
 
 

 

  
Abstract—This paper proposes a direct adaptive 

backstepping control scheme for a class of multi-input-multi- 
output nonlinear uncertain non-affine systems using output 
recurrent wavelet neural networks (ORWNNs), called 
DABCORWNN. The proposed ORWNN combines the advantages 
of wavelet-based neural network, fuzzy neural network (FNN), 
and output feedback layer. For the tracking of nonlinear 
non-affine systems with non-triangular form, we first transform 
it into a strict-feedback-like form. Subsequently, the neural 
network based backstepping controller is developed. The ideal 
virtual controllers and actual controller are approximated by 
ORWNNs. In addition, a robust controller is designed to 
compensate the approximated error of ORWNNs. Based on the 
Lyapunov approach, the adaptive laws and stability analysis of 
closed-loop system is obtained. Finally, simulation results of 
non-affine double-pendulums system is shown to demonstrate 
the performance of our approaches.  

 
Index Terms— Multiple-input-multiple-output, nonlinear 

non-affine system, backstepping, wavelet neural network, 
adaptive control, Lyapunov theorem 
 

I. INTRODUCTION 
In this paper, the backstepping technique is used to design 

adaptive controller for a class of MIMO nonlinear uncertain 
non-affine systems. The backstepping technique provides a 
systematic framework and recursive design methodology for 
nonlinear systems [1, 4, 18]. The design procedure treats the 
state variables as virtual control inputs; then, the virtual 
controllers is designed step by step. Finally, the actual control 
input can be obtained. It illustrates the stability by Lyapunov 
stability theorem. However, the major constraint is that the 
system functions must be exactly known. If the internal 
uncertainty and external disturbance exist, then they may 
result in an unstable system. Therefore, we propose an 
output-recurrent wavelet neural network (ORWNN) system 
to approximate the unknown functions to solve this problem. 
Previous literatures developed fuzzy systems and neural 
networks to approximate the unknown functions [1-4, 6, 20]. 
Many researchers have shown that using wavelet basis can 
achieves superior performance in network size and learning 
ability [6, 13, 24]. Therefore, wavelet functions are combined 
with the fuzzy neural network to construct the wavelet based 
neural network. In order to meet our requirement, the output 

 
This work was supported in part by the National Science Council, 

Taiwan, R.O.C., under contracts NSC-95-2221-E-155-068-MY2. 
Ching-Hung Lee is with Department of Electrical Engineering, Yuan-Ze 

University, Chung-li, Taoyuan 320, Taiwan. (phone: +886-3-4638800, ext: 
7119; fax: +886-3-4639355, e-mail: chlee@saturn.yzu.edu.tw). 

 

feedback scheme is used to develop an output recurrent 
wavelet neural network (ORWNN) [22-23].  

Recently, newly neural network based backstepping 
control schemes were proposed for nonlinear affine uncertain 
systems [1, 4]. According to the idea of literatures [3, 8, 21], 
the non-affine form system can be transferred into 
strict-feedback-like form system, in which each subsystem 
can be viewed as an affine-like system. Thus, there exists 
stabilizing controller for this type of transforming system by 
implicit function theorem [21, 30]. According to the results 
of [3, 8, 21], the MIMO nonlinear, non-affine, and 
non-triangular can be transferred into a like MIMO 
strict-feedback-like system; therefore, it can simplify the 
complexity of controller design, e.g., non-affine 
double-pendulum system [28]. Besides, these ideas can also 
cope with MIMO affine form systems. Literature [29] 
proposed a NN-based controller to deal with the 
state-feedback linearizable system, and two NNs to be used 
to approximate two unknown functions, i.e., gain matrix 
function and uncertain functions in system dynamic. The 
direct adaptive backstepping control using output-recurrent 
wavelet neural network, DABCORWNN, is proposed to deal with 
a class of MIMO nonlinear uncertain non-affine systems. The 
ORWNNs are used to learn the ideal virtual controllers and 
actual controller [23, 25-26]. A robust controller is designed 
to attenuate effect of all the unmodeled dynamic, modeling 
errors, and external disturbances on tracking error. 
According to the Lyapunov stability approach, the adaptive 
laws and stability of closed-loop system are guaranteed. 

