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Abstract— The multi-attribute decision making

problem engages in the propagation of information,

which often is highly uncertain or imprecise. Cerebel-

lar Model Articulation Controller (CMAC) belongs

to the family of feed-forward networks with a single

linear trainable layer. CMAC has the feature of fast

learning, and is suitable for modeling any non-linear

relationship. Combining fuzzy linguistic semantics

and CMAC, a linguistic CMAC based on Mass As-

signment is proposed to map the relationship between

attributes and a decision variable. We use mass as-

signment of attribute variables to calculate the ap-

propriateness measure that is equivalent to the prob-

ability of the unit in the CMAC selected by the at-

tributes. The state of decision variable is decided by

the sum of weighted active units in CMAC. We then

investigate the equivalence between the black box of

the Linguistic CMAC and the transparent box of Lin-

guistic Decision Tree.
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1 Introduction

For multiple attribute decision making or classification,
the underlying relationship between attributes and goal
variable is often highly uncertain and imprecise. This re-
quires an integrated treatment of uncertainty and fuzzi-
ness when modeling the propagation of information from
low-level attributes to high-level goal variables. It is well
recognized that the fuzzy measure plays a crucial role in
the fusion of multiple attributes. Wang and Chen [16]
used the Choquet fuzzy integral and the g-Lamda fuzzy
measure to improve significantly the neural network clas-
sification accuracy. In recent work, Yang et al. [18] and
Van-nam et al. [15] have proposed to aggregate evidence
from different attributes on the basis of weighted com-
bination rules in evidence theory, where the underlying
idea is to use random set (mass assignment) to provide a
unified model of probability and fuzziness.

Label semantics proposed by Lawry [5, 6], which is dif-
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ferent with the paradigm of computing with words pro-
posed by Zadeh [19], is a random set based semantics for
modeling imprecise concepts where the degree of appro-
priateness of linguistic expression as a description of a
value is measured in terms of how the set of appropriate
labels for that value varies across a population. Based on
this semantics, a tree-structured model, Linguistic De-
cision Tree (LDT) was proposed by Qin and Lawry [9].
In such an LDT, transparent label semantic rules of the
LDT present an effective way for information propagation
between low-level and high-level.

Neural networks have been well used for decision making
or classification. The Cerebellar Model Articulation Con-
troller (CMAC) [1, 2] is of that models the structure and
function of the part of the brain known as the cerebellum,
which is a special feed-forward neural network. CMAC
has the unique property of quickly training areas of mem-
ory without affecting the whole memory structure due to
local training property of CMAC. In a CMAC, each vari-
able is quantized and the problem space is divided into
discrete states. A vector of quantized input values speci-
fies a discrete state and is used to generate addresses for
retrieving information from memory at this state. Infor-
mation is distributively stored. This property benefits
the nonlinear multiple attribute decision making or clas-
sification. In this paper, a linguistic CMAC (LCMAC)
based on Mass Assignment is proposed to map the rela-
tionship between the attributes and the decision variable.
We investigate the equivalence between the black box of
the LCMAC and the transparent box of an LDT.

2 Label Semantics

Fuzzy discretisation provides an interpretation between
numerical data and linguistic data based on Label Seman-
tics, which proposes two fundamental and inter-related
measures of the appropriateness of labels as descriptions
of an object or value.

Given a finite set of labels L from which can be generated
a set of expressions LE through recursive applications
of logical connectives, the measure of appropriateness of
an expression θ ∈ LE as a description of instance x is
denoted by µθ (x) and quantifies the agent’s subjective
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belief that θ can be used to describe x based on his/her
(partial) knowledge of the current labelling conventions
of the population. From an alternative perspective, when
faced with an object to describe, an agent may consider
each label in L and attempt to identify the subset of
labels that are appropriate to use. Let this set be de-
noted by Dx. In the face of their uncertainty regarding
labelling conventions the agent will also be uncertain as
to the composition of Dx, and in label semantics this is
quantified by a probability mass function mx : 2L → [0, 1]
on subsets of labels. The relationship between these two
measures will be described below.

