

Abstract—A novel point access method based on compressed

B+-trees is developed to support the efficient querying of the past,
current, and anticipated future position of moving objects in this
paper. The contributions of the proposed approach are twofold.
First, the spatial and temporal information of mobile objects are
handled by the compact tree hierarchies with high space
utilization and least storage requirement. Second, the resulting
indexing structures provide the simple searching methods and
efficient query performance. Analytical studies show that the
proposed indexing scheme is more efficient than TPR-tree.

Index Terms—Spatiotemporal database, indexing structures,
compressed B+-tree, trajectories

I. INTRODUCTION

Moving objects change their positions/geometries over
time and thus their attribute values alter continuously. Moving
points are objects whose spatial sizes are zero and their
trajectories change over time. Many applications that create
such mobile objects, including traffic surveillance data [5],
intelligent vehicle systems [4], users of wireless devices [12],
wildlife distribution management, disease surveillance data,
and remote sensing application. In addition, moving objects
with non-zero sizes may grow/shrink their extents or areas
over time. As far as object’s movements are concerned, some
representative points inside non-zero size objects are taken
for tracking their trajectories. Spatiotemporal database
systems [1] are responsible to the management of continuous
movements of mobile objects.

In this paper, we develop a new indexing scheme for
handling spatiotemporal data, which is designed to support
applications involving continuous movement that includes the
historical, the current, and the anticipated future positions of
moving objects. The technique naturally extends the
compressed B+-tree [10]. Instead of appealing any geometric
objects or data transformation to represent their continuous
motions, the endpoints of objects’trajectories are handled
directly in our method. Further, basic insertion and deletion
operations are enough for maintaining the index. No other
operation is required for data updates. Removal of the expiry
movements which are valid at some past time intervals may
cause partial restructuring in the index. However, no periodic
index rebuilding is required in our design. The proposed
indexing structure can not only utilize the economic storage
requirement but also fast perform queries on a large scale of
database. The issues addressed in this paper include the

Manuscript received December 24, 2008. This work was supported by the
Nation Science Council of ROC under Grant No. 97-2221-E-025-014-.

Hung-Yi Lin is with the National Taichung Institute of Technology, 129,
Sanmin Rd., Sec. 3, Taichung, TAIWAN, R.O.C (phone: 886-4-2219-6769;
fax: 886-4-2219-6161; e-mail: linhy@ ntit.edu.tw).

classification of spatial and temporal data, the insertion,
deletion, and maintenance algorithms. In addition, the
analytical study and query performance are also covered to
have the competitive comparison between TPR-tree indexing
scheme and our method.

II. INDEXING SCHEMES

Consider the space-time plane as shown in Fig. 1, where the
issue timestamps, valid time intervals, and finish timestamps
of moving objects distribute on the time-axis. The start
positions, end positions, and the related space involved by
moving objects are lying on the value-axis. The trajectories of
four moving objects O1、O2、O3 and O4 are generated in an
one-dimensional space. The movement of object O1 is
composed of line segments C、E and H in the space-time
plane. The object O2 keeps still and then its trajectory
(denoted by D) is the line segment parallel to the time-axis.
The movements of object O3 is composed of line segments
F 、 J and K. The object O4 generates the trajectories
corresponding to the segments G and I.

For managing all movements in a spatiotemporal database
(denoted by STDB), we preserve the temporal attributes of
moving points in one CB+-tree and preserve the spatial
attributes relative the same moving points in another
CB+-tree(s). TCB+-tree and SCB+-tree are used to denote
temporal and spatial CB+-tree for short, respectively. For
two-dimensional moving objects, one TCB+-tree associated
with two SCB+-trees (horizontal & vertical directions) are
built for a STDB. When a n-dimensional STDB is considered,
one TCB+-tree and n indices of SCB+-trees are built.

In the following, only one-dimensional moving objects are
considered. First of all, our method extracts the temporal and
spatial coordinates of endpoints of all trajectory segments (S)
into two datasets Dt and Dy, which contain linearly ordered
indexing data. That is,

Fig. 1 Space-time representation for one-dimensional moving points.

