number. The output of this layer is

x, () =x(t)+6,y(t-1) ®)
where X, =[X, Xy oo Xy weny X, ] €R" and
.=, ...6, ...0.], m, denotes the number of

network output. It is clear that ORWNN contains the output
term y(t —1) which stores the past information of network.
Layer 2: Hidden layer 1 (Wavelet Layer)

Each node in this layer performs a wavelet function.
Herein, the Gaussian wavelet function (z)=cosaz exp (-2%/2)
is adopted as the activation function, where @ is the selected
frequency. Hence,
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X, —m X. —m. 1 x.—m ,
Hy (=) = cos(@- =) - exp[-— (= —=)'],

ik le Gik
k=12, .-, m (9
where m, and o, are the translations and dilation in the kth
term of the ith input X, to the node of the mother wavelet
layer, respectively.

Layer 3: Hidden layer 2
In this layer, each node calculates the product of all
input signals, i.e.,

V/k(xr’mkvcwer) = H Hics k=1,
-1

oMy, oy m T eR™,

., m, (10)

where m, =[m,, ..
6, =[o,, .... 0y, ..., 0, ] € R™ . Itcan be expressed in
a vector notation as

v(x.mo,0)=ly.v, - v,l eR™
where m=[m/ m;, ---, my, -, m e R"™ and

T qm<m,
o, ]eR"™.

(11)

T T T
6:[0-1 O-Z’ ERES O-k’ ceey

Layer 4: Output layer
Each node calculates the linear combination of input
variables. Therefore, the pth output is

yp = WlW(X’m’U’Wr) = Zwkp(//k’ p = 1’2’ T mo (12)
k=1

where w, denotes the connecting activated weight value of

the pth output associated with the kth layer. In vector
representation

y:[yll Yo ymu]T :wT"I (13)
According to the above introduction, the ORWNN has
adjustable parameters m, ¢, 0,, and w . The architecture

of ORWNN used in this paper is designed to have the
advantages of network with dynamic characteristics.

I11.  DIRECT ADAPTIVE ORWNNS CONTROL VIA
BACKSTEPPING DESIGN TECHNIQUE

Most of literatures using backstepping approach are
limited to the feedback linearizable nonlinear systems, i.e.,
the unknown nonlinearities must satisfy matching condition
[1-2, 26]. For nonlinear non-affine system, they are not valid.
As above discussion, we rewrite nonlinear non-affine system
(2) as follows affine-like form to simplify our design
approach

x, =H(x,x,,d)+x,,fori=1 -, n-1
x, =H, (X,,u,d )+u (14)
y=x,

where H, (), i=1,..., n are uncertain nonlinear functions.

Since the system dynamic functions may be unknown or
perturbed by external disturbance in practical application, the
ideal virtual controllers x i=12,---,n-1 and the ideal

actual control law u cannot be precisely obtained. Therefore,
the stability of the controlled system cannot be guaranteed.
The dynamic neural network- ORWNNs are adopted to
estimate the ideal virtual controllers and actual controller and
to ensure the stability of the controlled system despite the
existence of the uncertain system dynamic. The direct
adaptive backstepping control scheme employs ORWNNSs to

(i+1)d 1
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approximate the virtual controllers in each step. Finally, the
actual controller is obtained by ORWNN using backstepping
approach again. Thus, the ORWNN based adaptive
backstepping control laws are designed as

Xisd = X(i+1)d ORWNN) +u,, i:].,..., n-1 (15)
U = Ugpypy T U, (16)
where x i=1,..., n-1 and u are virtual and

(i+1)d (ORWNN) 1 ORWNN

actual controllers generated by ORWNNS, respectively. They
are used to learn the ideal controllers. Robust controllers, u,, ,
i=1,..., nare designed to compensate the approximated errors

of ORWNN controllers. Based on the universal
approximation theorem [5], there exists an optimal

approximation X, s oewany + 1=Li--or N-1 and w gy, Of
ORWNN such that

X, . =X, +g
(i+1)d (i+1)d (ORWNN) i

T e e ) 17)

=w vy (x,,m,c6,0 )+g, i=1 2, ---,n
* * *T * * * *
U =Wy TE =W v (x,,m,6,0 )+g (18)

where ¢, i=1, 2, ..., n denote approximation error vector;

w,m, 6,0, and y are optimal parameters of

and v  , respectively. From (13), the
ORWNNS’ output can be represented as

w, m, ¢, 0,

i(in)d(ORWNN) = VAVT‘i’ = VAVT\'|\I(I'I\1,8,9H§”) i=1,...,n-1 (19)

Uge = W'W(M,6,0,,X,) . (20)

