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Abstract—This paper presents a new kind of models
defined as 1|rj , r

1
t , C|∑ Cj, which covers a wide range

of models in a real-time system such as periodic, ape-
riodic and sporadic task models. We provide a semi-
online algorithm AOPT for such a model with a rea-
sonable assumption. In its worst-case analysis, we
demonstrate that the lower bound of the competi-
tive ratio by AOPT equals to 1.5387 while the upper
bound is 1.57, which gives rise to a narrow gap of
0.0313. In addition, we generate and utilize a novel
proving technique in the process of upper bound anal-
ysis, the essence of which is to transform an arbitrary
instance to the one with a computable performance
ratio. Through such process, we argue that the intro-
duction of some future information will improve the
performance of an algorithm.

Keywords: scheduling, semi-online algorithm, worst-

case analysis, competitive ratio, real-time system

1 Introduction

One of the functions of a multitasking computer operat-
ing system is to schedule the time that the CPU devotes
to the different programs that have to be executed [1]. We
focus on our attention in this paper to the uniprocessor
scheduling. The real-time system, A, is modeled as being
comprised of a number of concurrent tasks (or threads)
that are featured by several parameters. Each task τi

gives rise to a series of jobs that are to be executed on a
single processor. Each job j is characterized by (rj , pj)
where rj means the release time of job j and pj equals
to the processing time of such a job. Usually, a system
can be classified into periodic system, aperiodic system or
sporadic system. We show that no matter which system
it is, the competitive ratio of instances in C by the semi-
online algorithm AOPT we designed is between 1.5387
and 1.57.

Great progress has been made in over 10 years. [2]
purposes an optimal online algorithm D-SPT for a sin-
gle machine problem with a 2−competitiveness in 1996.
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[3] presents a naive greedy algorithm in computer sci-
ence background which always schedules the heaviest
job is known to be 2-competitive in 2000. [4] presents
an optimal online algorithm for another single machine
problem with a 1.618−competitiveness in 2000. [5] de-
signs an optimal online algorithm for packet schedul-
ing with agreeable deadlines. Their research background
lies in IP-based Qos networks and the algorithm has
a φ−competitive ratio. [6] discuss the online competi-
tive algorithms for maximizing weighted throughput of
unit jobs and gives a random algorithm which is ap-
proximately 1.582-competitive. The latest result is from
[7] who gives a semi-online algorithm α-PSNR which is
1.707-competitive.

In Section 2, we first introduce some models in a back-
ground of computer science and show that they can be
deduced into a single machine scheduling problem. Then
we purpose a new semi-online algorithm AOPT in Section
3 and present the basic assumption of the instance-space
C. Afterwards, in Section 4 we mainly demonstrate the
lower bound of such algorithm is 1.5387 and utilize a novel
technique to show that the upper bound of AOPT is 1.57.
All efforts show the power of future information, which
improves the best existing result of 2 in [2] and 1.7071 in
[7]. Finally, we provide the conclusion in Section 5.

2 Preliminaries

In a real time system A, a basic assumption of any de-
terministic algorithm is that all information is known to
the scheduler in advance. However, the practical situa-
tion always breaks this assumption. In most cases, we
could only have the knowledge of past and current infor-
mation about jobs. We name such algorithm by online
algorithm. Nevertheless, with the increasing demand of
performance of an algorithm, a new kind of algorithm
called semi-online algorithm appears. Since the informa-
tion of semi-online algorithm is more than online one, we
intuitively have an idea that the performance of semi-
online algorithm should be ‘better’ than that of online
algorithm.

We are now ready to give the definition of the concept
of ‘φ-competitive’ and ‘competitive ratio’, which both de-
scribe the performance of an online or semi-online algo-
rithm in a worst-case view.
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Definition 1. Let A be an online or semi-online algo-
rithm. For any instance I in the whole instance-space I,
let ϕ be the schedule by A, and π be the optimal sched-
ule which might be unknown due to the NP -hardness of
the problem. Suppose that f(·) is the objective function.
Then the competitive ratio ρ holds that

ρ = max
I∈I

{
f(ϕ(I))
f(π(I))

}
.