Indexing the Trajectories of Moving Objects
Hung-Yi Lin, Member, IAENG

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

}.,
0||,ofvalue-temporaltheis|{

STDBS

SSttD t
kk

t

 (1)

}.,
ofvalue-spatialtheis|{

STDBS

SyyD kk
y

 (2)

Nine trajectory segments share 11 endpoints in common in
Fig. 1. The timestamp t4 is shared by trajectory segments E, G,
and H on the time-axis. Notably, a vertical segment is
improper since it means that an object’s location is indefinite
at a fixed time. However, a horizontal segment means that an
object stays still at a specific position during a time period.
Our indexing scheme includes such stillness in the design.
Every horizontal segment contributes one single record to Dy

and two records to Dt.

A. Temporal CB+-tree
The internal structure of a TCB+-tree is a directory recording

the critical timestamps when the objects issue, change, or
terminate their movements. Object identifiers are classified
by the critical timestamps and preserved at the bottom
structure referred by the leaf entries of a TCB+-tree. For a
STDB as shown in Fig. 1, after collecting all critical
timestamps to Dt, the data sequence

6543210 ttttttt is applied for the construction
of TCB+-tree. Let ti denote an arbitrary timestamp on the
time-axis, which may be an element in Dt or not. Terms

it and

it are defined as the timestamps before and after ti in Dt.

Namely, we can not find tm in Dt such that imi ttt or
 imi ttt . The same argument is applied on the value-axis.

For timestamp ti, the bucket)(it includes the object
identifiers that their movements keep moving in [ti, ti

+].
Namely, }where,0||and0],[|{)(STDBSSSttSt tt

iii .
A modification improves the bottom structure of the resulting
TCB+-tree by eliminating the same identifier information
between two consecutive buckets. The buckets referred by
every leading key in leaves list the detailed information of
related object identifiers. However, the minus (or plus)
symbol in the consequent buckets excludes (or includes) the
object from the former bucket. Fig. 2 illustrates a complete
TCB+-tree.

B. Spatial CB+-tree
The construction of SCB+-tree is based on organizing the

critical locations of movements on the value-axis. The critical
locations include the departure and arrival positions, the
positions on which moving objects change their speeds and
directions. The inertial and linear movement between two
critical locations are not recorded but they are implied by the
preservation at the bottom structure of a SCB+-tree.

Fig. 2 TCB+-tree.

Dissimilar to the bucket contents of a TCB+-tree, one
SCB+-tree uses S, S’, and S to distinguish the onward,
backward, and still motions for a trajectory S with departure
and arrival positions xx SS 21 and . Following three criteria
classify the object identifiers into the correct buckets at the
bottom structure of a SCB+-tree.

}where,
and0||and0],[|{)(21

STDBS

SSSSxxSx xxtx
iii

 (3)

}where,
and0||and0],[|'{)(21

STDBS

SSSSxxSx xxtx
iii

 (4)

}where,
0||and0||and0],[|{)(

STDBS

SSSxxSx xtx
iii

 (5)

At time t0 in Fig. 1, segment C departs at position 40 and
moves onward. This movement makes 40 inserted to the
SCB+-tree and creates bucket {C} referred by 40. At time t1,
segment D appears but stays still. This makes 30 inserted to
the index and creates the bucket { D } referred by 30.
Positions 50 and 60 are inserted at time t2 and position 15 is
inserted at time t3. Particularly, at time t4, a backward
movement is issued at position 90. Position 90 becomes a
critical location and then it is inserted to the index. However,
as suggested by the second criterion(5), because [90－,90]
covers G’s backward movement on the value-axis, the bucket
referred by 90－ (i.e. 70) will include G′in its content so
that }'G{)70(and)90(. Further, applying the tuning
mechanism similar to the TCB+-tree, the complete SCB+-tree
is shown in Fig. 3.

