
 
 

 

 
Abstract— Classification is a data mining (machine learning) 

technique used to predict group membership for data instances. 
In this paper, we present the basic classification techniques. 
Several major kinds of classification method including decision 
tree induction, Bayesian networks, k-nearest neighbor 
classifier, case-based reasoning, genetic algorithm and fuzzy 
logic techniques. The goal of this survey is to provide a 
comprehensive review of different classification techniques in 
data mining. 

 
keywords— Bayesian, classification technique,  fuzzy logic 

I. INTRODUCTION 
  Data mining involves the use of sophisticated data 

analysis tools to discover previously unknown, valid patterns 
and relationships in large data set. These tools can include 
statistical models, mathematical algorithm and machine 
learning methods. Consequently, data mining consists of 
more than collection and managing data, it also includes 
analysis and prediction. Classification technique is capable of 
processing a wider variety of data than regression and is 
growing in popularity. 

There are several applications for Machine Learning (ML), 
the most significant of which is data mining. People are often 
prone to making mistakes during analyses or, possibly, when 
trying to establish relationships between multiple features. 
This makes it difficult for them to find solutions to certain 
problems. Machine learning can often be successfully 
applied to these problems, improving the efficiency of 
systems and the designs of machines. 

Numerous ML applications involve tasks that can be set up 
as supervised. In the present paper, we have concentrated on 
the techniques necessary to do this. In particular, this work is 
concerned with classification problems in which the output of 
instances admits only discrete, unordered values. 

Our next section presented Decision Tree Induction. 
Section 3 described Bayesian Network where as k-nearest 
neighbor classifier described in section 4. Finally, the last 
section concludes this work. 

2. DECISION TREE INDUCTION 
Decision trees are trees that classify instances by sorting them 
based on feature values. Each node in a decision tree 
represents a feature in an instance to be classified, and each 
branch represents a value that the node can assume. Instances 
are classified starting at the root node and sorted based on 
their feature values. An example of a decision tree for the 
training set of Table I. 
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Table I. Training set 

 
At1 At2 At3 At4 class 
a1 a2 a3 a4 yes 
a1 a2 a3 b4 yes 
a1 b2 a3 a4 yes 
a1 b2 b3 b4 no  
a1 c2 a3 a4 yes 
a1 c2 a3 b4 no 
b1 b2 b3 b4 no 
c1 b2 b3 b4 no 

 
Using the decision tree as an example, the instance At1 = 

a1, At2 = b2, At3 = a3, At4 = b4∗ would sort to the nodes: 
At1, At2, and finally At3, which would classify the instance 
as being positive (represented by the values “Yes”). The 
problem of constructing optimal binary decision trees is an 
NP complete problem and thus theoreticians have searched 
for efficient heuristics for constructing near-optimal decision 
trees. 

The feature that best divides the training data would be the 
root node of the tree. There are numerous methods for finding 
the feature that best divides the training data such as 
information gain (Hunt et al., 1966) and gini index (Breiman 
et al., 1984). While myopic measures estimate each attribute 
independently, ReliefF algorithm (Kononenko, 1994) 
estimates them in the context of other attributes. However, a 
majority of studies have concluded that there is no single best 
method (Murthy,1998). Comparison of individual methods 
may still be important when deciding which metric should be 
used in a particular dataset. The same procedure is then 
repeated on each partition of the divided data, creating 
sub-trees until the training data is divided into subsets of the 
same class. 

The basic algorithm for decision tree induction is a greedy 
algorithm that constructs decision trees in a top-down 
recursive divide-and-conquer manner. The algorithm, 
summarized as follows. 