This paper is organized as follows. Section II introduces 
the problem formulation and the proposed output recurrent 
wavelet neural network (ORWNN) system. The DABCORWNN 
control schemes are introduced in Section III. Section IV 
shows the simulation results of three-order non-affine system 
in non-triangular form are shown to demonstrate the 
performance of the proposed DABCORWNN. Finally, 
conclusion is given. 

 
II. PRELIMINARIES 

A. Problem Formulation 
Consider the following MIMO nonlinear uncertain system 

in state-space representation      
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where ,  ,  ,1  ,]  ,   ,,[ ,,2,1 nixxx mT
imiii KK =ℜ∈=x  are the 

vector of denoting the states of system (1), 
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mT

imimimim dxxF ℜ∈+  ,1  ,   ,1 −= ni K are smooth 

vector function, mT
muuu ℜ∈= ]  ,  ,,[ 21 Ku  is the control 

input, mT
myyy ℜ∈= ]  ,  ,,[ 1,1,21,1 Ky  is the system output, 

,  ,   ,2,1 ,]  ,   ,,[ ,,2,1 niddd T
imiii KK ==d  denotes the external 

bounded disturbance satisfying ii ρ≤d , in which ⋅  is the 
Euclidean norm and 0>iρ . Herein, system state variables 
are also assumed to be measurable and 0x =  is an 
equilibrium point. Throughout this study, the following 
assumptions to are needed ensure the controllability of the 
system (1).  
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Assumption 3: The designed trajectory vector dy  is smooth 
and bounded.  

The control objective is to design the control input u such 
that the output y follows a desired trajectory vector dy . Our 
proposed controller design method is based on the concept of 
[3, 8, 21]. Herein, we extend the SISO non-affine nonlinear 
system to MIMO non-affine nonlinear system in triangular 
form. It can be represented as follows:  

) ,  ,  , ,( )1()1()( uyyyFy −= nn L       (2) 
where nn

n ℜ∈== − ] ,  ,  ,[],   , ,[ )1()1(
21 yyyxxxx LL , nℜ∈u  

and F  is smooth vector function. The reference signal dy  

and its time derivates )()2()1(  ,  ,  , n
ddd yyy L  are assumed to 

be bounded. Define the tracking error as yye d −=1  and the 

corresponding error vector as ] ,  , ,[ )1(
1

)1(
11

−= neeee L . 
Herein, we rewrite (2)  

    ),(}),({),()( uxHuuuxFuuxFy +=−+==
Δ

cccn   (3) 

where c is a design constant and uuxFuxH c−=
Δ

),(),( . The 
feedback linearization control input of (4) can be determined 
as  

    )(1
rcrnnflcc

uuuu +−=            (4) 

where flcu  is a control input to stabilize linearized dynamic, 

rnnu  is an adaptive recurrent neural network (RNN) control 
signal designed to cancel ),( uxH , and rcu  is an additional 
robust control input to compensate the approximation error.  
Substituting (4) into (3) yields  

     .}),({)(
rcrnnflc

n uuuxHuy +−+=                            (5)  
We design flcu  as  

keyu d += )(n
flc                 (6) 

where ][ 1kkk Ln= , substituting (4) and (6) into (3) and 
yields  

01
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n
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which implies that 0)(lim =
∞>−

t
t

e . This can be done by 

choosing proper k so that all roots of the polynomial that 
0)1(

1 =+⋅+ −
n

nn ksks L  are located in the open left-half 
plane. Thus, if ),( uxH  is perfectly canceled by rnnu , i.e., 

rnnuuxH =),( , and 0=rcu , the closed-loop system is stable.  
As the discussion above, a RNN controller should be 
employed to approximate ),( uxH . The inputs to the RNN 
are x and u rcrnnflc uuuu +−=( ). Obviously, the output of 
the RNN rnnu  is directly fed into RNN to produce the control 
input u . According to the implicit function theorem [21, 30], 
there exists a set n

x ℜ⊂Ω  and unique *
rnnu  which is a 

function of x  and rcflc uuu +=α , such that ),(*
αuxurnn  

satisfies for all n
x R×Ω∈),( αux . 