C. Querying
The queries supported by the index retrieve all trajectory

segments with overlaps with the specified regions. We
distinguish five types of query based on the region they
specify. Let t, ta<tb be three time values that are not less than
the initial time t0 and I, I1, and I2 are three spatial intervals for
querying the value-axis.
Type 1: Point query: Q=(t, y) specifies a specific position y at
the timestamp t.
Type 2: Interval query (slice query): Q=(t, I) and Q=(ta, tb, y)
issue a time-slice and a location-slice query, respectively.
Q=(t, I) specifies a spatial interval I at the timestamp t. Q=(ta,
tb, y) specifies a query located at position y during the time
interval between ta and tb. For example, in Fig. 4, Q0 and Q1

are the time-slice and location-slice query, respectively.
Type 3: Window query: Q=(ta, tb, I) specifies a spatial interval
I that covers the time interval [ta, tb]. Q2 in Fig. 4 is a window
query.
Type 4: Predictive query: Q=(now, I) specifies a spatial
interval I at the current time. Namely, this query is designed to
retrieve all trajectory segments which have inertia movements
passing through I from the current time to some limited future
(i.e. now+). Q4 in Fig. 4 is a predictive query about the spatial

Fig. 3 SCB+-tree.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

Fig. 4 Query examples for one-dimensional data.

interval [60, 80]. Further, window query Q=(t, now, I)
retrieves all mobile objects which keep moving and pass
through I during the time interval [t, now+].
Type 5: Moving query: Q=(ta, tb, I1, I2) specifies the trapezoid
obtained by connecting I1 at time ta to I2 at time tb. Q3 in Fig. 4
illustrates this type.

The type 3 can generalize type 1, type 2, and type 4. The
type 3 itself is a special case of type 5. To illustrate the data
retrieving process for various query types, Q0 to Q4 are
assigned as follows for demonstration.

Q0=(),(10 ttt , [45,55])
Q1=(),(32 ttta ,),(43 tttb , 58)
Q2=(),(43 ttta ,),(54 tttb , [59,92])
Q3=(),(54 ttta ,),(65 tttb , [63,73], [58,73])
Q4=(now, [60,80])

The implementation of query processes is threefold: 1)
searching on the TCB+-tree for the temporal output, 2)
searching on the SCB+-tree for the spatial output, 3) retrieving
the common part of the temporal and spatial outputs. Since
TCB+-tree and SCB+-tree are so compressed that they can
resident at the main memory. And, the spatial queries on
SCB+-tree and temporal queries on the TCB+-tree can execute
concurrently. For query Q0,),(10 ttt is applied on searching
TCB+-tree and the bucket {C} referred by a leading entry is
retrieved. On the other hand, [45,55] is applied on searching
SCB+-tree and bucket {+E} is obtained. Bucket {+E} is
referred by a non-leading entry of the leaf in the SCB+-tree.
The complete content of this bucket is reasoned as {C, E}.
Segment C is the common identifier of the two retrieved
buckets and then {C} is the final output for Q0. The related
outputs of Q1 to Q4 are listed in Table 1.

Notably, two trajectories with onward movements
(segment E and H) and one trajectory with backward
movement are retrieved by Q2. For the process of moving
query, two sub-window queries Q31 and Q32 as shown in Fig. 5

Fig. 5 The partition of a moving query.

are used to cover the trapezoid derived from Q3. The
partitioning positions for sub-windows are set at which the
elements in Dt joint with Qt. In this example, }{ 53 tQD tt .
Therefore, Q3 is replaced by Q31=([ta, t5], I′) and Q32=([t5, tb],
I″), where]73),6358()/()(63[' 5 aba ttttI and
I″=[58,73]. Q31 and Q32 collaborate to retrieve two onward
segments G and H plus the backward segment I. For query Q4,
the result predicts that the onward H and backward I are going
to pass through the spatial interval [60,80] in the near future.