Moreover, if there is a φ satisfying f(ϕ(I)) ≤ φ · f(π(I))
for any instance I ∈ I, then the algorithm A is φ-
competitive. Obviously, ρ ≤ φ.

According to [6], a system is schedulable with respect to
a specified scheduling policy if it will meet all its tim-
ing requirements when executed on its target platform
with that scheduling policy. Also, [6] defines the concept
of sustainability, which is the subset of schedulable sys-
tems. These notions are well-understood in the real time
systems community. Different task models place different
restrictions on the parameters of the sequences of jobs.
Most popular models are listed as follows: periodic task
models specifying that successive jobs arrive at an exact
pre-specified time, aperiodic task models specifying that
successive jobs arrive at an unfixed time, and sporadic
task models specifying a minimum temporal separation
between the arrivals of successive jobs of a task.

Theorem 1. For any instance I in a real time system
A, no matter it is schedulable, sustainable, periodic, ape-
riodic, sporadic or not, I could be regarded as an instance
in a single machine scheduling problem [1].

For ease of discussion, some assumptions will be placed on
the problems. In literatures, [6] and [8] assume that the
jobs are all unit jobs because of the metered-task model .
[9] purposes the assumption of decreasing size jobs which
means pj+1 ≤ pj for rj+1 ≥ rj . [7] raises the assumption
that the next release time r1

t , min {rj |rj > t} is known
in advance. In this paper, we also give an assumption
with respect to the notion of C with an Ωt which describes
the available job set where all jobs released no later than
t and haven’t been scheduled yet.

Assumption 1. Assume that instance-space C is con-
structed as follows. For any instance I ∈ C, if we define
p(j) as the minimum processing time job in Ωrj and sj as
the starting time of p(j) , then there must be an integer k
such that

1 + α <
C̃(j)

r1
t

< +∞ , 1 ≤ j ≤ k

1 6 C̃(j)

r1
t

6 1 + α , j > k

where C̃(j) represents the virtual completion time of p(j),
ie., C̃(j) = rj + pj for all 1 ≤ j ≤ k while C̃(j) = sj + pj

for all j > k. And α ∈ [0.5, 1) is a parameter of the
algorithm A.

3 System Model and Algorithm AOPT

The basic model of 1|rj |
∑

Cj can be found in [1]. Al-
though the optimal algorithm for 1|rj |

∑
Cj is SPT [10]

when jobs all arrive at the identical time, literature [11]
shows such problem is strongly NP-hard when all jobs
arrive arbitrarily.

In this paper, we discuss an extended model of
1|rj , r

1
t ,C|∑Cj , which means the next release time r1

t

is known in advance and the instance-space C fits the as-
sumption 1. Afterwards, we provide a new semi-online
algorithm AOPT as follows.

ALGORITHM AOPT (Almost-Optimal)
STEP 0. If the machine is idle and a job is available

at time t, determine available job set Ωt,
j = arg min {pj |j ∈ Ωt} and r1

t ;
Otherwise, wait until the machine is idle

and a job is available.
STEP 1. If r1

t < +∞, then
STEP 1A. if t + pj ≤ (1 + α)r1

t ,

schedule job j
and let Ωt = Ωt − {j}.

STEP 1B. if t + pj > (1 + α)r1
t ,

go to STEP 0.
STEP 2. Go to STEP 0.

Intuitively, the algorithm whose scheduled jobs are more
than others could be ’better’ than others. For instance,
we know that the optimal online-algorithm D-SPT [2]
has ρ = 2. Moreover, Chao [7] shows that α-PSNR semi-
online algorithm owns 1.5387 ≤ ρ ≤ 1 +

√
2 ≈ 1.7071,

which improves the result of [2]. We conjecture our algo-
rithm AOPT is better than both [2] and [7]. We further
demonstrate our conjecture in the following section 4.

4 Worst-case Analysis of AOPT

We will prove that AOPT has worst-case ratio no less
than 1.5387 and no more than 1.57. In our proof, we
work with a worst-case analysis in which the worst-case
has and only has one contiguously processing block.

It is trivial to set r1 = 0. Since I ∈ C, it is obvious
that the jobs, no matter the number of them is finite or
infinite, will be scheduled in a continuously processing
block by AOPT. Thus, we obtain the following lemma.

