
 
 

 

  
Abstract—This paper describes the development of a mechanical 
fault diagnosis system for a scooter engine platform using 
continuous wavelet transform and artificial neural network 
techniques. Most of the conventional techniques for fault 
diagnosis in a mechanical system are based primarily on 
analyzing the difference of signal amplitude in the time domain or 
frequency spectrum. In the present study, a continuous wavelet 
transform (CWT) algorithm combined with a feature selection 
method is proposed for analyzing fault signals in a scooter fault 
diagnosis system. The artificial neural network technique using 
back-propagation and generalized regression are both used in the 
proposed system. The effectiveness of the proposed system using 
two algorithms in CWT technique for scooter fault diagnosis are 
investigated and compared. The experimental results indicated 
that the proposed system achieved a fault recognition rate over 
95% in the experimental platform of scooter fault diagnosis 
system. 
 

Index Terms—Fault diagnosis system, Continuous wavelet 
transform, Artificial neural network.  
 

I. INTRODUCTION 
With the rapid growth of signal processing technology, the 

vibration and sound emission signals can be used to monitor the 
condition of a mechanical system. An effective condition 
monitoring can prevent serious damage. There exist a number 
of fault diagnosis techniques in the field, and most of the 
conventional techniques are used to observe the amplitude 
difference in time or frequency domain for damage diagnosis. 
Meanwhile, order-tracking analysis is also used to avoid the 
smearing problem in frequency-varying signals [1]. 
Unfortunately, most of the conventional approaches are 
difficult to deal with in the case where the machinery operates 
under non-stationary rotational speed, is based on the 
assumption of stationary signals, and is inherently unsuited for 
non-stationary. Time-frequency analysis can be used to 
improve the drawback of the Fourier transform. The primary 
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advantage of time-frequency analysis is the representation of 
signals in both the time and frequency domains. The short time 
Fourier transform (STFT) has been applied to analyze the 
signals of the fault in both the time and frequency domains [2]. 
However, STFT has a limitation of time resolution because of 
using fixed time windows. On the other hand, the continuous 
wavelet transform with an adjustable window size has been 
proven to have higher efficiency in accurate information of 
analysis signals. The continuous wavelet transform (CWT) 
with more precise time resolution can improve the performance 
of STFT.  

Research interest in mechanical fault diagnosis using 
wavelet analysis has developed in the last few decades. The 
wavelet analysis technique has become one of the important 
approaches in the field of mechanical fault diagnosis. In 1993, 
Wang and McFadden used wavelet analysis in the gear 
vibration signals and detected different types of faults, and the 
results exhibit wavelet transform is effective in condition 
monitoring of gear health [3],[4]. In 1995, Newland derived a 
harmonic wavelet technique and applied it to transient analysis 
of vibration signal [5],[6]. In 2001, Lin presented a de-noising 
method based on Morlet wavelet applied in fault diagnosis [7]. 
In 2004, Meltzer and Dien analyzed the effectiveness of the 
CWT in acoustical diagnostics of gearboxes by plotting 
wavelet amplitude versus the rotational angle in polar 
coordinates [8]. In 2005, Yan and Gao presented an approach to 
machine condition monitoring and health diagnosis, based on 
the discrete harmonic wavelet packet transform (DHWPT) [9]. 
In 2000, Li et al. presented an approach for motor rolling 
bearing fault diagnosis using neural networks and bearing 
vibration analysis [10]. In 2004, Chen and Mob developed a 
method of intelligent fault diagnosis using neural network 
classifier for identifying the faults of rotating machinery [11]. 
In 2005, Yang et al. developed an advanced signal classifier for 
small reciprocating refrigerator compressors artificial neural 
networks and support vector machine [12]. 

In the present study, the CWT technique and time-frequency 
analysis are used to extract the feature of the dynamic 
characteristics and fault signal from a scooter. The diagnostic 
trouble code of a scooter can be obtained by using spectrum 
trend feature method. A fault recognition technique based on 
neural networks of back-propagation and generalized 
regression for a scooter health diagnosis is presented. Neural 
networks classifiers have a proven ability in the area of 
nonlinear pattern recognition by learning and adapting to the 
input from the scooter fault. Both of the neural networks are 
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used to verify the effectiveness of the presented fault diagnosis 
algorithm. 

There are three phases in the present fault diagnosis system: 
the data acquisition phase, the feature extraction phase and the 
fault classification phase, as shown in Fig. 1. In the feature 
extraction, the diagnostic technique employs the wavelet 
transform to decompose the time-waveform signals into two 
respective parts in the time space and frequency domain and to 
obtain the feature of analysis signals. In the fault classification 
phase, the design of the neural network diagnosis algorithm is 
presented to identify the faults of the scooter. The principles of 
wavelet transform and neural network in the proposed system 
are described in the following sections. 