Without loss the generality, the spatial information of a
STDB can also used to capture information of our
surroundings by aspatial data for other applications. For
instance, some environment probing need databases to handle
the information about temperatures, pressures, or humidity
versus temporal data. So, database users may issue the similar
query Q0 in Fig. 4 and interest in the objects whose
temperatures are between 45 to 55 unit degrees at time t. In
addition, other users may desire to retrieve the dynamic things
related to a time interval [ta, tb] and a specific temperature of
58 unit degrees. Q2 and Q3 can meet the application of ocean
exploring for searching some objects bearing some specific
pressure values during a specific time interval. What is more
interesting, meteorologists may expect to predict that some
areas would have a specific humility value (for example
60~80 as Q4) in the limited future.

III. INDEX MAINTENANCE

In this section, we explore the issues and complexity
involved in maintaining the TCB+-tree and SCB+-tree. Index
maintenance covers insertion and deletion of data records
and/or tree nodes. Since the leaf nodes of one CB+-tree always
keep at least 75% full, the impact of an insertion (or a deletion)
against the CB+-tree is mostly local and limited. Generally,
only three aspects are involved. The first is the object
identifies in the retrieved buckets at the bottom structure. The
second is the entry contents in the target and/or the sibling
node. The third is the modification of the related key in the
non-leaf node. In order to verify that less data updating
overhead is required to our indexing scheme, we sketch the
procedures in progressing batches of insertions and deletions.
Besides data updates in the content of nodes and buckets, a
batch work always involves index restructuring. The general
steps for a batch work are as follows:
1) find the target leaf node for data insertions/deletions,

Table 1 The query outputs for Q1 to Q4.
Query Temporal outputs Spatial data outputs Final outputs

Q1 {D,E,F} {C, E } {E}
Q2 {D,E,F,G,H} {C,E,H,I′,G′} {E,G′,H}
Q3 {D,F,G,H}{D,H,I,J} {E,H,I′,G′}{C,E, H,I′,G′} {G, H}{H,I}={G,H,I′}
Q4 {D,H,I,K} {E,H,I′,G′} {H, I′}

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

2) insert/delete records to/from the target node, and
3) shift/redistribute the records in the target and sibling

node, and
4) insert/delete leaf and non-leaf nodes to/from the index

tree, and
5) update the data pointers.

Fig. 6 shows an example in illustrating the complexity of
indexing restructuring for a batch of insertions. The initial
TCB+-tree is given at step (a) in Fig. 6. The generation of new
temporal data is totally ordered. Namely, the value of later
temporal data is always larger than the last element in Dt.
Therefore, insertions to a TCB+-tree will append new entries
to its rightmost leaf. For example, a batch of data with order

121110987 tttttt is applied, t7 and t8 make the
last leaf node overflowed. Datum t5 is shifted to the left sibling
so that the rightmost leaf can accommodate t7 and t8. After that,
the upper entry in the parent (root) is modified (see step (b) in
Fig. 6). Then t9 makes the last leaf node overflowed again, a
split of the overflowed leaf node is then carried out. There
occurs a new entry to the parent node (see step (c) in Fig. 6).
When t10 and t11 are inserted to the TCB+-tree, the overloading
makes t8 being removed to the left sibling and this
redistribution permits the accommodation of t10 and t11

without appealing to node splitting (see step (d) in Fig. 6).
Finally, a split of the last leaf node and subsequently a further
split of the non-leaf parent node are carried out by the
insertion of t12. Since the parent node is also the root for the
initial tree, the root splitting creates the new root and grows
the tree with one more level as shown at step (e) in Fig. 6. The
handle that a full target appeals to its underflow sibling is the
important characteristic of CB+-tree.