 
B. Output Recurrent Wavelet Neural Network 
(ORWNN)  

In this paper, to achieve highly approximated accuracy and 
speed up the convergence, the FNN is modified as a novel 
wavelet-based NN. Herein, we combine the advantages of 
FNN with wavelet functions to propose a four-layer output 
recurrent wavelet neural network (ORWNN). The schematic 
diagram is depicted in Fig. 1, in which z-1 denotes a unit time 
delay. This ORWNN is composed of an input layer, a wavelet 
layer, a hidden layer, an output layer, and a recurrent layer.  

Unlike the Gaussian membership functions used in 
conventional FNNs, wavelet functions are spatially localized. 
Therefore, the learning of ORWNN is more efficient than 
FNNs in function approximation. Herein, the Gaussian 
membership functions are replaced by wavelet basis 
functions, and the self-recurrent layer is replaced by output 
recurrent layer. We indicate the signal propagation and the 
function of every node in each layer.  

 
Layer 1: Input layer & feedback layer 

The inputs of this layer are the current network input 
)(tx  and past network output )1( −ty  with weighting 

vectors rθ , where mT
mi xxxx ℜ∈= ]  ,  ,  ,  , ,[ 21 KKx ,m is the 

input number. The output of this layer is 
)1()()( −+= ttt yθxx rr          (8)  

where mT
rmrirr xxxx ℜ∈= ]  ,   , ,   ,  ,[ 21 KKrx  and 

]  ,   ,  ,   ,[ 1 rmrir θθθ KK=rθ , mo denotes the number of 
network output. It is clear that ORWNN contains the output 
term )1( −ty  which stores the past information of network.  
Layer 2: Hidden layer 1 (Wavelet Layer) 

Each node in this layer performs a wavelet function. 
Herein, the Gaussian wavelet function μ(z)=cosωz exp (-z2/2) 
is adopted as the activation function, where ω  is the selected 
frequency. Hence, 
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where ikm  and ikσ  are the translations and dilation in the kth 
term of the ith input rix  to the node of the mother wavelet 
layer, respectively.  
 
Layer 3: Hidden layer 2 

In this layer, each node calculates the product of all 
input signals, i.e.,    
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Layer 4: Output layer 

Each node calculates the linear combination of input 
variables. Therefore, the pth output is 
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where kpw  denotes the connecting activated weight value of 
the pth output associated with the kth layer. In vector 
representation  

ψwy TT
mp o

yyy == ] ,  , ,  ,[ 1 LL                              (13) 
According to the above introduction, the ORWNN has 
adjustable parameters m , σ , rθ , and w . The architecture 
of ORWNN used in this paper is designed to have the 
advantages of network with dynamic characteristics.  

 
III.  DIRECT ADAPTIVE ORWNNS CONTROL VIA 

BACKSTEPPING DESIGN TECHNIQUE  
Most of literatures using backstepping approach are 

limited to the feedback linearizable nonlinear systems, i.e., 
the unknown nonlinearities must satisfy matching condition 
[1-2, 26]. For nonlinear non-affine system, they are not valid. 
As above discussion, we rewrite nonlinear non-affine system 
(2) as follows affine-like form to simplify our design 
approach     
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where )(⋅iH , i=1,…, n are uncertain nonlinear functions.  
Since the system dynamic functions may be unknown or 

perturbed by external disturbance in practical application, the 
ideal virtual controllers ,)1( di+x  1 , ,2 ,1 −= ni L  and the ideal 
actual control law u  cannot be precisely obtained. Therefore, 
the stability of the controlled system cannot be guaranteed. 
The dynamic neural network- ORWNNs are adopted to 
estimate the ideal virtual controllers and actual controller and 
to ensure the stability of the controlled system despite the 
existence of the uncertain system dynamic. The direct 
adaptive backstepping control scheme employs ORWNNs to 

approximate the virtual controllers in each step. Finally, the 
actual controller is obtained by ORWNN using backstepping 
approach again. Thus, the ORWNN based adaptive 
backstepping control laws are designed as 

rididi uxx += ++ (ORWNN))1()1( ˆ , i=1,…, n-1                    (15) 

rnuuu += ORWNNˆ                     (16) 
where (ORWNN))1(ˆ di+x , i=1,…, n-1 and ORWNNû  are virtual and 
actual controllers generated by ORWNNs, respectively. They 
are used to learn the ideal controllers. Robust controllers, riu , 
i=1,…, n are designed to compensate the approximated errors 
of ORWNN controllers. Based on the universal 
approximation theorem [5], there exists an optimal 
approximation *
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where nii   ,  ,2  ,1  , L=ε  denote approximation error vector; 