Unlike linguistic variables [20], which allow for the gen-
eration of new label symbols using a syntactic rule, label
semantics assumes a finite set of labels L. These are the
basic or core labels to describe elements in an underlying
domain of discourse Ω. Based on L, the set of label ex-
pressions LE is then generated by recursive application
of the standard logic connectives as follows:

Definition 2.1. Label Expressions
The set of label expressions LE of L is defined recursively
as follows:
• If L ∈ L then L ∈ LE
• If θ, ϕ ∈ LE then ¬θ, θ ∧ ϕ, θ ∨ ϕ ∈ LE

A mass assignment mx on sets of labels then quantifies
the agent’s belief that any particular subset of labels con-
tains all and only the labels with which it is appropriate
to describe x.

Definition 2.2. Mass Assignment on Labels
∀x ∈ Ω a mass assignment on labels is a function mx :
2L → [0, 1] such that

∑
S⊆Lmx (S) = 1

Now depending on labeling conventions there may be cer-
tain combinations of labels which cannot all be appropri-
ate to describe any object. For example, small and large
cannot both be appropriate. This restricts the possible
values of Dx to the following set of focal elements:

Definition 2.3. Set of Focal Elements
Given labels L together with associated mass assignment
mx : ∀x ∈ Ω, the set of focal elements for L is given by:

F = {S ⊆ L : ∃x ∈ Ω, mx (S) > 0} (1)

The appropriateness measure, µθ (x), and the mass mx

are then related to each other on the basis that assert-
ing ‘x is θ’ provides direct constraints on Dx. For ex-
ample, asserting ‘x is L1 ∧ L2’, for labels L1, L2 ∈ L is
taken as conveying the information that both L1 and L2

are appropriate to describe x so that {L1, L2} ⊆ Dx.
Similarly, ‘x is ¬L’ implies that L is not appropriate
to describe x so L /∈ Dx. In general we can recur-
sively define a mapping λ : LE → 22L from expres-
sions to sets of subsets of labels, such that the asser-
tion ‘x is θ’ directly implies the constraint Dx ∈ λ (θ)

and where λ (θ) is dependent on the logical structure
of θ. For example, if L = {low, medium, high} then
λ(medium∧¬high) = {{low,medium}, {medium}} cor-
responding to those sets of labels which include medium
but do not include high. Hence, the description Dx

provides an alternative to Zadeh’s linguistic variables in
which the imprecise constraint ‘x is θ’ on x, is represented
by the precise constraint Dx ∈ λ(θ), on Dx.

Definition 2.4. λ-mapping λ : LE → 2F is defined re-
cursively as follows: ∀θ, ϕ ∈ LE
• ∀Li ∈ L λ(Li) = {F ∈ F : Li ∈ F}
• λ(θ ∧ ϕ) = λ(θ) ∩ λ(ϕ)
• λ(θ ∨ ϕ) = λ(θ) ∪ λ(ϕ)
• λ(¬θ) = λ(θ)c

Therefore, based on the λ-mapping the appropriateness
measure are defined as below:

Definition 2.5 (Appropriateness Measure). Appropri-
ateness measure µθ(x) is evaluated as the sum of mass
assignment mx over those subsets of labels in λθ(x), i.e.
∀θ ∈ LE, ∀x ∈ Ω, µθ(x) =

∑
F∈λ(θ) mx(F ).

For example, if L = {low, medium, high} with focal
sets {{l}, {l, m}, {h}} and θ = low ∧ ¬medium then
µl∧¬m(x) =

∑
F :l∈F,m 6∈F mx(F ) = mx({l}).

The consonance assumption Appropriateness mea-
sures are not in general functional since mx cannot be
uniquely determined from µL(x) : L ∈ L. However, in
the presence of additional assumptions the calculus can
be functional. Based on the idea of ordering appropriate-
ness measures on labels defined in multi-attribute models,
an assumption is given as follows:

Definition 2.6 (Consonance in Label Semantics). Given
non-zero appropriateness measure on basic labels L =
{L1, L2, ..., Ln} ordered such that µLi(x) ≥ µLi+1(x) for
i = 1, ..., n then the consonant mass assignment has the
form:

mx({L1, ..., Ln}) = µLn
(x),

mx(φ) = 1− µL1(x),
mx({L1, ..., Li}) = µLi

(x)− µLi+1(x) for i = 1, ..., n.