1. create a node N; 
2. if samples are all of the same class, C then 
3. return N as a leaf node labeled with the class C; 
4. if attribute-list is empty then 
5. return N as a leaf node labeled with the most common 

class in samples; 
6. select test-attribute, the attribute among attribute-list 

with the highest information gain; 
7. label node N with test-attribute; 
8. for each known value ai of test-attribute 
9. grow a branch from node N for the condition 

test-attribute= ai; 

Survey of Classification Techniques in Data 
Mining  
Thair Nu Phyu 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009



 
 

 

10. let si be the set of samples for which test-attribute= ai; 
11. if si is empty then 
12. attach a leaf labeled with the most common class in 

samples; 
13. else attach the node returned by 

Generate_decision_tree(si,attribute-list_test-attribute) 
 

Fig.1 Algorithm for a decision tree 
 
A decision tree, or any learned hypothesis h, is said to over 

fit training data if another hypothesis h2 exists that has a 
larger error than h when tested on the training data, but a 
smaller error than h when tested on the entire dataset. There 
are two common approaches that decision tree induction 
algorithms can use to avoid over fitting training data: i) Stop 
the training algorithm before it reaches a point at which it 
perfectly fits the training data, ii) Prune the induced decision 
tree. If the two trees employ the same kind of tests and have 
the same prediction accuracy, the one with fewer leaves is 
usually preferred. Breslow & Aha (1997) survey methods of 
tree simplification to improve their comprehensibility. 

Decision trees are usually unvaried since they use based on 
a single feature at each internal node. Most decision tree 
algorithms cannot perform well with problems that require 
diagonal partitioning. The division f the instance space is 
orthogonal to the axis of one variable and parallel to all other 
axes. Therefore, the resulting regions after partitioning are all 
hyper rectangles. However, there are a few methods that 
construct multivariate trees. One example is Zheng’s(1998), 
who improved the classification accuracy of the decision 
trees by constructing new binary features with logical 
operators such as conjunction, negation, and disjunction. In 
addition, Zheng (2000) created at-least M-of-N features. For 
a given instance, the value of an at least M-of-N 
representation is true if at least M of its conditions is true of 
the instance, otherwise it is false. Gama and Brazdil (1999) 
combined a decision tree with linear discriminate for 
constructing multivariate decision trees. In this model, new 
features are computed as linear combinations of the previous 
ones. 

Decision trees can be significantly more complex 
representation for some concepts due to the replication 
problem. A solution is using an algorithm to implement 
complex features at nodes in order to avoid replication. 
Markovitch and Rosenstein (2002) presented the FICUS 
construction algorithm, which receives the standard input of 
supervised learning as well as a feature representation 
specification, and uses them to produce a set of generated 
features. While FICUS is similar in some aspects to other 
feature construction algorithms, its main strength is its 
generality and flexibility. FICUS was designed to perform 
feature generation given any feature representation 
specification complying with its general purpose grammar. 
The most well-know algorithm in the literature for building 
decision trees is the C4.5 (Quinlan, 1993). C4.5is an 
extension of Quinlan's earlier ID3 algorithm 
(Quinlan, 1979). One of the latest studies that compare 
decision trees and other learning algorithms has been done by 
(Tjen-Sien Lim et al. 2000). The study shows that C4.5 has a 
very good combination of error rate and speed. In 2001, 
Ruggieri presented an analytic evaluation of the runtime 
behavior of the C4.5 algorithm, which highlighted some 

efficiency improvements. Based on this analytic evaluation, 
he implemented a more efficient version of the algorithm, 
called EC4.5. He argued that his implementation computed 
the same decision trees asC4.5 with a performance gain of up 
to five times. 

 To sum up, one of the most useful characteristics of 
decision trees is their comprehensibility. People can easily 
understand why a decision tree classifies an instance as 
belonging to a specific class. Since a decision tree constitutes 
a hierarchy of tests, an unknown feature value during 
classification is usually dealt with by passing the example 
down all branches of the node where the unknown feature 
value was detected, and each branch outputs a class 
distribution. The output is a combination of the different class 
distributions that sum to 1. The assumption made in the 
decision trees is that instances belonging to different classes 
have different values in at least one of their features. Decision 
trees tend to perform better when dealing with 
discrete/categorical features. 
 