Lemma 1. For any instance I ∈ C, it consists of a single
block1 by AOPT.

4.1 Lower Bound Analysis

Theorem 2 (Lower Bound). For the system model
1|rj , r

1
t |

∑
Cj, the lower bound of the competitive ratio

ρ by any semi-online algorithm A is 1.5387.
1A single block: it starts with a nonnegative period of idle time

after which all jobs are executed contiguously.
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Proof. In order to demonstrate the conclusion, we con-
struct two kinds of instances for any semi-online algo-
rithm A with r1

t to attain a large enough lower bound of
ρ.

Assume that both kinds are in accordance with the con-
dition that the number of jobs is no less than 2 and
rj+1 = r2(1 + rj) ie. rj+1 = r2(r

j
2−1)

r2−1 where j ∈ N. Since
for any time t, it meets that t ∈ [rj , rj+1) and either the
job will be scheduled at time t or else with regards to any
A.

1. If ∃j ∈ N such that t ∈ [rj , rj+1) is the earliest start-
ing time according to any fixed algorithm and the
scheduled job is a unit processing time job. We have
known the next release time r1

t = rj+1 at time t.
So we create a new release time rj+1 + ε and n zero
processing time jobs at that time. Thus, we have
C(ϕ) = (n+1)(t+1) and C(ψ) = (n+1)(rj+1+ε)+1.
Let the number of zero jobs reaches positive infin-
ity meanwhile the increment ε reaches positive zero.
Then, we can get that

C(φ)
C(ψ) = lim

n→+∞
lim

ε→0+

(n+1)(t+1)
(n+1)(rj+1+ε)+1

> lim
n→+∞

lim
ε→0+

(rj+1)

(rj+1+ε)+ 1
n+1

> rj+1
rj+1

= 1
r2

(1)

2. If no job is scheduled at time t ∈ [rj , rj+1) for any
j ∈ N, it means that the first scheduled job will be
processed at t ∈ [rn,+∞). Suppose there are n unit
processing time jobs. We have that

C(φ)
C(ψ) = nt+

n(n+1)
2

n(n+1)
2

= 1 + 2t
n+1

≥ 1 + 2rn

n+1

= 1 + 2
n+1 ·

r2(r
n−1
2 −1)

r2−1 .

(2)

According to the definition of ρ, it must be ρ ≥
max {(1), (2)}, which achieves its maximum when (1)
equals to (2). Considering the discreteness of n, we solve
this equation by a numerical way. Thus, we obtain the so-
lution of n = 4 and r2 ≈ 0.6499. Therefore, we show that
one lower bound of competitive ratio ρ of any semi-online
algorithm A with r1

t equals to 1/r2 ≈ 1.5387.

4.2 Upper Bound Analysis

Due to the NP-hardness of this problem in [11], it is al-
most impossible to attain an optimal schedule without
global information. We introduce the optimal preemp-
tive schedule ψ to substitute with optimal schedule π.
Let C(ϕ) define the total completion time of schedule ϕ,
C(π) define that of schedule π and C(ψ) define that of
schedule ψ. It is easy to know C(ϕ)

C(π) ≤ C(ϕ)
C(ψ) and thus

ρ ≤ max
I∈C

{
C(ϕ)
C(ψ)

}
. Furthermore, any schedule is depen-

dent on the information of the given instance I. Actually,
ϕ = ϕ(I), π = π(I) and ψ = ψ(I).

Suppose the starting time of the block is denoted as v1.
It is certain that there is some job j0 such that v1 = rj0 .
In the following discussion, we show that any instance in
C can be concluded into a kind of instances which satisfy
v1 = rn. Let Block define the contiguously processing
block. Obviously, Block is combined with three kinds of
jobs S− ,S and S+, ie. Block = S−

⋃
S

⋃
S+ where

S− = {j|rj < v1, j ∈ Block} ,
S = {j|rj = v1, j ∈ Block} ,
S+ = {j|rj > v1, j ∈ Block} .