3 LCMAC based on mass assignment

3.1 Basic CMAC

The basic CMAC is a machine that is analogous to the
process of cerebellum’s work. In CMAC, the input vec-
tors are spoken of as sensory cell firing patterns X, which
may be either binary vector or R-ary vector. The appear-
ance of an input vector X on the sensory cells produces
an association cell vector A which also either binary or
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R-ary. The association cell vector A multiplied by the
weight matrix W produces a response vector P . There
are two mapping in CMAC:

f : X −→ A, g : A −→ P

where, X is sensory input vectors, A is association cell
vectors, P is response output vectors. The function f is
generally fixed, but the function g depends on the val-
ues of weights which may be modified during the data
storage (or training) process. When an input vector
X = (x1, x2, ..., xN ) is presented to the sensory cells, it is
mapped into an association cell vector A. Define A∗ to
be a set of active or nonzero elements of A shown as in
Figure 1. The response cell sums the values of the weights
attached to active association cells to produce the output
vector Y . Only the non-zero elements comprising A∗ will
affect this sum. The input vector X can be considered as
an address. If for any input X, it is expected to change
the contents Y , then we only need to adjust the weights
attached to association cells in A∗.
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Figure 1: The structure of basic CMAC

3.2 Mapping with linguistic labels of input
vectors

The new LCMAC is based on the mass assignments on
the focal sets for each input attribute. In the LCMAC,
the first mapping is the fuzzy discretisation of input at-
tributes. Given appropriateness measure for each at-
tribute, mass assignments on focal elements can be ob-
tained according to the consonance assumption presented
in Section 2.

Given input vector X = (x1, x2, ..., xN ), for each
attribute xi, i = 1, ..., N , the label set L =
{L1, L2, ..., Ln} is used to describe the attribute.
The focal set for the attribute will be F =
{{L1}, {L1, L2}, {L2}, ..., {Ln−1, Ln}, {Ln}}. The size of
the focal set is fn = 2n − 1. Fij denotes the jth fo-
cal element of the ith attribute. For example, Figure
2 illustrates an LCMAC with 2-dimension input space,
where each focal element is associated to one unit of
memory. Given a value of the input vector (x1, x2),
where each attribute can be described with three la-
bels, we can calculate the mass assignments mx(F1j) and
mx(F2j), j = 1, ..., 5. For each attribute, usually there

exist two neighbouring focal elements on which the mass
assignments are not zero. Thus four units of memory are
active. If mx(F1i) 6= 0, mx(F1(i+1)) 6= 0, mx(F2j) 6= 0,
mx(F2(j+1)) 6= 0, then units Mij , M(i+1)j , Mi(j+1), and
M(i+1)(j+1) are active.
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Figure 2: The structure of LCMAC

Theorem 3.1. If every focal element of an attribute is
associated to a unit of memory, for N -dimension input
vector X = (x1, x2, ..., xN ), the active space of memory
is in an N -dimension hypercube with edge length 2 (i.e.
2N units of memory).

Proof. According to labeling conventions and consonance
assumption between appropriateness and mass assign-
ment in Section 2, for any pair of neighbouring focal el-
ements Fi and Fi+1, ∃x, mFi(x) 6= 0 and mFi+1(x) 6=
0. In other words, ∀x, at most on one pair of neigh-
bouring focal elements Fi and Fi+1, mFi(x) 6= 0 and
mFi+1(x) 6= 0. There are two possible extreme cases:
mxd

(Fd1) 6= 0, but mxd
(Fd2) = 0, and mxd

(Fd(2n−2)) = 0,
but mxd

(Fd(2n−1)) 6= 0, where n is the number of la-
bels that are used to describe xd. If mFi(x) 6= 0,
for non-neighbouring focal elements Fi±k, k > 1 and
2n− 1 ≥ i± k > 0, mFi±k

(x) = 0. Therefore, the active
space is in a N -dimension hypercube with edge length 2,
which holds 2N units of memory.