3. BAYESIAN  NETWORKS 
A Bayesian Network (BN) is a graphical model for 

probability relationships among a set of variables features. 
The Bayesian network structure S is a directed acyclic graph 
(DAG) and the nodes in S are in one-to-one correspondence 
with the features X. The arcs represent casual influences 
among the features while the lack of possible arcs in S 
encodes conditional independencies. Moreover, a feature 
(node) is conditionally independent from its non-descendants 
given its parents (X1 is conditionally independent from X2 
given X3 if P(X1|X2,X3)=P(X1|X3) for all possible values of 
X1, X2, X3). 
 
 

 
 

Fig.2 The structure of Bayes network 
 

Typically, the task of learning a Bayesian network can be 
divided into two subtasks: initially, the learning of the DAG 
structure of the network, and then the determination of its 
parameters. Probabilistic parameters are encoded into a set of 
tables, one for each variable, in the form of local conditional 
distributions of a variable given its parents. Given the 
independences encoded into the network, the joint 
distribution can be reconstructed by simply multiplying these 
tables. Within the general framework of inducing Bayesian 
networks, there are two scenarios: known structure and 
unknown structure. 

In the first scenario, the structure of the network is given 
(e.g. by an expert) and assumed to be correct. Once the 
network structure is fixed, learning the parameters in the 
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Conditional Probability Tables (CPT) is usually solved by 
estimating a locally exponential number of parameters from 
the data provided (Jensen, 1996). Each node in the network 
has an associated CPT that describes the conditional 
probability distribution of that node given the different 
values of its parents. In spite of the remarkable power of 
Bayesian Networks, they have an inherent limitation. This is 
the computational difficulty of exploring a previously 
unknown network. Given a problem described by n features, 
the number of possible structure hypotheses is more than 
exponential in n. If the structure is unknown, one approach is 
to introduce a scoring function (or a score) that evaluates the 
“fitness” of networks with respect to the training data, and 
then to search for the best network according to this score. 
Several researchers have shown experimentally that the 
selection of a single good hypothesis using greedy search 
often yields accurate predictions (Heckerman et al. 1999), 
(Chickering, 2002).  

The most interesting feature of BNs, compared to decision 
trees or neural networks, is most certainly the possibility of 
taking into account prior information about a given problem, 
in terms of structural relationships among its features. This 
prior expertise, or domain knowledge, about the structure of a 
Bayesian network can take the following forms: 

1. Declaring that a node is a root node, i.e., it has no 
parents.  

2. Declaring that a node is a leaf node, i.e., it has no 
children. 

3. Declaring that a node is a direct cause or direct effect of 
another node. 

4. Declaring that a node is not directly connected to 
another node. 

5. Declaring that two nodes are independent, given a 
condition-set. 

6. Providing partial nodes ordering, that is, declare that a 
node appears earlier than another node in the ordering. 

7. Providing a complete node ordering. 
A problem of BN classifiers is that they are not suitable for 

datasets with many features (Cheng et al., 2002). The reason 
for this is that trying to construct a very large network is 
simply not feasible in terms of time and space. A final 
problem is that before the induction, the numerical features 
need to be discredited in most cases. 
 

4. K-NEAREST NEIGHBOR CLASSIFIERS 
 
 Nearest neighbor classifiers are based on learning by 
analogy. The training samples are described by n 
dimensional numeric attributes. Each sample represents a 
point in an n-dimensional space. In this way, all of the 
training samples are stored in an n-dimensional pattern space. 
When given an unknown sample, a k-nearest neighbor 
classifier searches the pattern space for the k training samples 
that are closest to the unknown sample. "Closeness" is 
defined in terms of Euclidean distance, where the Euclidean 
distance, where the Euclidean distance between two points, 
X=(x1,x2,……,xn) and Y=(y1,y2,….,yn) is  

d(X, Y)= 2

1
)( i

n

i
i yx −∑

=

 

 The unknown sample is assigned the most common class 
among its k nearest neighbors. When k=1, the unknown 
sample is assigned the class of the training sample that is 
closest to it in pattern space. 

