
 
 

 

  
Abstract— Different from significant gene expression 

analysis which looks for all genes that are differentially 
regulated, feature selection in prognostic gene expression 
analysis aims at finding a subset of informative marker genes 
that are discriminative for prediction. Unfortunately feature 
selection in the literature of microarray study is predominated 
by the simple heuristic univariate gene filter paradigm that 
selects differentially expressed genes according to their 
statistical significance. Since the univariate approach does not 
take into account the correlated or interactive structure among 
the genes, classifiers built on genes so selected can be less 
accurate. More advanced approaches based on multivariate 
models have to be considered. Here, we introduce a feature 
ranking method through forward orthogonal search to assist 
prognostic gene selection. Application to published gene-lists 
selected by univariate models shows that the feature space can 
be largely reduced while achieving improved testing 
performances. Our results indicate that “significant” features 
selected using the gene-wised approaches can contain irrelevant 
genes that only serve to complicate model building. 
Multivariate feature ranking can help to reduce feature 
redundancy and to select highly informative prognostic marker 
genes. 
 
 

Index Terms— feature selection; tumor; clinical outcome 
prediction; microarray gene expression data 
 

I. INTRODUCTION 
  Similar to significant gene expression analysis, one 
demanding challenge in prognostic microarray experiments 
in cancer studies is the development of a powerful prognostic 
profile based on informative genes or features selected from a 
large pool of candidate genes measured on a small number of 
arrays or samples [1]. Among the thousands of genes 
measured in an experiment, it is anticipated that only a 
limited number of genes are informative for prognostic 
purposes while a large number of genes are redundant or 
irrelative and thus can be ignored. Inclusion of uninformative 
genes for tumor outcome prediction only introduces 
unnecessary noise and will inevitably complicate model 
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building and introduces computational difficulties. Obtaining 
a smaller subset of representative genes while retaining the 
prognostic characteristics of the original data should lead to a 
more accurate and efficient learning system with improved 
classification performance [2]. Furthermore, for prognostic 
purpose, predictive expression profiles built upon limited 
number of genes are more useful in practice because their 
expression levels can be easily measured using economic 
techniques, for example, the quantitative real-time PCR.    

Different from significant gene expression analysis which 
looks for all genes that are differentially regulated, feature 
selection in prognostic gene expression analysis aims at 
finding a subset of informative marker genes that are 
discriminative for prediction, ideally without redundancy. 
Ein-Dor et al. [3] reported that the set of outcome predictive 
genes is not unique due to the existence of multiple genes that 
are correlated with the clinical outcomes and some of them 
may have only small differences in their correlations. Such a 
context represents the hitting-set problem in finding the 
smallest set of features (hitting set) that encompass or 
characterizes all the classes [4]. The difficulty in this context 
is the exponential search space created by all the possible 
genes or markers to be considered.  

In the literature of prognostic microarray study, feature 
selection is predominated by the simple heuristic univariate 
gene filtering paradigm [1]. Since the univariate approach 
does not take into account the correlated or interactive 
structure among the genes, classifiers built on genes so 
selected can be less accurate. More advanced approaches 
based on multivariate models have been considered, among 
them the variance-based dimension reduction [5,6]. In this 
paper, we introduce a feature ranking method through 
forward orthogonal search and apply it to published 
gene-lists selected by univariate models in prognostic 
microarray analysis. Example application of the method 
shows that the predictive feature space can be largely reduced 
while achieving improved testing performances.       
  

II. METHODS 
In a microarray experiment with the expression levels of n 

measured genes for N samples, we use jix ,  ( =i 1, 2, …, N; 

=j 1, 2, …, n) to represent each measurement point in the 
data space. Suppose the genes have been filtered to remove 
irrelevant genes using a gene filtering method (for example, a 
simple univariate statistic) and obtain a list of m potential 
genes (the feature space) for prediction purpose. Our 
objective here is to find a subset of informative marker genes 
or features of size d (d ≤ m) for predicting the outcomes of a 
testing sample. As mentioned above, the selected subset of 
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genes should characterize the major features of the overall 
feature space. For that purpose, we start with calculating the 
squared-correlation coefficient for two vectors sx  and tx , 

∈ts, {1, 2, ……, m}, each representing one feature in the 
feature space,  
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We calculate the squared-correlation coefficients for all 

combinations of s and t . For each gene (for example j), we 
obtain the mean of the squared-correlation with all the genes 

as ∑ =
=
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mean is then selected as the first most representative gene.  
To select the second gene, each of the unselected genes 

indicated as j is orthogonalized to the selected gene using the 
Gram-Schmidt algorithm with the orthogonalization of the 
first gene 1z  equaling to 1x .   
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Now we repeat the procedure for selecting the first gene by 
calculating the squared-correlation coefficient between each 
of the unselected genes j but using its orthogonalization and 
each of the n original genes, ),( )2(2

js zxr  and then obtain its 

mean as ∑ =
=

n
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n
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 We select the gene with the highest mean as the second 
gene. 