3.3 Response mapping

3.3.1 Fine grain mapping

Each unit of memory is used to store a weight, which
represents the probability that an input region described
by label expressions occurs in the current database. The
input region is constrained by mass assignments on fo-
cal elements of each attribute in the input vector (see
Figure 2). A unit is addressed with the focal element in-
dices (a1, ..., aN ) for all input attributes (x1, ..., xN ). For
example, in Figure 2, vector X = (x1, x2), the weight
w11 responds to the unit whose address is (1, 1), where
the first ‘1’ is indicated by the first focal element F11 of
attribute x1,and the second ‘1’ is indicated by the first
focal element F21 of attribute x2. Given an input vector

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009



X = (x1, ..., xN ), the probability Pr(M |X) that a unit
is located is the product of all mass assignments on focal
elements of all input attributes, and formalized as below:

Pr(M |X) =

N∏

d=1

mxd(Fdi), (2)

where, M denotes a unit of memory, and Fdi is a focal
element for the d-th attribute, and the address of M is
given by focal element indices (d1, d2, ..., dN ). Assuming
there are l possible labels Ly = {Ly1 , ..., Lyl

} to describe
the goal variable Y . The output of the neural network is a
vector Y = {y1, ..., yl}, where, yk indicates how appropri-
ate Lyk

is used to describe the goal based on the neural
network given an input vector. The weight is a vector
Wa = {w1, w2, ..., wl}, which represents the distributed
probability that the goal belongs to a class (label) in the
unit of memory. Therefore, according to Jeffery’s rule,
the probability of a label Lyk

is the sum of probabilities
in all active units of memory, and formalized as below:

P (yk|X) =
∑

a∈A∗
wkPr(Ma|X) =

∑
a∈A∗

wk

N∏

d=1

mxd(Fdi). (3)

3.3.2 Overlapping coarse grain mapping

Each active area of memory responses to a weight, which
suggests the probability of occurrences of the input region
described with label expressions in the current database.
Obviously, each input region corresponds to an active
area (See Figure 3). According to the formula in Defi-
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Figure 3: The overlapping map of LCMAC

nition 2.5, given an input vector X, the probability that
an active area A∗ is located can be calculated by:

Pr(A∗|X) =

N∏

d=1

µθ =

N∏

d=1

(mxd(Fdi) + mxd(Fdi+1)), (4)

where, X is N -dimension vector, Fdi
and Fdi+1 are two

neighbouring focal elements for attribute xd, and the cor-
responding mass assignments of xd on the two focal ele-
ments are not zero. Any pair of neighbouring active areas
overlap. The probability that an active area is located is
only related to the given input vector. Given input vector
X, and the goal variable Y = {y1, y2, ..., yl}, according to

Jeffery’s rule, the probability that a label Lyk
is appro-

priate to describe Y is the product of the weight in the
active area and the probability that the active area is lo-
cated. So, according to Formula (4), it can be written
as:

P (yk|X) = wkPr(A∗|X)

= wk

N∏

d=1

(mxd(Fdi) + mxd(Fdi+1)). (5)

4 The convergence of the LCMAC

The purpose of training the neural network is to adjust
the weights to make the LCMAC approach the desired
output. Sayil and Lee [12] compared 12 training algo-
rithms, and suggested a hybrid maximum error algorithm
[8] with neighborhood training for CMAC. We now inves-
tigate the convergence of the LCMAC. Hirsch [3] viewed
a neural network as a nonlinear dynamic system called
Neurodynamics, which presents a conceptual and eclectic
methodological approach for understanding neural net-
work activity. Assuming the dynamic system with N
state variables v1, v2, ..., vN , the network motion equa-
tion is dui

dt = − ∂E
∂vi

, where ui and vi are the input and
output of the i-th neuron. Takefuji and Szu has proved
[13]:

dE

dt
=

∑ dvi

dt

∂E

∂vi
=

∑ dvi

dt
(−dui

dt
)

= −
∑

(
dvi

dui
)(

dui

dt
)(

dui

dt
) = −

∑
(
dvi

dui
)(

dui

dt
)2.