Next we present the complexity of index restructuring for a
batch of deletions. We also present another example as shown
in Fig. 7. The initial tree is given at step (a) in Fig. 7. The
expiry data are always those temporal data generated earliest.
The deletions of expiry data must happen to the leftmost side
of the leftmost leaf node in the TCB+-tree. Suppose the
temporal data less and equal t5 are going to become overdue in
this illustration. We expect to recovery the similar data
arrangement and the same tree hierarchy as shown previously
before data 127 to tt are inserted. At first, data (210 ,, ttt) in
the first leaf are removed. As shown at step (b) in Fig. 7, the
first leaf node is returned to the system and the pointer
corresponding this leaf node becomes void. Note that the
entry at the parent is replaced by the maximum of all entries in
the next leaf node. Due to the underflow, a merging with
sibling nodes is carried out at the second level. Because the
non-leaf node (t5) has the same entry with its parent node (root
node (t5)), these two non-leaf nodes are collapsed together.
Consequently, a new non-leaf node (t5, t8, t10) is created (see
step (c) in Fig. 7). Finally, data 53 ~ tt also become overdue
and must be removed from the index. Again, the leftmost leaf
node is removed from the index and this operation causes the
upper related entry and the corresponding pointer are
removed from the parent node. The resulting index returns to
the same manner as the initial tree in Fig. 6. As regards the
SCB+-tree, insertion and deletion may happen to anywhere at
leaf level. The processes of data shifting and data merging can

Fig. 6 The index maintenance for insertion operations.

follow either right pointer or left pointer to find the suitable
sibling for index restructuring. We omit to illustrate the
process of data inserting and deleting in a SCB+-tree.

IV. ANALYTICAL EVALUATION

In this section, the spatiotemporal data moving on a
two-dimensional space is utilized for analytical studies. The
node capacity (order), bucket size, data size, and index depth
are first investigated for facilitating the analysis of internal
and external structures of the index. The storage requirement

Fig. 7 The index maintenance for deletion operations.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

of an index is analyzed via collecting the number of non-leaf
and leaf nodes generated in the index. The query performance
of an index is evaluated via counting the number of involved
nodes and the number of triggered data comparisons in the
searching process. The following system parameters are used
in our analysis.
 B: Memory block size;
 t: Integer size;
 p: Pointer size;
 N: The data amount of moving objects in a database;

M ,
M : The orders of CB+-tree and TPR-tree;

For handling the movements of 2D moving objects, every
entry in a TPR-tree’s leaf nodes contains a pair of the position
parameter and a pointer to the moving point. There is also a
pointer links to the next leaf. Similarly, every entry in a
TPR-tree’s non-leaf nodes is a pair of a pointer to a sub-tree
and a rectangle that bounds the positions of all moving points
or other bounding rectangles in that sub-tree. Then, the order

M of TPR-tree follows the formula:

)4/()()4(ptpBMBpptM (6)

On the other hand, although each leaf node of a CB+-tree
needs two links to its fore and next sibling, the order of a
CB+-tree is larger than that of a TPR-tree when the same
spatiotemporal data are handled. This is because every data
entry preserved in a CB+-tree has merely one indexing value
and one pointer. Then, together with two pointers link to the
siblings, the order

M of CB+-tree is given as following:

)/()2(2)(ptpBMBpptM
(7)

In the general implementation, 4 Kbytes is a reasonable
size for a memory block. One integer number and one pointer
employ 16 bytes and 32 bytes, respectively. As a result,

M and
M are approximated as 84 and 43. This means that

each node of CB+-tree and TPR -tree can respectively
accommodate at most 84 and 43 entries. The data capacity of
one node in a CB+-tree is twice of that in a TPR -tree.

A. The evaluation of storage requirement
The average number of data preserved in a bucket is

approximately determined as ||2 tDN and ||2 yDN for
TCB+-tree and SCB+-tree, where N is the total amount of data
handled by the index. The magnitude of buckets is bounded
by the size of || tD (or || yD) as given in [9]. For convenience,
we assume that the arrival of mobile objects is a Poisson
process. Hence, their inter-arrival time is exponentially
distributed with a mean 1 . Let X be a Poisson random
variable which represents the number of arrivals in unit time.
Then |Dt| and |Dy| can be approximated by

 NeeNXN 2)]1(1[2)0Prob(2 (8)

The average number of data preserved in a bucket is thus
given by eNeN 22 .