For ease of exposition, we define S0
+ as jobs with zero pro-

cessing time2 in S+. Similarly, S0 represents jobs with
zero processing time in S. Apparently, S− does not con-
tain any jobs with zero processing time, otherwise it will
break the rules of algorithm AOPT. Let Block0 define
the jobs with zero processing time in any instance, ie.
Block0 = S0

⋃
S0

+.

Lemma 2. For any instance I ∈ C, if |S0| ≥ 2 there
must be a job j ∈ Block0. Let I ′ = I − {j}. We have
that C(ϕ)

C(ψ) ≤ max
{

C(ϕ′)
C(ψ′) , 1 + α

}
.

Proof. Since Block0 = S0
⋃

S0
+, a job j ∈ Block0 means

that either j ∈ S0 or j ∈ S0
+. We will show that under

any circumstances the inequality holds.

j ∈ S0: Since |S0| ≥ 2, the removal of job j ∈ S0 will
not dismiss the time rj = r1

t during the time period
between rj−1 and rj . That is to say the new schedule
ϕ′ will not change regardless of job j. Therefore, it
holds that C(ϕ)

C(ψ) = C(ϕ′)+rj

C(ψ′)+rj
≤ max

{
C(ϕ′)
C(ψ′) , 1

}
for

j ∈ S0.

j ∈ S0
+: Since pj = 0, there must be an ‘immediate pre-
decessor’ job κ ∈ Block such that Cκ = sj +0 = Cj .
According to AOPT, Cκ = sκ + pκ ≤ (1+α)r1

sκ
and

r1
sκ
≤ rj . Thus, we get that Cj

rj
≤ (1+α)rj

rj
= 1 + α.

Therefore, C(ϕ)
C(ψ) ≤ max

{
C(ϕ′)
C(ψ′) , 1 + α

}
for j ∈ S0

+.

In summary, C(ϕ)
C(ψ) ≤ max

{
C(ϕ′)
C(ψ′) , 1 + α

}
and ϕ′ does not

change regardless of job j under any circumstances.

After recursively applying lemma 2 to a timely updated
instance I, we could get an instance I ′ in which ei-
ther S = {j|pj = 0, rj = v1} where |S| = 1 or S =

2We allow rj+1 = rj . Otherwise, there is no zero processing
time job.
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{j|pj > 0, rj = v1} where |S| ≥ 1. Moreover, |S0
+| = 0

means S+ has no zero processing time jobs.

Without loss of generality, suppose S+ 6= ∅. De-
fine rmax as the latest release time of all jobs, ie.
rmax = max {rj} = max {rj |j ∈ S+} > v1. Let Send

+ ,
{j ∈ S+|rj = rmax}, which means jobs in S+ with lat-
est release time. For rmax, there is a job κ such that
sκ < rmax ≤ Cκ. Classify Send

+ with two kinds of
jobs Slong

+ and Sshort
+ , where Slong

+ =
{
j ∈ Send

+ |pj ≥ pκ

}
and Sshort

+ =
{
j ∈ Send

+ |pj < pκ

}
. It is obvious that

Sshort
+

⋃
Slong

+ = Send
+ ⊂ S+.

Lemma 3. For any instance I ∈ C, if there is a job
j ∈ Slong

+ , reduce rj to rκ and let I ′ be the instance after
reduction. We get that C(ϕ)

C(ψ) ≤ C(ϕ′)
C(ψ′) .

Proof. According to the definition of Slong
+ , it stands that

pj ≥ pκ for all j ∈ Slong
+ . Thus t+pj > (1+α)r1

t for time
period rκ ≤ t < sκ. It illustrates that if job j reduces
its release time rj to rκ it will never be scheduled during
rκ ≤ t < sκ. Job κ also satisfies sκ + pκ ≤ (1 + α)r1

sκ

which means job κ is the job with minimal processing
time in Ωsκ

. Hence, it holds that ϕ = ϕ′ which could
deduce C(ϕ) = C(ϕ′).

Since the reduction of release time will not increase the
total completion time C(ψ) of the optimal preemptive
schedule ψ. We have C(ψ) ≥ C(ψ′).

Therefore, it holds that C(ϕ)
C(ψ) ≤ C(ϕ′)

C(ψ′) .