Therefore, convergence of a neural network does not de-
pend on the model. As long as the output vi is the contin-
uous, differentiable and monotonous increasing function
of input ui, namely, there exists the relationship between
outputs and inputs of neurons dvi

dui
> 0 , the neural net-

work always converges with a negative grade. Finally,
the neural network arrives at a stable state with dE

dt = 0.
Here we define the activation function as below:

vi =





1 ui ≥ 1
ui 0 ≤ ui < 1
0 ui < 0.

(6)

In LCMAC, each cell of response mapping represents a
neuron. The weight in each cell indicates the state of each
neuron. If the input ui and output vi of each neuron have
the relationship ui=vi, then we have ∆W = − ∂E

∂W ×∆t.
The Least Mean Square (LMS) algorithm is well-known
for neural network training. Miller et al. used LMS to
train the CMAC [7]. We can define the Mean Square
Error as Ek(t) = γ (Dk − yk(t))2/2, where Dk indicates
if the goal belongs to the class Ck. If the goal belongs to
Ck, then Dk = 1, otherwise Dk = 0. Assuming ∆t = 1,
then we have:

∆wk = γ(Dk − yk(t))
∂yk(t)

∂wk
, (7)

where γ is the learning factor. Given a training sample
X, we can calculate the value of Equation (7), which will
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be as a correction to each of the memory cells activated
by the input vector. For fine grain mapping, according
to Equation (3) and (7), the motion function is:

∆wk = γ(Dk −
∑

a

wkPr(Ma|X))wkPr(Ma|X). (8)

For coarse grain mapping, according to Equation (5) and
(7), the motion function is:

∆wk = γ(Dk − wkPr(A∗|X))Pr(A∗|X). (9)

5 Equivalence to an LDT

5.1 Linguistic decision trees

In an LDT [9, 10], the nodes are attributes, such as
x1, ..., xN , and the edges are label expressions describing
each attribute. A branch B is a conjunction of expres-
sions θ1 ∧ ... ∧ θN , where θk is the label expression of an
edge in branch B for k = 1, ...N . Each branch also is
augmented by a set of conditional mass values m(F |B),
which is equivalent to P (F |B), for each output focal ele-
ment F ∈ Fy.

5.1.1 A focal element linguistic decision tree

Qin and Lawry [9, 10] suggested to create Focal Element
Linguistic Decision Trees (FELDTs) from database. In
an FELDT, branches have the form B = (Fi1, ..., FiN )
where xid is the attribute node at the depth d of B, and
Fid ∈ Fid for d = 1, ..., N . If we use the LID3 algorithm
[9, 10] to learning the FELDT, the probabilities P (Fy|B)
for a focal element Fy ∈ Fy conditional on a branch B
can be evaluated from a database DB as below:

P (Fy|B) =

∑
r∈DBFy

m〈xi1 (r),...,xiN
(r)〉(Fi1 , ..., FiN )

∑
r∈DB m〈xi1 (r),...,xiN

(r)〉(Fi1 , ..., FiN )

=

∑
r∈DBFy

∏N
v=1 mxiv (r)

∑
r∈DB

∏N
v=1 mxiv (r)

. (10)

According to Jeffery’s rule, the mass assignment of goal
variable y on a focal element can be calculated as follows:

MFy (y) =

b∑
i=1

(

N∏

d=1

(mxid
(F )))P (Fy|Bi), (11)

where, b is the number of branches, and N is the number
of attributes or the depth of a branch in the FELDT;
Here we assume without the limitation of the depth, so
the depth of all branches is the same as the number of
attributes; xid

is the attribute incident to the edge at the
d-th layer of branch Bi.