Likewise, in order to select the kth gene, each of the 
unselected genes j is orthogonalized to the k-1 selected genes 
as 
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We calculate the squared-correlation coefficient between the 
unselected gene j and each of the n original genes as 

),( )(2 k
js zxr  and the mean of its correlation, 
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  The kth gene is selected as the gene with the highest 
mean. The process is repeated until all the genes are selected 
and meanwhile ranked.  

With the above procedure, the most representative genes 
that account for the variation of the overall features with the 
highest percentage can be selected. The data vector for each 
gene or feature can be approximated by a linear combination 
of the selected subset of features of size d (d ≤ m). Following 
Korenberg et al. [7], we can calculate the error reduction ratio 
(ERR) as a measurement for accounting for the variation in 
gene j by the kth gene ( ,1=k  2, …, d) in the selected feature 
subset,  
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The mean percentage of variation in the overall features or 
genes that are accounted for by gene k can be calculated as 
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Finally, the accumulated percentage of variation in the 
overall features or genes that are accounted for by the subset 
of d selected genes can be calculated as 
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SERR  serves as a measurement for the performance of the 
selected subset of genes and for setting up a threshold for 
defining the subset of genes to be selected to sufficiently 
represent the overall features.  

All calculations are done under the free R programming 
environment for statistical computing. 

 

III. RESULTS 
A.  Ovarian cancer survival data 

The method is first applied to a microarray study on cancer 
survival from Spentzos et al. [8] who reported prognostic 
significance of gene expression profiling in survival of 
epithelial ovarian cancer in a sample of 68 patients using 
Affymetrix U95A2 array containing approximately 12,000 
genes. Their study identified a 115-gene signature that 
predicted patients with unfavorable and favorable survival 
outcomes at a significance level of p=0.004.  

 
Fig. 1. The ranked (solid bar) and the accumulated (empty dot) ERR  
for the top genes from the 115-gene signature reported by Spentzos 
et al. [8].  

Since the development of the 115-gene signature was 
based on a gene-wised testing approach, we think that the 
selected feature set could contain highly correlated or 
redundant genes that can be removed by our proposed 
method. After applying our method, we obtain Figure 1 
showing the ranked and the accumulated ERR  for the top 
rank genes.  

Surprisingly the number one rank gene is already 
responsible for 65% of the total variation in the overall gene 
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set. The SERR  for the top 3 genes can even explain about 
80% of the total variation in the 115 genes. In order to 
examine the performance of the top rank genes, we follow the 
same way of dividing the samples for training and testing, i.e. 
34 samples for training and 34 for testing using exactly the 
same samples in each group as did in the original study. We 
also adopt the step-wised strategy by Spentzos et al. [8] for 
training the model. That is we first train a classifier based on 
the extreme samples (shortest survivors without censoring 
and longest survivors, 9 for each) to classify the remaining 
training samples in the middle into favorable and unfavorable 
groups. Then the whole training set together with their group 
membership is used to train the final model. For convenience, 
we build our classifier with the support vector machines 
(SVM) using the free R package e1071. In Figure 2, we show 
the SVM probability for favorable survival for each sample 
predicted by our classifier using the top 3 genes (2a) and the 
Kaplan-Meier survival curves for the predicted favorable and 
unfavorable groups using a cut-off for SVM probability of 
0.5 (2b). We can see that the long survivors (most of them 
censored; indicated by empty circles) are plotted on top and 
short survivors (most of them dead; indicated by solid 
circles) to the bottom of Figure 2a. As a result, we observe a 
remarkable difference in the survival distribution of the two 
groups in Figure 2b. Statistical test on differential survival 
between the two groups gives a χ2 of 10.65 with 1 degree of 
freedom which amounts to a p value of 0.001 which is in 
contrast to 0.004 in the original study.  