Nearest neighbor classifiers are instance-based or lazy 
learners in that they store all of the training samples and do 
not build a classifier until a new(unlabeled) sample needs to 
be classified. This contrasts with eager learning methods, 
such a decision tree induction and backpropagation, which 
construct a generalization model before receiving new 
samples to classify. Lazy learners can incur expensive 
computational costs when the number of potential neighbors 
(i.e.,stored training samples)with which to compare a given 
unlabeled smaple is great. Therefore, they require efficient 
indexing techniques. An expected lazy learning methods are 
faster ata trainging than eager methods, but slower at 
classification since all computation is delayed to that time. 
Unlike decision tree induction and backpropagation, nearest 
neighbor classifiers assign equal weight to each attribute. 
This may cause confusion when there are many irrelevant 
attributes in the data. 

Nearest neighbor classifiers can also be used for 
prediction, that is, to return a real-valued prediction for a 
given unknown sample. In this case, the classifier retruns the 
average value of the real-valued associated with the k neraest 
neighbors of the unknown sample. 

The k-nearest neighbors’ algorithm is amongest the 
simplest of all machine learning algorithms. An object is 
classified by a majority vote of its neighbors, with the object 
being assigned to the class most common amongst its k 
nearest neighbors. k is a positive integer, typically small. If k 
= 1, then the object is simply assigned to the class of its 
nearest neighbor. In binary (two class) classification 
problems, it is helpful to choose k to be an odd number as this 
avoids tied votes.  

The same method can be used for regression, by simply 
assigning the property value for the object to be the average 
of the values of its k nearest neighbors. It can be useful to 
weight the contributions of the neighbors, so that the nearer 
neighbors contribute more to the average than the more 
distant ones. 

The neighbors are taken from a set of objects for which the 
correct classification (or, in the case of regression, the value 
of the property) is known. This can be thought of as the 
training set for the algorithm, though no explicit training step 
is required. In order to identify neighbors, the objects are 
represented by position vectors in a multidimensional feature 
space. It is usual to use the Euclidian distance, though other 
distance measures, such as the Manhanttan distance could in 
principle be used instead. The k-nearest neighbor algorithm is 
sensitive to the local structure of the data. 

 
 

4.1 INSTANCE-BASED LEARNING 
 

Another category under the header of statistical methods is 
Instance-based learning. Instance-based learning algorithms 
are lazy-learning algorithms (Mitchell, 1997), as they delay 
the induction or generalization process until classification is 
performed. Lazy-learning algorithms require less 
computation time during the training phase than 
eager-learning algorithms (such as decision trees, neural and 
Bayes nets) but more computation time during the 
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classification process. One of the most straightforward 
instance-based learning algorithms is the nearest neighbor 
algorithm. Aha (1997) and De Mantaras and Armengol 
(1998) presented a review of instance-based learning 
classifiers. Thus, in this study, apart from a brief description 
of the nearest neighbor algorithm, we will refer to some more 
recent works. k-Nearest Neighbor (kNN) is based on the 
principle that the instances within a dataset will generally 
exist in close proximity to other instances that have similar 
properties (Cover and Hart, 1967). If the instances are tagged 
with a classification label, then the value of the label of an 
unclassified instance can be determined by observing the 
class of its nearest neighbors. The Knn locates the k nearest 
instances to the query instance and determines its class by 
identifying the single most frequent class label. In Figure 8, a 
pseudo-code example for the instance base learning methods 
is illustrated. 

 
procedure InstanceBaseLearner(Testing 
Instances) 
for each testing instance 
{ 
find the k most nearest instances of 
the training set according to a 
distance metric 
Resulting Class= most frequent class 
label of the k nearest instances 
} 

Fig.3 Pseudo-code for instance-based learners 
 

In general, instances can be considered as points within an 
n-dimensional instance space where each of the 
n-dimensions corresponds to one of the n-features that are 
used to describe an instance. The absolute position of the 
instances within this space is not as significant as the relative 
distance between instances. This relative distance is 
determined by using a distance metric. Ideally, the distance 
metric must minimize the distance between two similarly 
classified instances, while maximizing the distance between 
instances of different classes. Many different metrics have 
been presented. The most significant ones are presented in 
Table II. 