5.1.2 Dual-edge LDTs

Another kind of LDT is the one whose edge grain is two
neighbouring focal elements. However, two neighbouring
edges overlapping on a focal element. From each node
there are l − 1 edges, where l the size of focal set. For
an example, attribute x1 in an LDT has the focal set
{F1, ..., F9} = {{vl}, {vl, l}, {l}, {l,m}, {m}, {m,h},
{h}, {h, vh}, {vh}}. Then we have edges from node x1,
such as {F1, F2}, {F2, F3}, ..., {F7, F8}, {F8, F9}. We call
the LDT as dual-edge LDT. The revised conditional prob-
ability of a focal element Fy ∈ Fy that is appropriate to
describe a goal given the branch B can be evaluated from
DB according to:

P (Fy|B) =

∑
r∈DBFy

∏N
d=1(mxid

(Fj) + mxid
(Fj+1))

∑
r∈DB

∏N
d=1(mxid

(Fj) + mxid
(Fj+1))

(12)

This dual-edge LDT needs similar space as an FELDT
does, but the calculation is based on a unique branch
with Equation (13).

MFy (y) =

N∏

d=1

µ(θd)P (Fy|B)

=

N∏

d=1

(mxid
(Fj) + mxid

(Fj+1))P (Fy|B)), (13)

where, xid
is the attribute incident to the edge at the d-

th layer of branch B, and mxid
(Fj) and mxid

(Fj+1) are
the non-zero mass assignments of attribute xid

on two
neighbouring focal elements Fj and Fj+1, corresponding
to the edge.

5.2 Comparing an LCMAC with an LDT

From Section 3.3, whether the response mapping is fine
grain or coarse grain, the final output of the neural net-
work is the distributed probabilities that the goal can be
described with each label. From this point of view, an
LCMAC has the same effectiveness as an LDT, present-
ing the mass assignments on labels of a goal variable.

Comparing the fine grain mapping LCMAC with
FELDT, from Equation (3) and (11), we can see that the
difference between the two equations lies in wk for fine
grain mapping LCMAC, which implies the probability
that the goal belongs to a class or is described with a la-
bel conditional on a unit in the active area, and P (Fy|B)
for FELDT, which is the conditional mass assignment
of the goal variable y on focal element Fy given branch
B. Therefore, a unit in the active area in an fine grain
LCMAC is equivalent to a branch in FELDT.

Similarly, comparing the coarse grain mapping LCMAC
with the dual-edge LDT, from Equation (5) and (13),
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there exists the difference as above, but wk indicates the
the probability that the goal belongs to a class in the
active area. Therefore, an active area in coarse grain
mapping LCMAC is equivalent to a branch in dual-edge
LDT.

The large difference between an LCMAC and an LDT
should be in the learning process. For an LCMAC, learn-
ing algorithms vary with different strategies based on the
LMS algorithm, which uses the feedback of the error of
desired output and calculated output to correct the state
of a neuron, so that the neural network arrives at a sta-
ble state with least square error, and the training process
only involves the neurons’ state in the active area located
by a given sample, while for an LDT, the learning algo-
rithm LID3 proposed by Qin and Lawry [9, 10], is an
extension of classic ID3 algorithm [11], the basic step of
which is to calculate the conditional probability that a
goal can be described with a label, then to decide which
attribute is extended to current node in the tree accord-
ing to the expected entropy.

6 Conclusion

For multiple attribute decision making or classification,
we presented an LCMAC by combining the Label Seman-
tics based on mass assignment of attributes, and investi-
gated the convergence of the neural network. It is shown
that an LCMAC and an LDT are functionally equivalent.
A unit of memory in the fine grain mapping LCMAC is
equivalent to a branch in an FELDT, while a unit of
memory in coarse grain mapping LCMAC is equivalent
to a branch in an dual-edge LDT. But they are differ-
ent in their training processes. In order to validate the
performance of an LCMAC, simulation of the model and
experiments on some benchmark databases will be the
further work. We will examine the performance of an
LCMAC and an LDT through the further experiments.
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