,  ,  ,  , ****
rθσmw  and *ψ  are optimal parameters of 

,  ,  ,  , rθσmw  and *ψ , respectively. From (13), the 
ORWNNs’ output can be represented as  
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where www ˆ~ * −=  and ψψψ ˆ~ * −= . The linearization 
technique is employed to have the following Taylor 
expansion of ψ~  
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Rewrite (23), it can be represented as  
 rr Oθψσψmψψ +++=

~~~~ TTT
m rθσ          (24) 
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Substituting (26) into (23) and (22), then we have the 
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where  ,  ,  ,1  , nii L=D  are the uncertain terms and assumed 
to be bounded by ;   ,  ,2,1 , niii L=≤ δD iδ  are unknown 
finite positive constant. Usually, iδ  cannot be obtained in 
practical applications. Herein, however, an adaptive scheme 
is used to estimate it.  Therefore, the following theorem can 
be obtained. 
Theorem 1: Consider the MIMO nonlinear uncertain 
non-affine system (14) satisfying Assumptions 1, 2, and 3. 
The adaptive laws of the ORWNN backstepping controllers 
are designed as  
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where ni

ir nimii   ,  ,1  ,  and  ,  ,  ,  ,
,

L=γθσ γγγγγ w , are positive 
adaptive parameters, and the robust controllers with an 
adaptive bounded estimator are designed as follows 

,ˆ][ ii
T
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where [ ]+⋅  denotes the pseudo inverses and iδ̂  is an on-line 
estimated value of the uncertain term bounded. Hence, the 
asymptotically convergence of tracking error and the system 
stability can be guaranteed.   
Proof: As the above discussion.  

The control scheme using Theorem 1 is called 
DABCORWNN. Figure 2 shows the configuration of 
DABCORWNN.  

 
IV. SIMULATION RESULTS 

In this section, the simulation results of a non-affine 
double-pendulums system (as shown in Fig. 3) are presented. 
This illustration example shows the performances of our 
proposed approaches. Consider the tracking control of two 
degree-of-freedom double pendulums [28]. As shown in Fig. 
3, the two rods in the vertical plane and two connecting joints 
are derived by torque control. All frictional forces are 

ignored here. The following equations of motion can be 
derived by  
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where )(1 tθ  and )(2 tθ  are the generalized coordinates, and 

)( ),( 21 tMtM  are the torques acting on the connecting joints 
of the rod 1 and rod 2. Then, equations in (33) can be 
rewritten with respect to )(1 tθ&&  and )(2 tθ&&&  

),,,())(),(),((

))(),(),((),()(

),,,())(),(),((

))(),(),((),()(

212123221222

121121212

212113221212

121121111

θθθθθθ

θθθθθ

θθθθθθ

θθθθθ

&&

&&

&&

&&

ftuttMf

tuttMft

ftuttMf

tuttMft

++

=

++

=

  (34) 

where  

.
)]22cos(9815[

)6)(sin(3 

)]22cos(9815[
)2)(2sin(9 

)]22cos(9815[
)22sin(9 

)]22cos(9815[
)3)(sin(12),,,(

,
)]22cos(9815[

)sin()1215( 

)]22cos(9815[
)sin(12  

)]22cos(9815[
)22sin(9

)]22cos(9815[
)2sin(9),,,(

,
)](cos9124[

)cos(18
)](cos9124[

3612),(

,
]124)(cos9[

)cos(18),(

,
]124))((cos9[

)cos(1812),(

,
)](cos9124[

12),(

122121

212

122121

2112

122121

12
2
222

122121

2112
2

1
2

1
221123

122121

112

122121

12
2
222

122121

12
2

121

122121

122
221113

12
2

221
2

21

122

12
2

2212
2

2

21
2122

2112
2

221

12
2121

2112
2

22
2

1

1212
2112

12
2