II. FEATURE EXTRACTION USING WAVELET TRANSFORM 
The wavelet transform uses a series of oscillating functions 

with different frequencies as window function to scan or 
translate the analysis signal. The wavelet technique has 
particular advantages for characterizing signals at different 
localization levels in time as well as frequency domains. The 
wavelet algorithm used in this study is based on the results 
originally developed by Goupillaud et al. [13],[7]. The 
principles of continuous wavelet transform and spectrum trend 
feature are described in the following sections. 

Let          be the basic wavelet function or mother wavelet, 
then corresponding family of daughter wavelets consist of  

-1/ 2
,
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where     is the scale factor and      the time location, and the 
factor       is used ensure that the energy of the scaled and 
translated versions are the same as the mother wavelet. The 
wavelet transform of signal          is defined as the inner product 
in the Hilbert space of the      norm as follows: 

-1/ 2 *
, ,( ,  ) ( ),  ( ) ( ) a b a bW a b t x t a x t dtψ ψ= = ∫  (2) 

Here the asterisk stands for complex conjugate. Time parameter 
b and scale parameter a vary continuously. The mother wavelet       

is assumed to lie in        and satisfies the admissibility 
condition: 
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where          is the space of square integrable complex function 
and      indicates the Fourier transform of ( )tψ . Wavelet 
coefficients measure the similarity of the signal and each 
daughter wavelet. In this study, the Morlet wavelet [14] is used 
as the basic wavelet for feature extraction. When a wavelet 
function is chosen, it is necessary to decide the scales in the 
wavelet transform. For CWT analysis, an arbitrary set of scales 
can be used to build up complete information. In this study, the 
scales are written as follows: 

0  2 ,     0,  1, ,  j j
ja a j Jδ= = …
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where
0 2a tδ=  is the smallest resolvable scale and 0.05jδ = , 

J=160. The choice of jδ  depend on the width in spectral space 
of wavelet function and J determines the largest scale, tδ  is the 
sampling interval. When the sampling frequency is set as 10 
kHz, the scales can be obtained in the range of 0.2 to 51.2.The 
continuous wavelet power spectrum is defined as 2

( )jW a . The 

time-averaged wavelet spectrum is proposed to exhibit the 
distribution of energy of wavelet power spectrum in the 
direction of scale, is defined as  
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where      is the number of sampling points,                          . In 
the application of fault diagnosis, the signal is sampled 
randomly and the revolution of the engine is not stable, the 
energy distribution of time average wavelet spectrum (TAWS) 
is different from each other even in the same fault condition. In 
order to avoid such a condition, a spectrum trend feature 
method is developed. By studying the spectrum distribution of 
variation for each fault spectrum, one can define a raised trend 
of spectrum as “1” and a dropped trend of spectrum as “0” 
between two neighbor scales. The feature vector can be defined 
as follows: 
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The feature vector is diagnostic trouble code as the input for the 
fault classification using neural networks. 
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Figure 1  Procedure of scooter fault diagnosis. 

III. FAULTS CLASSIFICATION USING NEURAL NETWORKS 
In the design of scooter fault diagnosis schemes, a 

recognition method of scooter fault condition using neural 
networks is investigated to evaluate the effectiveness of the 
select feature set for a scooter diagnosis. To determine if the 
proposed fault diagnosis algorithm is able to correctly 
recognize different scooter fault conditions is essential. In this 
paper, a multiplayer perception classifier trained with error 
back-propagation algorithm and generalized regression neural 
network are used in the fault diagnosis system. The 
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experimental comparison and analysis of the two algorithms 
are also described in scooter fault diagnosis. 

The neural network using a multiplayer perception classifier 
with error back propagation (BP) algorithm based on 
supervised learning rule is applied for training and testing the 
classifier in the present study [16]. A three-layer feed forward 
network with sigmoid activation function is considered in the 
first fault classification. In the structure, each layer has a certain 
number of nodes and all nodes in one layer are connected with 
all the other nodes in the succeeding layer, as shown in Fig. 2. 
Associated with each connection, a numerical value is assigned, 
which is termed as weight. Inputs are submitted during the BP 
algorithm training sequentially. During the training procedure, 
the weight and biases of the network are iteratively adjusted to 
minimize the network performance which is the mean square 
error between the networks outputs and desired outputs. The 
gradient descent search is performed to reduce the error 
through the adjustment of weights. The error is back 
propagated to change the output and hidden layer weights. This 
training process is repeated until a suitable error is achieved. 
The training process needs a set of training examples to update 
the weights of the network. Providing sufficient training data is 
essential in order to ensure accuracy of the classifier. Once the 
network is sufficiently trained, the knowledge of the neural 
network will perform the fault detection. 
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Figure 2 Structure of back-propagation algorithm for fault 

diagnosis. 
 
