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Abstract- In this paper two different techniques of Kalman 
Filtering and their application in multi sensor data fusion are 
studied. Two different Kalman filtering techniques such as 
CKF and DKF are modeled and the effectiveness of their 
application in multi sensor data fusion is compared with each 
other. All of the kalman filter models have been simulated in 
MATLAB and simulation environment.  
 

Index Terms—Kalman filtering - Data fusion - Multi sensor 
data fusion - DKF - CKF 

I. INTRODUCTION 

 
Multisensor data fusion is an evolving technology, 

concerning the problem of how to fuse data from multiple 
sensors in order to make a more accurate estimation of the 
environment [1, 2, 3]. Applications of data fusion cross a 
wide spectrum, including environment monitoring, 
automatic target detection and tracking, battlefield 
surveillance, remote sensing, global awareness, etc. They 
are usually time-critical, cover a large geographical area, 
and require reliable delivery of accurate information for 
their completion. 

Sensor fusion is the combining of sensory data or data 
derived from sensory data from disparate sources such that 
the resulting information is in some sense better than would 

be possible when these sources were used individually. The 
term better in that case can mean more accurate, more 
complete, or more dependable, or refer to the result of an 
emerging view, such as stereoscopic vision (calculation of 
depth information by combining two-dimensional images 
from two cameras at slightly different viewpoints). 

The data sources for a fusion process are not specified 
to originate from identical sensors. One can distinguish 
direct fusion, indirect fusion and fusion of the outputs of the 
former two. Direct fusion is the fusion of sensor data from a 
set of heterogeneous or homogeneous sensors, soft sensors, 
and history values of sensor data, while indirect fusion uses 
information sources like a priori knowledge about the 
environment and human input. 

Sensor fusion is a term that covers a number of 
methods and algorithms, including: Kalman filter, Bayesian 
networks and Dempster-Shafer. In this paper we only 
utilize Kalman filters for multi sensor fusion.  

The paper is organized as follows. Section 2 describes 
the Kalman filter, which is the most widely used estimator 
in sensor fusion. However, the Kalman filter also suffers 
from certain shortcomings. In section 3 Kalman filters 
fusion and performance is tested, followed in Section 4 by 
comparative results between the two mentioned kalman 
filter approaches. Finally the general results presented in 
the conclusion. 

II. KALMAN FILTER 
 

The Kalman filter, explained in detail in [4], is an 
optimal linear estimator based on an iterative and recursive 
process. It is used in a wide variety of applications, and 
applies particularly well to sensor fusion. It recursively 
evaluates an optimal estimate of the state of a linear system. 
In our case, the state of the system is the pose of the 
vehicle. At each iteration of the filter, a new estimate of the 
state (pose) is evaluated, using the new information 
(measurements) available to the filter. 
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The Kalman filter process consists of two sub-processes, 
repeated iteratively at a time step of dt: the time update and 
the measurement update. An easy way to explain the 
Kalman filter is to say that it incorporates two sets of sensor 
measurements, one in each sub-process. In the time update 
process, a prior estimate Xprior(k) is computed based on the 
previous state estimate X(k-1) and sensors indirectly related 
to the state (e.g. accelerometers or velocity sensors when 
the state is position, also called dead-reckoning sensors). 
Then, in the measurement update process, this prior 
estimate is blended with direct measurements of the state 
(position) coming from other sensors, thus obtaining the 
new updated state estimate X(k). 

First of all, we will assume a mathematical model of a 
plant defined by equations of discrete system dynamics. To 
get the equations of the optimum estimator, i.e., the KF, 
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suppose that the plant of system dynamics are designed by 
the (possibly time-varying) general model of linear finite-
dimensional stochastic system, see below; [5], [6]. 
 