221
2

1
2111

θθ
θ

θθ
θθ

θθ
θθθ

θθ
θθθθθθθ

θθ
θ

θθ
θθθ

θθ
θθθ

θθ
θθθθθθ

θθ
θθ

θθ
θθ

θθ
θθθθ

θθ
θθθθ

θθ
θθ

−−+
+

+

−−+
+−

−

−−+
−

−

−−+
+−

=

−−+
+

−

−−+
−

+

−−+
−

−

−−+
−

=

−−+
−

+

−−+
+

=

−−−
−

=

−−−
−+

=

−−+
=

mmml
mmg

mmml
mmg

mmml
ml

mmml
mmlf

mmml
gmgm
mmml

ml

mmml
ml

mmml
gmf

mmmll
l

mmmml
mmf

mmmll
f

mmmll
llf

mmml
f

&

&
&&

&

&

&&

 

The double pendulums system in (33) can be rewritten in 
state-space representation, where Txxxx ]   [ 4321=x  is the 
vector of measurable states, T

21 ] [ uu=u  is the vector control 
inputs, and  
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where fij, i=1, 2, 3 ,2 ,1=j  are well defined for all 4ℜ∈x .  
Using the results of [28], the dynamic equations of motion 

are  
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where 24231211  , , , θθθθ && ==== xxxx , Txxxx ]   [ 4321=x , 
Tuu ] [ 21=u . Obviously, system (36) is nonlinear non-affine, 

we cannot have the stabilizing controller by feedback 
linearization approach. Herein, the control objective is to use 
our adaptive backstepping controller such that the states 
follow a designed bounded reference trajectory dd xx 31   ,  

asymptotically. The initial conditions is ,
18

 ,0 ,
18

[0

ππ
−=x  

]0  and the design parameter is ⎥
⎦

⎤
⎢
⎣

⎡
=

250
025

1k , the adaptive 

parameter rates of DABCORWNN-2 are 15=δγ ,  ,10=wγ  
01.0 ,9.0

rm === θσ γγγ . The network structure is selected 
as [2 -8 -4 -2] and the initial value was set that wij is 0, mij is 
[-1.5,-0.5,0.5,1.5], σij is 1.0,and 

ijrθ  is 0. The external 

disturbance is Ttt )]2cos(  )2[sin(
2
1D = . The simulation 

results of DABCORWNN-2 are shown in Figs. 4 and 5. State 
trajectories are shown in Fig. 4 (solid line: actual outputs; 
dashed line: reference trajectories). Figure 5 shows the 
corresponding control forces and tracking errors. It can be 
found that DABCORWNN-2 approach performs well and has fast 
stabilizing time (about 0.8 second).  

 
V. CONCLUSION 

This paper has successfully presented the DABCORWNN 
control scheme for a class of MIMO nonlinear uncertain 
non-affine systems in non-triangular form. In the DABCORWNN 
control systems, ORWNNs were used to learn the ideal 
virtual controllers and actual controller. In addition, the 
robust controllers are designed to compensate the 
approximated errors of ORWNNs. According to the 
Lyapunov stability approach, the adaptive laws of online 
tuning parameters are obtained, and the stability of the 
control system is guaranteed. To verify the effectiveness of 
the proposed control scheme, numerical simulation of 
non-affine double-pendulums system in non-triangular form 
have been presented to illustrate the effectiveness and 
performances of our approach. 
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Figure 1: Schematic diagram of output recurrent wavelet neural network 

(ORWNN). 

 
Figure 3: Double pendulums system [28]. 
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Figure 4: Simulation results - State trajectories (dashed line: ) ,( 31 dd xx ; 

solid line: DABCORWNN-2). 
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Figure 5: Simulation results- Control force and tracking errors. 
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Figure 2: Direct adaptive ORWNNs control via backstepping control scheme (DABCORWNNs).
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