Lemma 4. Given that I ∈ C whose Slong
+ = ∅, for any

job j ∈ S+ change the processing time of j from pj to
pj + δ, where δ ∈ {δ−, δ+}, δ− = −min

{
pj |j ∈ Send

+

}
and δ+ = pκ − max

{
pj |j ∈ Send

+

}
. Let ϕ(δ) and ψ(δ)

be the objective value of AOPT and optimal preemp-
tive algorithm respectively. Then we obtain that C(ϕ)

C(ψ) ≤
max

{
C(ϕ(δ−))
C(ψ(δ−)) ,

C(ϕ(δ+))
C(ψ(δ+))

}
.

Proof. Since Slong
+ = ∅, we know that 0 ≤ pj + δ ≤ pκ

for all j ∈ Send
+ . Moreover, the schedule of jobs after

the latest release time rmax will remain the same due to
the same increments of the processing time. Therefore,
ϕ = ϕ(δ) and the objective value C(ϕ(δ)) of schedule
ϕ(δ) is a linear function with variant δ.

With regards to the optimal preemptive schedule ψ, the
number of jobs being preempted by j will increase (de-
crease) with the decrease (increase) of the processing time
of job j, which means the objective value of schedule ψ
is a piecewise linear concave function with variant δ.

According to proposition (1) in appendix, we have C(ϕ)
C(ψ) ≤

max
{

C(ϕ(δ−))
C(ψ(δ−)) ,

C(ϕ(δ+))
C(ψ(δ+))

}
.

Define I1 ∈ C as an arbitrary instance whose S+ = ∅
and |S| ≥ 2 with pj > 0 for all j ∈ S. Rear-
range the indexes of jobs in S by {jq(S)}|S|q=1. Let
Subk be the k-th contiguously processing sub-
block in S illustrated in Figure 1, ie. Subk =
{jm(S), ..., jm+t(S)|m ≤ q ≤ m + t− 1, Cjq(S) = sjq+1(S)

}
.

Suppose that there are totally K sub-blocks of Subk.
Denote s(Subk) = sjm(S) = min {sj |j ∈ Subk} as the
earliest starting time of sub-block Subq for k = 1, ..., K.

0t t

...

1
Sub

K
Sub

1 1
v s Sub

...

K
s Sub

...

r

Figure 1: The structure of set S

For the instance I1, it can be concluded from S+ = ∅ that
v1 = rmax. The reduction of release time from rjq(S) to
rκ has no influence on the original schedule ϕ. Since the
processing time remains, we know that C(ϕ) = C(ϕ′).
Similar to the proof of lemma 4, the objective value of ψ′

will not increase since the release time is reduced, which
means C(ψ) ≥ C(ψ′). Hence, we have lemma 5.

Lemma 5. For any instance I1 ∈ C, if there exists a job
κ ∈ S− with Cκ = s(SubK) then reduce the release time
of all jobs in SubK from v1 to rκ (rκ < v1). Let I

′
1 be the

new instance. We have C(ϕ)
C(ψ) ≤ C(ϕ′)

C(ψ′) .

In the following content, we only discuss instances whose
S+ is an empty set and S owns one sub-block namely
Sub1(S) in which all processing time is positive. Here we
define a class of instances as I2, which must satisfy I2 ∈ C
and I2 = S−

⋃
S where S = Sub1(S).

Similar to lemma 4, we give lemma 6 without proof.

Lemma 6. For any instance I2 ∈ C, if |S| ≥ 2
define the immediate successor job after S by ja =
{j ∈ S−|sj = C(Sub1)}. Let δ− = −min

{
pj |j ∈ S0

}
and δ+ = pa − max

{
pj |j ∈ S0

}
. For any j ∈ S0

set pj = pj + δ where δ ∈ {δ−, δ+}. Let I
′
2 be the

new instance after such modification. We have C(ϕ)
C(ψ) ≤

max
{

C(ϕ(δ−))
C(ψ(δ−)) ,

C(ϕ(δ+))
C(ψ(δ+))

}
.