The generalized regression neural network (GRNN) was 

proposed by Specht [16]. It is a one-passing learning algorithm 
which can be used for estimation of continuous variables. The 
GRNN does not require an iterative training procedure to 
converge to the desired solution as in BP neural network. It 
approximates any arbitrary function between input and output 
vectors, drawing the function estimate directly from the 
training data. If the variables to be estimated relate output to 
input variables, the GRNN can be used to model the system, as 
in standard regression techniques. By definition, the regression 
of a dependent variable y on an independent x estimates the 
most probable value for y, given x and a training set. The 
GRNN is a method for estimating the joint probability density 
function (PDF) of x and y, in order to produce the estimated 

value of y, given only a training set. Assume that the ( ,  )f x y   
represents the known joint continuous probability density 
function of a vector random variables, x, and a scalar random 
variable. Let X be a particular measured value of the random 
variable x. The conditional mean of y given X is given by 

-
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When the density            is not known, it must usually be 
estimated from a sample of observations of   and  . The     
probability estimator       is based upon sample values                  
      and     of the random variables x and y, where     is the 
number of sample observations and      is the dimension of the 
vector variable x: 
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A physical interpretation of the probability estimate               is 
that it assigns sample probability of width σ  for each sample 

iX  and iY , and the probability estimate is the sum of those 
sample probabilities. Defining the scalar function 

( ) ( )T2 i i
iD = X-X X-X

 
(9) 

and performing the indicated integrations yields the following: 
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When the smoothing parameter σ  is made large, the 

estimated density is forced to be smooth and in the limit 
becomes a multivariate Gaussian with covariance 2Iσ . On the 
other hand, a smaller value of   allows the estimated density to 
assume non-Gaussian shapes, but with the hazard that wild 
points may have too great an effect on the estimate [14]. Fig. 3 
shows the block diagram of the GRNN architecture which is 
different from the architecture of BP algorithm. The GRNN 
consists of four layers: input layer, pattern layer, summation 
layer and output layer. The input units are merely distribution 
units in the first layer. The second layer has the pattern units 
that are dedicated to one cluster center. The outputs of the 
pattern layer are passed on to the summation units in the third 
layer. The summation units perform a dot product between a 
weight and a vector from the pattern layer. The final layer 
covers the output units. 
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x y
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Figure 3 Block diagram of GRNN algorithm. 

IV. EXPERIMENTAL INVESTIGATION OF FAULTS 
CLASSIFICATION 

In order to evaluate the proposed algorithms in faults 
classification, an experiment is carried out to verify the 
performance by measuring sound emission signals in various 
engine operation conditions. The sound emission signal of a 
scooter engine platform is measured by a microphone, a data 
acquisition system and subsequently analyzed using CWT 
algorithm. After extracting the features of wavelet power 
spectra, the feature vectors are selected for the fault 
classification using neural networks. The experimental setup of 
the scooter fault diagnosis system is shown in Fig. 4. The 
measuring apparatus used in the experiment consists of a 
microphone (PCB 130D20), a data acquisition system 
(NI-6024E), an optical encoder (PW-PH02) for shaft speed 
measurement and dynamic signal analyzer (SR785). The sound 
signal is recorded from the scooter under without fault 
condition and four different fault conditions in five fixed 
engine revolutions and a run-up engine operation condition. 
The experiment is conducted by using four synthetic faults, 
including leaking of the intake manifold, pulley damaged, belt 
damaged and clutch damaged. The sampling rate of the data 
acquisition system is 10 kHz. Acoustic emission signals in time 
domain that were measured under idle conditions (1800 rpm) 
are shown in Fig. 5.  
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Figure 4 Experimental arrangement of scooter fault diagnosis 

system. 
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Figure 5 Sound emission signals measured from a scooter. 
           (a) without fault; (b) leakage in intake manifold;  

                (c) pulley damaged; (d) belt damaged; (e) clutch  
damaged. 

In order to evaluate the effectiveness of the CWT for 
scooter fault diagnosis, sound emission signals from each fault 
condition are analyzed. The experimental results of scooter 
without fault in 1800rpm engine speeds using CWT 
representation are shown in Fig. 6, which present the energy 
distribution of the sound emission signals in time-frequency 
domain. The experimental results of the other four faults in 
1800rpm engine speeds are indicated in Fig. 7. However, an 
engine in practical conditions may be operated by running up or 
coasting down. In the experiment of running up investigation, 
the engine operated at revolutions from 1800 to 4900 rpm. The 
experiment results of run-up rotational speed condition using 
CWT algorithm are indicated in Fig. 8. On the basis of the 
time-frequency features thus obtained, the transients of the 
run-up process can be clearly observed. The experimental 
results demonstrated the CWT algorithm is effective in fault 
analysis and diagnosis by using sound emission signals. 