X( n + 1) = Ax( n) + Bw(n)             (1) 
 

A control input u(n) of plant is included in process 
noise w(n), where n refers to discrete time. The w(n) noise 
is not necessary white but it should be a zero mean noise.  
 

y (n) (n) v(n), v = Cx + 0 n ≥ n  (2) 
 

The n0 = 0 is the initial time. The equation (1) is called 
stochastic state transition or system model equation, and (2) 
is called the observation equation of stochastic model, [7]. 
In the terminology, A is state transition matrix, B is input 
coupling vector, C is observation vector, x is called state 
vector and yv(n) is plant observation and finally v(n) is 
called sensor or observation noise. The x(n0) has a mean x0 
and state covariance P0 matrix and 

 
Where   w ~ N(0,Q(n)),                 (4)  

 
and      v ~ N(0,R(n)).      (5) 

 
Here we denote equation (4) for (1), and (5) for (2). 

The Q is called process noise covariance matrix and R is 
observation noise covariance matrix. 

The relation of w(n), v(n) and Q(n), R(n) is 
respectively defined by (4), (5). Also we assume the ideal 
non-noisy observations 
 

y( n) = Cx(n).       (6) 
 

The discrete plant model was already described by the 
applied process noise w(n). Observations are given by 
equation (2). Although the observation noise v(n) is 
generated by sensor but not by a plant. The equations (1) 
and (2) both describe state-space model. Below we mention 
some conditions been valid for a KF such as an optimal 
state estimator and its equations, [5] and [6]. 

1. The sampled white noise has a mean of zero: 
Ε[w(n)] = 0;   Ε[v(n)] = 0 . 

 
2. The w(n) and v(n) are uncorrelated for n ≠ k , i.e.: 

S = Ε[v(n)  wT (k )]= 0, for n ≠ k , where k refers 
to a discrete time. 

 
3. Noise variances are 

 

 
 

4. Ε{[x(n)− x(n | n)]vT (n)}= 0 , where x(n) is state 
vector of plant, x(n | n)is estimated state. 

5. State error covariance matrix P(n), innovation 
Kalman filter gain M(n), A, C, R, Q and S = 0 are 

independent of observations sequence  Y(n - 1) = {yv (n - 
1), yv (n - 2),..., yv (0)}. 

6. We shall specify new symbol, namely r(n) to the 
error of yv(n)-Cx(n|n-1) the innovations sequence 
(residuals), where Ε{r(n)|Υ (n - 1)}= 0 and x(n|n-1) is the 
state time update in Kalman filter. Nonzero mean of a noise 
is not our case of study and tests. In Kalman filtering we 
consider Q(n) < x(n)xT (n) and R(n) < yv (n)yv

T (n). We 
assume that the system output can be predicated and a white 
noise of innovations sequence-residuals r(n), Q and R are 
correctly estimated. Unfortunately, this is not the reality. 
Supposing those assumptions, the optimality of state 
estimation is achieved when an algebraic constraint on 
derived equations is used in Model of Kalman filter below. 
Solving the estimation problem, KF minimizes the state 
error covariance matrix in optimal linear filtering. The 
innovations sequence named by r(n) is useful for the reason 
of state estimation in Kalman filtering. 
 

A. CENTRALIZED KALMAN FILTER 
In centralized Kalman filtering, signals of sensors are 

transferred through the communication network to the 
central processor to generate the optimal central estimate 
x(n|n). The all information is sent to the fusion centre to 
yield x(n|n) and minimize state estimation error. The 
models are built according to [8]. 

All sensors are measuring outputs of plant. Of course, 
all the plant is controlled by one actuator which gives u(n) 
value the same for CKF estimator input. For example the 
yv1(n) may represent the first CCD camera observation, 
yv2(n) represents the microphone observation and yv3(n) 
represents the mechanical sensor of a track and position 
estimation of a train in a tunnel, [9]. Observations yvi(n) are 
modeled as filtered x(n) through observation vectors Ci, 
where x(n) is only one. Subscript i = 1, 2, 3 refers to the 
particular sensors. 

 
Model of centralized Kalman filter. A timing 

diagram of this model is shown in Table 1 as a special case 
of Model  of Kalman filter with sensor fusion. In other 
words, signals are combined to get state estimation in 
fusion. Initial program starts at n0 and prepares (7) – (9). 
 

The concept of CKF technique is analyzed in papers 
[8], [9] and [10]. 
 

B. DECENTRALIZED KALMAN FILTER 
 

The decentralized Kalman filter processes data from 
many sensors to provide a global state estimation in multi-
sensor fusion. A DKF model was built according to 
references [9], [11] - [13]. 