Here we reformulate the description of one kind of simple
instances. It is easy to prove that the simpler instance
is still in C. Let I denote the newly simplified instance
with properties as follows. I = S−

⋃
S with N jobs and

release time rj ≤ rj+1(j = 1, ..., n−1). Moreover, |S| = 1
means only one job, no matter it is a zero processing time
job scheduled at t = v1 or non-zero processing time job
scheduled at t ≥ v1.

Define p = min {pj |pj > 0, j ∈ I} as the non-zero min-
imal processing time jobs in I. Let re be the earli-

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009



est release time of jobs with processing time p. Denote
p(2) = min {pj |j ∈ I, pj > p} ,

u = min
e6i6n−1

{
(1+α)(i+1−e)

α (ri+1 − ri)
}

and

l = − min
e6i6n−1

{
(1 + α)(i+1−e)(ri+1 − ri)

}
.

We construct an instance I ′ with the following methods.
During each transformation,
1. Find out the p-kind jobs and re.
2. Let p = p + ∆. For all jobs with rj > re,

let rj = rj + ∆rj , where
∆rj = ∆ · (1 + α)e−j for ∆ > 0, and
∆rj = ∆

α ·
(
1− (1 + α)e−j

)
for ∆ < 0.

3. Update instance I ′.

Since the schedule will not be changed after changing
process, we have that C(ϕ) is a linear function with the
variant ∆.

With the increase of index i, {∆ri} is a series of
monotonously decreasing sequence which approaches pos-
itively to zero. It means the number of preempting jobs
will increase. Thus the function of C(ψ) is a piecewise
linear and concave function with ∆.

Similarly, while ∆ = ∆− we can also get C(ϕ) is a lin-
ear function and C(ψ) is a piecewise linear and concave
function with ∆.

Therefore, we get C(ϕ)
C(π) ≤ max

{
C(ϕ(∆−))
C(ψ(∆−)) ,

C(ϕ(∆+))
C(ψ(∆+))

}
due

to proposition 1 in appendix.

Lemma 7. For any instance I ∈ C, let I ′ = I ′(∆)
be the ’simpler’ instance transformed from I by above
techniques where ∆ ∈ {∆−,∆+}, ∆− = max {−p, l}
and ∆+ = min

{
p(2) − p, u

}
. We have C(ϕ)

C(ψ) ≤
max

{
C(ϕ(∆−))
C(ψ(∆−)) ,

C(ϕ(∆+))
C(ψ(∆+))

}
.

Theorem 3 (Upper Bound). For any instance I ∈ C,
the upper bound of its performance ratio ρ is 157

100 = 1.57.

Proof. After such modification from lemma (1) to lemma
(7), an arbitrary instance in C should finally be trans-
formed into three cases: (Suppose there are totally n jobs
in Block)

Case 1: Block = S and |S| = 1.
Suppose the processing time of the only job in Block

is ps, then we have C(ϕ)
C(ψ) = v1+ps

v1+ps
= 1. Actually, it

is impossible to have only one job according to our
assumption of the next release time.

Case 2: Blcok = S−
⋃

S, pj = p(j ∈ S−), pk = 0(k ∈
S) and |S| = 1.
In this case,

C(φ)
C(ψ)

=
n · v1 + n(n−1)

2 ·
v1 + n(n−1)

2 · p
= 1+

n− 1

1 + n(n−1)
2 · p

v1

. (3)

p

q
r 1q

r

1n
r v

1
r

1q
r

S S

Figure 2: The instance structure of Case 2.

Since for all j ∈ {1, ..., n − 1} the inequality that
rj + p > (1 + α)rj+1 holds, we could get that

p

v1
>

α

1− (1 + α)1−n
− r1

rn
· α

1− (1 + α)1−n
(4)

According to (3), (4) and r1 ≥ 0, we know

C(φ)
C(ψ)

≤ 1 +
n− 1

1 + n(n−1)
2 · α

1−(1+α)1−n

(5)

Let f(n, α) = 1
n−1 + α

2 · n
1−(1+α)(1−n)

. It is

easy to know that α = arg minα

{
maxn

C(ϕ)
C(ψ)