 
B.  Breast cancer metastasis data 

A 70-gene signature was reported by van’t Veer et al. [9] 
for predicting breast cancer metastasis within 5 years with 
high accuracy using a 25K chip with 60-mer oligonucleotides 
from Rosetta. The same data was re-analyzed by Thomassen 
et al. [10] using similar training (61 samples: 31 metastasis 
and 30 non-metastasis) and testing (180 samples: 42 
metastasis and 138 non-metastasis) sets as in original study 
but using SVM as classifier obtaining a sensitivity of 83% 
and a specificity of 60%. The 70-gene signature was 
developed using gene-wised correlation between single gene 
expression and metastasis outcomes. Similar to example 1, 
feature redundancy reduction can be conducted and 
improvement in prediction anticipated. We display the 
ranked and the accumulated ERR  for the top rank genes from 
the 70-gene signature in Figure 3. Different from Figure 1, 
there is no gene with extreme contribution to the total 
variation. However, with the top 15 genes included in the 
feature subset (accounting for about 72% of the total 
variation), we achieve a sensitivity of 71% and a specificity 
of 74% when the trained SVM classifier using 61 training 
samples is applied to the testing set of 180 samples (Figure 
4). Note that the above testing accuracy is based on setting 
the cut-off for SVM probability of metastasis to 0.5. We see 
in Figure 4 that one can easily push down the threshold to 
achieve a higher sensitivity while still maintain an acceptable 
specificity. When the cut-off is moved down to 0.45, a higher 
sensitivity of 86% can be reached without sacrificing so 
much for specificity (a lower specificity of 64%) which is an 
obvious improvement in both sensitivity and specificity in 
comparison with the results obtained using the full set of 70 
genes [10]. 

   
(a) 

 
(b) 

 
Fig. 2. Performance of the top 3 genes shown by the SVM 
probability for favorable survival for each sample (2a, solid circle 
for uncensored and empty circle for censored) and the Kaplan-Meier 
survival curves for the predicted favorable (solid line) and 
unfavorable (dashed line) groups using a cut-off for SVM 
probability of 0.5 (2b). 

IV. DISCUSSIONS 
We have shown that our unsupervised learning algorithm 

can be applied for feature ranking and feature redundancy 
reduction in prognostic studies of tumor clinical outcomes 
using the array-based technology. The method can be used to 
remove correlated genes that are with low impact on 
classification so that, as shown by the two examples, 
improved performance on an independent testing set can be 
expected. Our results indicate that “significant” features 
selected using the gene-wised approaches can contain 
irrelative or redundant genes that serve only to complicate 
model building for a classifier. Here we emphasis the 
difference between significant and prognostic gene 
expression analyses because the former looks for all genes 
significantly regulated (including correlated genes 
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co-expressed in a biological pathway) while the latter, on the 
other hand, tries to extract only informative and highly 
representative gene markers to characterize the outcomes.  

 
Fig. 3. The ranked (solid bar) and the accumulated (empty dot) ERR  
for the top genes from the 70-gene signature reported by van’t Veer 
et al. [9].  

 
Fig. 4. SVM probability for metastasis predicted for each of the 180 
samples in the testing set using the 15 selected top rank genes.   

Our proposed feature ranking and feature reduction 
method is an unsupervised approach by nature. By 
unsupervised feature ranking, all genes in the feature space 
are ordered according to their ability in representing the 
original nature or explaining the total variation in the overall 
data. This means that one is not expected to apply this method 
for feature selection from the large number of genes 
measured in a microarray experiment because the major 
variation in the whole data may not be predominated by the 
outcome status and its related expression profiles. For 
practical application, we suggest first find all genes that are 

significantly correlated with tumor outcome status including 
both dependently and independently regulated genes and 
then use the proposed method to remove significant genes but 
with low impact.        

Feature redundancy reduction not only helps to improve 
performance and generalization of the classifier, it is also 
advantageous for clinical applications. As mentioned in the 
beginning, clinical use of the confirmed subset of highly 
representative and prognostic genes can be made possible by 
engaging economic methods such as quantitative real time 
PCR (qrt-PCR) technology which can be used as a routine 
bioinstrumentation for gene expression level measurement 
[11]. Implementation of such methods will certainly help to 
develop more efficient and individualized treatment strategy 
to improve survival of cancer patients.  
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