The estimated error X, , i=1, 2, ---, n—1 and u satisfy

i(iﬂ)d = X(iia i(i+1)d

= Wi~T ‘|’: +& — (;‘(iﬂ)d(ORWNN) + uri) (21)
= qu ‘T’i + ‘TV.T‘i’. +£| _ul'l

and

u=u-u

= Wr;r ‘V; +&, - (ﬁORWNN +urn) (22)
= Wf;r {I..‘Iﬂ +6’:\’I\’ﬂ +£ﬂ _ul'n

where w=w' —-w and y=vy —y . The linearization

technique is employed to have the following Taylor
expansion of y

oy, | oy, |
v, ]| o o
‘/’/‘ a‘//2 a‘//z
y=|. *|=| om (m" -m)+| Oo (6" —0)
Vel oy, o,
o Dol
oy,
o0,
o7, A
+| 00, 0.-90,)+0,.
o,
0. |
L -le, =6,
Rewrite (23), it can be represented as
y=y m+y o+y, 0 +0, (24)
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ow, oy, ov, oy, 0w, Ow,

where =[—=—=2...—2], Y o Wk T

Volom om om0 Y e e e !
ey

4 =[al//1 W, . W””] , O, is the high-order term.
20, 00 o8,

Substituting (26) into (23) and (22), then we have the
estimated error of X, , i=12, ---, n—-1,and u are

Xima = Xa ~ X
- (W:TW:T +g) - (i(m)dwRWNN) +u,)
=, - v w8 w00 W (L
+yle" +yl8")+D, -u,
i=12 -, n-1, (25)
u=u-u
=Wy +€,) = (@opuy T )
=1, — v -y -y,

oW WL E g5y 80D, —u,

(26)

where D,, i=1, ---, n, are the uncertain terms and assumed

to be bounded by [D,|<5,i=12, -+, n; 5, are unknown

finite positive constant. Usually, &, cannot be obtained in

practical applications. Herein, however, an adaptive scheme
is used to estimate it. Therefore, the following theorem can
be obtained.

Theorem 1: Consider the MIMO nonlinear uncertain
non-affine system (14) satisfying Assumptions 1, 2, and 3.
The adaptive laws of the ORWNN backstepping controllers
are designed as

N et v L ) SO S WO S )
ﬁl(l) = _7mi‘|’m|‘;\vie| ! (28)
&(I) = _7/01'\|’o1'v,i'iei : (29)
05” = _7a,,\|’(si,)‘?viei' (30)

Where v, ¥us Ys Voo @nd y, , i=1 ---, n, are positive

adaptive parameters, and the robust controllers with an
adaptive bounded estimator are designed as follows

u, =—{e/] e, 5.

(31)

8 =7, lei=1 - n, (32)

where [] denotes the pseudo inverses and 3 is an on-line

estimated value of the uncertain term bounded. Hence, the
asymptotically convergence of tracking error and the system
stability can be guaranteed.
Proof: As the above discussion.

The control scheme using Theorem 1 is called
DABCorwnn- Figure 2 shows the configuration of
DABCorwnN-

IV. SIMULATION RESULTS

In this section, the simulation results of a non-affine
double-pendulums system (as shown in Fig. 3) are presented.
This illustration example shows the performances of our
proposed approaches. Consider the tracking control of two
degree-of-freedom double pendulums [28]. As shown in Fig.
3, the two rods in the vertical plane and two connecting joints
are derived by torque control. All frictional forces are
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ignored here. The following equations of motion can be
derived by

M.~ M, (0 =L (m +3m)d, + gl(m + 2m)sin(0)(0)
+21Lm,cos(0.() - 030
-2HLmE Osin@.0)-40)

M. () = Lm, 050, ()~ N0 ML G0

+%glzmzsin(ez(t))—%Illzmzéf(t)sin(ez(t)—¢9l(t))
(33)
where 6,(t) and 6,(t) are the generalized coordinates, and
M, (t), M, (t) are the torques acting on the connecting joints
of the rod 1 and rod 2. Then, equations in (33) can be
rewritten with respect to 6,(t) and 6,(t)
6,(t) = 1,(6,,6,)M,(6,(t),6,(t),u, (1)
+ f,M,(6,(t),6,(t),u, (V) + f,,(6,,6,,6,,
6,(t) = £,,(6,,6,)M,(6,(1),6, (1), u, (1))
+ f,,M,(6,(1),6,(t),u,(t) + f,,(6,,6,,6,,0,)

0.) (34

where
12

f.(6.6,) = 12 2 )

| [4m, +12m, —9m, cos® (6, - 6,)]
121, +18l, cos(®, — 6,

flz(guez) =72 22 : ( : 1) '

I1 Iz[gmz cos ((92 - 01)) - 4m1 712m2]
18cos(d, — 6,

f21(91!02) = 2 ( 2 1) )