Our CB+-tree has the near-full accommodation at leaf level,
then the number of leaf nodes can approximate as

 MNe /)2(. Since CB+-tree does not organize the
compactness in its internal structure, the accommodation of

non-leaf nodes in a CB+-tree is supposed to possess the
similar utilization as that of a traditional B+-tree. That is

 %1002ln 69.3% full [15]. We account for the leaf and
non-leaf nodes together; the total amount of nodes generated
by a SCB+-tree or a TCB+-tree is approximated by

)]12ln/()2ln[(/)2(

])2ln/(11[/)2(

MMMNe

MMNe (9)

On the other hand, the total amount of nodes generated by a
TPR-tree is approximated by

)]12ln/()2ln[()2ln/(

])2ln/(11[)2ln/()2(

MMMN

MMNe (10)

The depth of a SCB+-tree (or a TCB+-tree) and a TPR-tree
are approximated by

 1/)2(log 2ln

MNeM
and

 1)2ln/(log 2ln
MNM

, respectively. The ratio between

their major parts is

)log2lnlog/(log)2loglog(log

)]2ln/(/[log]/)2[log(

)]2ln/(/[log]/)2[log(

)]2ln/[log()]2ln[log(

))2ln/(log/()/)2(log(2ln2ln

MNMeN

MNMNe

MNMNe

MM

MNMNe MM

(11)

Since 2lne and
 MM 2/ , the ratio value is less than 1.

It reveals that the depth of a SCB+-tree (or TCB+-tree) is
always shorter than that of a TPR-tree.

For the completeness of analysis, we apply the data amount
N=105 and 1 to the simulation and the related results are
listed in Table 2. Notably, the average number of entries
accommodated in a TPR-tree’s leaf is about 30%3.6943 .
Two SCB+-trees and one TCB+-tree cooperate to complete the
indexing work. The ratio of total nodes generated between our
method and TPR-tree is about 77.03473/)8923(. This
reveals that the more economic storage requirement is
entailed on our method.

B. The evaluation of query performance
Since the compactness is ensured by the proposed indexing

techniques we suppose the whole index trees can resident in
the memory. The time complexity of data comparison
executed between two values is assumed to be O(1) and the
time complexity of data search starting from the roots of
SCB+-trees and TPR-tree is investigated in this subsection.
Since one round of point query in a CB+-tree only activates
one single search path. It involves
H=

 1/)2(log 2ln

MNeM
nodes in the search path. In

average, every non-leaf node is %1002ln full and every leaf

Table 2. The simulated results of a SCB+-tree (or TCB+-tree)
and a TPR-tree.

Indexing
scheme Order # leaves # nodes Depth

CB+-tree 84 876 892 3
TPR-tree 43 3356 3473 4

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

node is near 100% full, where we suppose half of the entries in
the involved non-leaf and leaf nodes are taken for data
comparison. The average time complexity for completing one
round of point query on the SCB+-trees (or TPR-tree) is
approximately estimated as

)1()2/2/)2ln(

/)2(log()1Type(2ln

OMM

MNeO M

 (12)

One round of interval query in a CB+-tree launches two
single search paths. These two paths traverse the index tree
and arrive at leaf level for retrieving two target data covering
the query interval. Hence, (2H-2) non-leaf nodes and two
target leaf nodes on the paths are involved. The time
complexity of an interval query on the SCB+-trees (or
TPR-tree) is approximately estimated as

)1()12ln/)2(log(

)1(]2/22/)2ln()22[()2Type(

2ln OMMNe

OMMHO

M

(13)

As regards window query, the total time complexity is
approximated as

)1()]axis-timeon thequeryType2or1Type(
)axis-on thequery2Type(

)axis-on thequery2Type([)3Type(

OO
yO

xOO

(14)

As far as TPR-tree is concerned, one round of rectangle
comparison needs eight times of data comparison. This is
because, for the x-value, the lower and upper x-coordinates of
the issued query MBR execute data comparisons with the
lower and upper x-coordinates of the candidate MBR. It
consumes the time complexity of)1(4 O . The same augments
are applied on the y-value. So, one round of rectangle
comparison spends the higher overhead that is eight times of
one round of data comparison. Namely, in a TPR-tree’s
non-leaf or leaf node, the average computing time of

2/)2ln()1(8 MO is required to decide the next

appropriate node for further searching. Unfortunately, the
worst matter is the multiple paths. The average time
complexity is approximated as 2/)2ln()1(8 MOcH ,

where c is the multiple factor satisfying 2ln1 Mc and

H is the depth of TPR-tree. Index depth, data comparison
complexity, and search path are three major causes that make
all types of query on a CB+-tree more efficient than on a
TPR-tree.