 Every DKF contains a local and a global filter that 
emphasizes double-estimation in a node. The local filter 
uses its own data and observation yv(n) to perform an 
optimal local estimates P(n|n) and x(n|n). 

 These estimates are obtained in a parallel 
processing mode implicitly. Thus, each node takes 
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observation (possibly asynchronously) from a plant of an 
environment. With this observation (and its associated 
variance) the DKF is able to compute a partial state 
estimate. Then each node broadcasts one vector and a 
matrix of error information to the others and it receives 
other information being broadcasted to it. Those two (one 
vector and a matrix) as state error information SEI(n) and 
variance error information VEI(n) are used for global state 
and covariance estimate in global filter of every node. 
Finally, all nodes performed same global state estimates 
x(n|n) because SEI(n) and VEI(n) matrices are fused in the 
same way.  

Generally, the number of sensors is not restricted. We 
will describe the functionality of DKF system by the 
following flowchart in Table 2. 

The local filter of the i-th node computes its own local 
estimate updates (6) and (7) using residuals (5) and an 
innovation KF gain (4), respectively. The time updates (8) 
and (9) are also performed by a local filter of each i-th DKF 
node. The local filter of the i-th DKF node works 
independently and indirectly from the other nodes and all 
their residuals differ. After the local filter was processed, 
the SEI(n) of (11) and VEI(n) of (10) are computed by 
assimilation equations. So, every nodal DKF computes its 
own part such as the i-th part of either (10) or (11) that is 
called fractional matrix. These fractional matrices are sent 
both to other nodes where are collected to get global SEI(n) 
and VEI(n). The fractional matrices are meant to be 
expressed such as xi(n|n)Pi (n|n)-1 - xi(n|n-1)Pi (n|n-1)-1 
for SEI(n), and Pi (n|n)-1 - Pi (n|n -1)-1 for VEI(n), where 
the subscript i denotes the i-th node and filter. The global 
filter of the i-th node computes global estimates by received 
SEI(n) of (12) and VEI(n) of (13). There the time updates 
of global state and covariance matrix are computed in (16) 
and (15), respectively. 
 

In each processor (node), a feedback process is 
running, where the global filter sends a global updated 
estimates x(n|n) and P(n|n) covariance matrix into its own 
local filter. This way, the x(n|n) and P(n|n) are interchanged 
with xi(n|n) and Pi (n|n), respectively. It refers to (17) and 
(18). Finally, the state estimate updates are evaluated in the 
same manner in all nodes. This fact tends to DKF data 
fusion, where the states are computed optimally. The global 
output can be obtained in (19). 

Each DKF estimator can be embedded in a sensor. 
Besides, in CKF structure all observations yvi need to be 
broadcasted to the corresponding i-th nodes. The advantage 
of DKF against CKF is an embedded processor of DKF in 
sensor; hence no central fusion is needed, see [12]. In DKF 
node the observations are used directly. In sense of 
estimation, the advantage of DKF is also the less sensitive 
estimator to corrupted SEI(n) and VEI(n) when corrupted 
broadcasting happens. In other words, each sensor node has 
its own processing element, and its own communication 
facilities. 

The DKF algorithm has a number of important features 
[11]: 

 
• Global estimates by all nodes are guaranteed to be 

exactly the same as those obtained by CKF. 
• A failure of any broadcasted signal tends to estimate 

degradation. But it will not result a whole system failure. 
This fact works in opposite to centralized fusion. 

• A small additional computation required. 
• Low communication overhead than similar structures. 
 
Each node must communicate one SEI(n) vector and 

one matrix VEI(n) to each other node. Assuming there are 
No sensing nodes and each node estimates a full state 
vector of dimension l, then a total of (l2 + l)( No-1) numbers 
need to be communicated in each cycle. In CKF systems 
(central fusion) only No numbers are equal to the number of 
sensors need to be broadcasted, [9]. 
 

III. TESTING THE KALMAN FILTERS FUSION AND PERFORMANCE 

 
In this section mentioned Kalman filters have been tested in 
data fusion. 
 