I1,[9m, cos* (6, — 6,) — 4m, —12m,]
12m, +36m
fzz (91192) = : z

,’m,[4m, +12m, —9m, cos*(6, — 6,)]
N 181, cos(6, - 6,)
I1,’[4m, +12m, —9m, cos*(0, — 6))]
9gm,sin(26, - 6,)
,[15m, +8m, —9m, cos(26, — 26)]
9l,m,4?sin(26, - 26,)
~ 1[15m, +8m, —9m, cos(26, — 26,)]
. 121,m,?sin(6, - 6)
1,[15m, +8m, —9m, cos(26, — 26,)]
(25gm, +12gm,)sin(é,)
~ 1[15m, +8m, —9m, cos(26, — 26))]’
12107 sin(6, - 6,)(m, +3m,)
,[15m, +8m, —9m, cos(26, — 26)]
9l,m,d2sin(26, — 26))
~1[15m, +8m, —9m, cos(26, — 26,)]
9gsin(, —26))(m, +2m,)
- I,[15m, +8m, —9m, cos(26, — 26,)]
3gsin(é,)(m, +6m,)
,[15m, +8m, —9m, cos(26, —26,)]
The double pendulums system in (33) can be rewritten in
state-space representation, where x =[x x, x, x,]' is the

fla(elvévaz'éz) =

fza(elléwaz'éz) =

vector of measurable states, u =[u, u,]" is the vector control
inputs, and
f1(X1 u) = f11(X)M1(X1 u1) + f12 (X)MZ(X, uz) + f13(x)

(35)
f,(x,u) = £, (M, (x, u) + £, ()M, (x, u,) + F,5(x)
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where fj, i=1, 2, j =1 2,3 are well defined for all xeR".

Using the results of [28], the dynamic equations of motion
are

x] [o 1 0 ofx] [0 O
X,| |00 0 0fx, +1 O{fl(x,u)}
%, | [0 0 0 1|x,| |0 Of f,(xu)
%, [0 00 0fx,| |01
1000
Y0={5 ¢ 4 o}‘(t)' X(0) =x, (36)
where x=0,%=60,x=60,%x=0, , x=[xxxx] |,

u =[u, u,]" . Obviously, system (36) is nonlinear non-affine,

we cannot have the stabilizing controller by feedback
linearization approach. Herein, the control objective is to use
our adaptive backstepping controller such that the states
follow a designed bounded reference trajectory X, X,

asymptotically. The initial conditions is x, :[%,0,—%,

25 0
0] and the design parameter is k, :{ 0 25] the adaptive

parameter rates of DABCorwnn-2 are y, =15, y, =10,
Y =7,=09,7, =0.01. The network structure is selected

as [2 -8 -4 -2] and the initial value was set that w;; is 0, mj; is
[-1.5,-0.5,05,1.5], oy is 1.0,and g, is 0. The external

disturbance is D:%[sin(Zt) cos(2t)]" . The simulation

results of DABCorwnn-2 are shown in Figs. 4 and 5. State
trajectories are shown in Fig. 4 (solid line: actual outputs;
dashed line: reference trajectories). Figure 5 shows the
corresponding control forces and tracking errors. It can be
found that DABCorwin-2 approach performs well and has fast
stabilizing time (about 0.8 second).

V.CONCLUSION

This paper has successfully presented the DABCorwnn
control scheme for a class of MIMO nonlinear uncertain
non-affine systems in non-triangular form. In the DABCorwan
control systems, ORWNNSs were used to learn the ideal
virtual controllers and actual controller. In addition, the
robust controllers are designed to compensate the
approximated errors of ORWNNSs. According to the
Lyapunov stability approach, the adaptive laws of online
tuning parameters are obtained, and the stability of the
control system is guaranteed. To verify the effectiveness of
the proposed control scheme, numerical simulation of
non-affine double-pendulums system in non-triangular form
have been presented to illustrate the effectiveness and
performances of our approach.
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Figure 1: Schematic diagram of output recurrent wavelet neural network

_ (ORWNN).

~p
"/;2

— ‘ ‘ ‘ [ — Reference signal(x, )
0.5+ // \\ System output(x,)
50 \
/ . 7 N
= £ A
3 0 N\ /
AN / AN
-0.5+ 3
\,L!,/
4 . . . . . . . . .
0 1 2 3 4 5 6 7 8 9 10
t(sec)
X3
2 T T T T T T
— — — Reference signal(x,)
I System output(x,)
1H|
TN o
~ TS ~_
SN (RN // N
°t \\ // \\ |
\J// ¥‘,I
A . . | . . . . . .
0 1 2 3 4 5 6 8 9 10
t(sec)

Figure 4: Simulation results - State trajectories (dashed line: (X, X5y ) ;
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Figure 5: Simulation results- Control force and tracking errors.
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Figure 2: Direct adaptive ORWNNS control via backstepping control scheme (DABCorwnns)-
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