V. CONCLUSION

The compactness and stable query performance of indexing
structures are two major contributions in this study. The using
of compressed indexing structures makes data queries
processed in a condensed memory bound so that the retrieval
costs are limited within a very satisfactory range. Space and
time efficiencies are simultaneously achieved by our indexing
scheme.

The future direction of research is to preserve the spatial
and temporal relations among mobile objects. Techniques for
answering complex queries, such as reporting the areas with
high density of mobile objects, predicting the time moment

when a specific amount of mobile object will emerge or
vanish, are of high practical interest. Furthermore, it would be
also worth considering the problem in reporting the average
velocity of a stream of mobile objects with similar
movements.

REFERENCES

[1] T. Abraham and J.F. Roddick, “Survey of Spatio-Temporal
Databases,” GeoInformatica, 1999, 3(1), pp. 61-99.

[2] N. Beckmann, H. Kriegel , R. Schneider and B. Seeger,“The R*-tree:
an efficient and robust access method for points and rectangles,”
Proceeding of ACM SIGMOD, 1990.

[3] H. Berliner, “The B*-tree search algorithm: a best-first proof
procedure,”Tech. Rep. CUM-CA-78-112, Computer Science Dept.,
Carnegie-Mellon Univ., Pittsburgh, 1978.

[4] R. Bishop,“Intelligent Vehicle Technology and Trends,”Baker & Tayl,
2005.

[5] M. Bramberger, J. Brunner, B. Rinner and H. Schwabach,“Real-time
video analysis on an embedded smart camera for traffic surveillance,”
10th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS'04), 2004.

[6] C.S. Jensen, D. Lin and B.C. Ooi,“Query and Update Efficient B+-tree
Based Indexing of Moving Objects,”Proceedings of the 30th VLDB
Conference 2004, Toronto, Canada.

[7] G. Kollios, D. Papadopoulos, D. Gunopulos and V.J. Tsotras,
“Indexing mobile objects using dual transformations,” The VLDB
Journal, 2005, 14(2), pp. 238-256.

[8] Y. Kuroda and Y. Amitani, “TRITON: New ocean and atmosphere
observing buoy network for monitoring ENSO,”Umi no Kenkyu, 2001,
pp. 157-172.

[9] H.Y. Lin,“Efficient and Compact Indexing Structure for Processing of
Spatial Queries in Line-based Databases,”Data & Knowledge
Engineering, 2008, 64(1), pp. 365-380.

[10] H.Y. Lin, R.C. Chen and S.Y. Chen, “Enhancement of Data
Aggregation Using A Novel Point Access Method,” WSEAS
Transactions on Computers, issue 12, vol. 7, December 2008, pp
2001-2010.

[11] D. Papadopoulos, G. Kollios, D. Gunopulos and V. J. Tsotras,
“Indexing mobile objects on the plane,”Proceedings of 13th
International Workshop on Database and Expert Systems
Applications, 2002.

[12] T. Pering, V. Raghunathan and R. Want,“Exploiting radio hierarchies
for power-efficient wireless device discovery and connection setup,”
18th International Conference on VLSI Design, 2005.

[13] S. Saltenis, C. S. Jensen, S. T. Leutenegger and M. A. Lopez,“Indexing
the positions of continuously moving objects,”Proceedings of the
ACM International Conference on Management of Data, 2000, Dallas,
USA: ACM Press.

[14] Y. Tao, D. Papadias and J. Sun, “The TPR*-tree:an optimized
spatio-temporal access method for predictive queries,”Proceedings of
the 29th International Conference on Very Large Data Bases 2003:
Berlin, Germany, pp. 790-801.

[15] A. Yao, “Random 2-3 trees,”Acta Informatica, 1978, 2(9), pp.
159-170.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