For more accurate results, several algorithms use 
weighting schemes that alter the distance measurements and 
voting influence of each instance. A survey of weighting 
schemes is given by (Wettschereck et al., 1997). The power 
of kNN has been demonstrated in a number of real domains, 
but there are some reservations about the usefulness of kNN, 
such as: i) they have large storage requirements, ii) they are 
sensitive to the choice of the similarity function that is used to 
compare instances, iii) they lack a principled way to choose k, 
except through cross-validation or similar, 
computationally-expensive technique (Guo et al. 2003). The 
choice of k affects the performance of the Knn algorithm. 
Consider the following reasons why a knearest neighbour 
classifier might incorrectly classify a query instance: 
� When noise is present in the locality of the query instance;               
the noisy instance(s) win the majority vote, resulting in the 
incorrect class being predicted. A larger k could solve this 
problem. 
   When the region defining the class, or fragment of the 
class, is so small that instances belonging to the class that 
surrounds the fragment win the majority vote. A smaller k 
could solve this problem. 

 

 
Table II.  Approaches to define the distance between 

instances (x and y) 
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Wettschereck et al. (1997) investigated the behavior of the 

kNN in the presence of noisy instances. The experiments 
showed that the performance of kNN was not sensitive to the 
exact choice of k when k was large. They found that for small 
values of k, the kNN algorithm was more robust than the 
single nearest neighbor algorithm (1NN) for the majority of 
large datasets tested. However, the performance of the kNN 
was inferior to that achieved by the 1NN on small datasets 
(<100 instances). 

Okamoto and Yugami (2003) represented the expected 
classification accuracy of k-NN as a function of domain 
characteristics including the number of training instances, the 
number of relevant and irrelevant attributes, the probability 
of each attribute, the noise rate for each type of noise, and k. 
They also explored the behavioral implications of the 
analyses by presenting the effects of domain characteristics 
on the expected accuracy of k-NN and on the optimal value 
of k for artificial domains. 

The time to classify the query instance is closely related to 
the number of stored instances and the number of features 
that are used to describe each instance. Thus, in order to 
reduce the number of stored instances, instance-filtering 
algorithms have been proposed (Kubat and Cooperson, 
2001). Brighton & Mellish (2002) found that their ICF 
algorithm and RT3 algorithm (Wilson & Martinez, 2000) 
achieved the highest degree of instance set reduction as well 
as the retention of classification accuracy: they are close to 
achieving unintrusive storage reduction. The degree to which 
these algorithms perform is quite impressive: an average of 
80% of cases is removed and classification accuracy does not 
drop significantly. One other choice in designing training set 
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reduction algorithm is to modify the instances using a new 
representation such as prototypes (Sanchez et al., 2002).    
Breiman (1996) reported that the stability of nearest neighbor 
classifiers distinguishes them from decision trees and some 
kinds of neural networks. A learning method is termed 
"unstable" if small changes in the training-test set split can 
result in large changes in the resulting classifier. 

As we have already mentioned, the major disadvantage of 
instance-based classifiers is their large computational time 
for classification. A key issue in many applications is to 
determine which of the available input features should be 
used in modeling via feature selection (Yu & Liu, 2004), 
because it could improve the classification accuracy and 
scale down the required classification time. Furthermore, 
choosing a more suitable distance metric for the specific 
dataset can improve the accuracy of instance-based 
classifiers. 
 

5. CONCLUSION 
 Decision trees and Bayesian Network (BN) generally have 
different operational profiles, when one is very accurate the 
other is not and vice versa. On the contrary, decision trees 
and rule classifiers have a similar operational profile. The 
goal of classification result integration algorithms is to 
generate more certain, precise and accurate system results. 
Numerous methods have been suggested for the creation of 
ensemble of classifiers. Although or perhaps because many 
methods of ensemble creation have been proposed, there is as 
yet no clear picture of which method is best. 
 Classification methods are typically strong in modeling 
interactions. Several of the classification methods produce a 
set of interacting loci that best predict the phenotype. 
However, a straightforward application of classification 
methods to large numbers of markers has a potential risk 
picking up randomly associated markers. 
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