A. 3.1 Testing the CKF fusion and performance 
 
The CKF model is built according to equations of Table 1. 
In Figure 1, the filtered outputs of CKFs and CoKF are 
overlapped without any difference. In other words, the 
outputs of CKF and CoKF are the same quality and 
mathematically equivalent in this test. 
The Figure 2 shows the priori error variance of filtered 
outputs computed by C P(n|n-1) CT. Finally, all curves tend 
asymptotically to constant. On the basis of comparability 
with all models, the covariance time update performs quite 
the same. The singularity problem has no longer effect on 
state estimation performance. In the case of CoKF 
estimator, the MSE is shown in Table 1 in second row and 
the relative MSE in last one. The power of state x(n) is 
equal to 1.076. 

IV. CENTRALIZED AND DECENTRALIZED KALMAN 
FILTER COMPARISON 

 
In this section we will dedicate the effort to explore identity 
between decentralized, DKF, and centralized, CKF, Kalman 
filter which can be measured by mean square error MSE in 
state estimates in an experimental simulation study. The 
MSE values of CKF and DKF models will be compared 
although both models are derived mathematically see [11]. 
Both models are created according to Table 1 and 2 as a 
flow of control, and articles [9], [11-13]. 
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Table 1 Timing diagram of Model of CKF. 
 

 
 
 
 
 

 
 
Figure 1 The CKF and KF observations of first output. 
 

 
 

Figure 2 Priori error variance CP(n|n-1)CT of filtered outputs 
in CKF and CoKF. 
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Table 2 Timing diagram of DKF. 

 
 

Table 3 MSE of DKF; MSE of CKF; MSE of estimated state x(n|n) (DKF-CKF) comparison. 

 
 
 

Table 4 State vectors of Model of CKF, DKF and plant at n = 2 

 
 
 

Table 5 DKF verification toward to CKF result based on stated measurement. 
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Additionally, a relative MSE of a difference between 
DKF and CKF state estimates x(n|n) is shown at last row of 
the following table. The value in first row is related to 
difference between x(n) and x(n|n) of CKF state estimates. 
The second item explains a relative MSE of DKF computed 
in such way as the previous MSE in the first row. 

Both values are very similar to satisfy the numerical 
identity among CKF and DKF. The error comparison is not 
crucial in performance comparison of both estimators that is 
still to come. To make relevant comparison on estimators is 
to compute a difference between state vectors x(n|n) of 
DKF and CKF, see the last value. This relative MSE is 
about 103 times lower than the first two values. Actually, 
this value is expected to be small, because the DKF and 
CKF provide mathematically equal states. As an example, 
the Table 4 shows some sampled values of state vectors at n 
= 2. 

One can see no numerical difference in state elements 
of both estimators due to low precision. The last item shows 
the x(n) of plant that is on numerical comparability with 
x(n|n) of CKF and DKF. 

In our simulation, two sensors and two nodes of DKF 
estimator called DKF1 and DKF2 are shown. As shown in 
the last item of Table 1, the relative MSE is measured in the 
case of DKF1 and DKF2 and shown below in Table 5. 

So, the DKF and CKF operate well despite very small 
difference measured in state estimates. 
 

V. CONCLUSIONS 
We have measured the relative MSE about 10-2 in state 
estimates of CKF and DKF. Measured MSE of x(n|n) 
difference between DKF1, DKF2 and CKF is about 103 
smaller than the value mentioned firstly. These facts can be 
deeply clarified via in Table 1 and 5. In the practical point, 
we can say that both estimators perform on the same state 
estimation despite the unimportant difference in our 
MATLAB simulations. This fact is caused by a 
computational problem of covariance matrix singularity that 
can be overcome using the improvements. Said the 
improvements are needed however causing a little 
inconvenience as a numerical problem. Without the 
improvements either the DKF or CKF can not start up, that 
usually gives a singularity problem. This is certain 
constraint. Toward to the power of u(n) and x(n | n), the 
DKF is designed so that this error 3.429x10-7 is negligible. 
In our simulations all signals are broadcasted without any 
unknown latency or transmission failure in multi-sensor 
fusion. 
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