 
 

Figure 6 Time-frequency representation of wavelet power 
spectrum without fault in 1800 rpm engine speeds.  
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To further classify the fault, the feature extraction of TAWS 
based on spectrum trend feature method is presented. Figure 9 
represents the TAWS of five conditions of engine in idle 
operation. After processing of spectrum trend feature method, 
the feature vectors, shown in Fig. 10, are diagnostic trouble 
codes which will be provided for the neural network. The 
objective of faults classification is to demonstrate the 
effectiveness of the proposed feature selected method. For this 
purpose, the feature vectors in each fault condition are applied 
to as the input of the neural networks. There are 200 data sets 
for each fault condition. In the fault classification experiment, 
40 data sets of the data in each fault condition are used for 
training the network and the remaining 160 data sets of the data 
are used to test the network. The performance of the fault 
diagnosis system to correctly classify the faults to 
corresponding classes is evaluated. The fault recognition rate is 
defined as 

Number of correctly classified samplesRecognition rate = 100%
Total testing number of samples

×
 

(11) 

 

 

 

 
 
 

Figure 7 Time-frequency representation of wavelet power    
                  spectrum with various fault in 1800 rpm engine 

speeds. (a) leakage in intake manifold; (b) pulley 
damaged; (c) belt damaged; (d) clutch damaged.  

 

 
 

Figure 8 Time-frequency representation of wavelet power 
spectrum  without fault in run-up condition. 
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Figure 9 TAWS of engine in idle condition. (a) Without fault; 
(b) leakage of the intake manifold; (c) pulley 
damaged; (d) belt damaged; (e) clutch damaged. 

Table 1 shows the classification accuracy achieved is about 95 
% by using BP algorithm. In comparison, Table 2 shows the 
result of GRNN classifier has achieved an overall classification 
rate of 99 % in engine operation lower than 2500 rpm. When 
the engine operation speed is higher than 2500 rpm, the fault 
recognition rate is decreased. The comparison indicated that the 
fault technique using GRNN is more effective than using BP 
algorithm in the faults classification. 
Table.1 Performance of the recognition using BP algorithm 

Revolution conditions (rpm) 
Defect types 

idle 2000  2500 3000  3500 

Without fault 99.4% 99.4% 99.4% 99.4% 85% 

Leakage of the 

intake manifold 
99.4% 99.4% 99.4% 99.4% 99.5% 

Pulley damaged 96.3% 96.9% 98.8% 93.1% 95.6% 

Belt damaged 97.5% 99.4% 99.4% 88.8% 98.8% 

Clutch damaged 99.4% 93.8% 98.8% 98.8% 85.6% 

 
Table.2 Performance of the recognition using GRNN 

Revolution conditions (rpm) 
Defect types 

idle 2000  2500 3000  3500 

Without fault 100% 100% 100% 100% 100% 

Leakage of the 

intake manifold 
99.4% 99.4% 99.4% 99.4% 99.4% 

Pulley damaged 99.4% 99.4% 99.4% 99.4% 98.8% 

Belt damaged 99.4% 99.4% 99.4% 92.5% 98.8% 

Clutch damaged 99.4% 99.4% 99.4% 99.4% 99.4% 
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Fig. 10. Feature vectors of engine in idle condition. (a) Without 
fault; (b) leakage of the intake manifold; (c) pulley 
damaged; (d) belt damaged; (e) clutch damaged. 

V. CONCLUSIONS 
In this paper, a scooter fault diagnosis system based on 

continuous wavelet transform technique and faults 
classification using artificial neural network for the purpose of 
the fault detection has been developed. Wavelet analysis, which 
allows the sound emission signals of frequency content with 
time to be visualized, can extract key features using 
time-frequency representation of sound emission signals from a 
scooter. A feature selection method called “spectrum trend 
feature method” was proposed. The selected feature vectors are 
diagnostic trouble codes corresponding to their fault condition. 
The features are subsequently used for the intelligent classifier 
to evaluate the performance of proposed fault diagnosis system. 
The proposed diagnosis system using GRNN method was able 
to reach a fault recognition rate of about 99%. The 
experimental results show that the proposed fault diagnosis 
system with neural network can be effectively used in scooter 
diagnosis of various faults through measurement of scooter 
sound emission signal. 
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