}
=

arg minα {minn f(n, α)}. Since we have

f
′
(n, α) = d

dnf(n, α)
= α

2

{
1

1−(1+α)1−n − n(1+α)1−n ln(1+α)
1−(1+α)1−n

}

+ −1
(n−1)2

(6)
for α ∈ [0.5, 1) and
n = 2, 3 : f

′
n(n, α) < 0,∀α ∈ [0.5, 1);

n ≥ 4 : f
′
n(n, α) > 0,∀α ∈ [0.5, 1),

we have minn f(n, α) = min {f(3, α), f(4, α)}.
Therefore, there exists a unique α1 ≈ 0.7338 and for
any α ∈ [0.5, α1) the ‘best’ number of jobs should be
n = 4. Similarly, the ‘best’ number of jobs should
be chosen as n = 3 when α ∈ [α1, 1).

Case 3: Blcok = S−
⋃

S, pj = p(j ∈ S−), pk = p(k ∈
S) and |S| = 1.

p

q
r

1q
r

1n
r v

1
r

1q
r

S S

Figure 3: The instance structure of Case 3.

Here we utilize the same method as that of Case 2.
We have that for α ∈ [0.5, α2) the ‘best’ number of
jobs should be n = 4 while the ‘best’ number of jobs
should be chosen as n = 3 for α ∈ [α2, 1).

With the result of lemma 2 and the analysis of above
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three cases, we have that for a fixed value of α ∈ [0.5, 1)
C(ϕ)
C(ψ)

6 max
n

{
1 + α, 1 + 1

f(n,α)
, 1 + 2

g(n,α)

}

6 1 +





max
n=4

{
α, 1

f(n,α)
, 2

g(n,α)

}
, α ∈ [0.5, α2)

max
n

{
α, 1

f(4,α)
, 2

g(3,α)

}
, α ∈ [α2, α1)

max
n=3

{
α, 1

f(n,α)
, 2

g(n,α)

}
, α ∈ [α1, 1)

= 1 + max
n=4

{
α, 1

f(n,α)
, 2

g(n,α)

}
, α ∈ [0.5, α2)

= 1 + 1
f(4,0.5)

= 157
100

= 1.57.

(7)
Therefore, we have proved that

α∗ = arg min
α

{
max
n≥2

C(ϕ)
C(ψ)

}
= 0.5,

n∗ = arg max
n≥2

{
C(ϕ)
C(ψ)

}
= 4 (α = 0.5),

ρ ≤ C(ϕ∗)
C(ψ∗) = min

α
max

n

C(ϕ)
C(ψ)

= 157
100

= 1.57.

According to theorems 2 and 3, we have the theorem of
the competitive ratio as follows.

Theorem 4 (Competitive Ratio). For any instance
I ∈ C, the competitive ratio ρ of algorithm AOPT sat-
isfies ρ ∈ [1.5387, 1.57] with a narrow gap of 0.0313,
which presents algorithm AOPT is an almost-optimal
semi-online algorithm for the problem 1|rj , r

1
t ,C|∑Cj.

5 Conclusion

Our semi-online model of 1|rj , r
1
t ,C|∑Cj covers a wide

range of scheduling models in a kind of single processor
models, including periodic, aperiodic and sporadic mod-
els. No matter these models are schedulable or not, sus-
tainable or not, our model of 1|rj , r

1
t ,C|∑Cj contains

them. Of course, in a practical view, schedulable or sus-
tainable models seem to be much more useful than oth-
ers. Thus the instance-space of such models must be the
subset of C, which is easy to conclude that the competi-
tive ratio of such f́easible’ models by AOPT must be less
than 1.57. Furthermore, our algorithm AOPT is easy for
judging, executing and responding in a real time environ-
ment. Additionally, we show the power of introduction
of some future information (r1

t ), which greatly improves
the competitive ratio from best online result of 2 to our
semi-online result of [1.5387, 1.57].
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Appendix

Proposition 1. Let f(x) and g(x) be two positive func-
tions defined on the interval [x1, x2] ∈ R1, respectively. If
f(x) is a convex function while g(x) is a concave function,
then f(x)

g(x) reaches its maximum at either endpoint of the

interval: ie. f(x)
g(x) ≤ max

{
f(x1)
g(x1)

, f(x2)
g(x2)

}
, ∀x ∈ [x1, x2].
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