
 

 

 

  

Abstract—This paper present an alternative method for fuzzy 

switching regression analysis. The traditional fuzzy c-regression 

(FCR) is a method by embedding the fuzzy c-means (FCM) into 

switching regression. By defining an alternative residual 

measurement, we modified the fuzzy c-regression (FCR) and 

proposed an alternative fuzzy c-regression (AFCR). The 

proposed method is more robust to noise and outlier than the 

EM and FCR algorithms. Numerical examples show the 

robustness and superiority of our proposed method. 

 
Index Terms—Switching regression, EM algorithm, fuzzy 

c-regression, alternative fuzzy c-regression, robustness.  

 

I. INTRODUCTION 

Regression analysis is used to model the function relation 

between the independent and dependent variables. Usually, a 

single regression model is used for fitting a data set. However, 

the data set may contain more than one regression model, say 

c regression models. This kind of model fitting is called 

switching regressions. Quandt [1,2] and Chow [3] initiated 

the studies of switching regressions. Subsequently, Quandt 

[4], Quandt and Ramsey [5] and De Veaux [6] considered the 

mixture of regressions approach to estimating switching 

regressions that is widely studied and applied in psychology, 

economics, social science and music perception [7-10].  

Hathaway and Bezdek [11] first combined switching 

regressions with FCM and referred to them as fuzzy 

c-regressions (FCR). To increase the speed of FCR, Wang et 

al. [12] combined the concept of Newton’s law of gravity with 

FCR. However, these FCRs are sensitive to noise and outliers. 

To improve the robustness against noise and outliers, Leski 

[13] considered an ε -insensitive loss function that was used 

in the statistical learning theory (or support vector machine) 

(see Vapnik [14]). Leski [13] extended the FCR objective 

function to c simultaneous quadratic programming (QP) 

problems subject to some bound constraints and one linear 

equality constraint where the incremental learning method 

proposed by Cauwenberghs and Poggio [15] was used for 

solving the QP problem. However, the incremental learning 

method for solving the QP problem is much more complex 

than FCR. Yang et al. [16] proposed a robust fuzzy 

c-regressions method by implementing an alpha-cut technique. 

However, there does not an objective function for this method. 
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In this paper, we will propose an alternative robust fuzzy 

switching regression method (AFCR) by replacing the 

residual measurement in the FCR objective function. In 

Section II, we review the EM and FCR algorithms. The 

objective function and the iterative procedure are discussed in 

Section III. Section IV presents some numerical examples and 

conclusions are illustrated in Section V.   

   

II. THE EM ALGORITHM AND FUZZY C-REGRESSIONS 

A. EM Algorithm 

In estimating the parameters of a mixture regression model, 

the EM algorithm is an effective method for approximating 

maximum likelihood estimates. Let { }1 1( , ), , ( , )n nx y x y�  

with each independent observation 
jx  and corresponding 

dependent observation 
jy be a given data set. Let a linear 

regression model be  

0 1 , 1, ,j j jy x j nβ β ε= + + = � , (1) 

where 
jε  are iid from the normal densit 2(0, )σΝ . We 

consider a mixture of c numbers of linear regression model as 

0 1j i i j ijy xβ β ε= + + , 2~ (0, )ij iε σΝ  (2) 

with probability (0,1)iα ∈  and 
1

1
c

ii
α

=
=∑ , 1, ,i c= � . 

That is 

1
~ ( ; , ) ( ; )

c

j j i i j ii
Y f y f yα θ α θ

=
= ∑ ,  (3) 

where 
1 , , nY Y�  are independent and 

2

0 1( ; ) ( , )i j i i i j if y xθ β β σ= Ν + .  (4) 

Consider 
1{ , , }nY y y= �  to be an incomplete data set and 

the cluster memberships 
1 , , cµ µ�  to be missing where 

( ) 1ij i jyµ µ= =  if 
jy  belong to cluster i. In accordance with 

the mixture density ( ; , )f y α θ , the log likelihood for the 

complete data is given by  

1 1
( , ) ln( ( ; ))

n c

c ij i i j ij i
L f yα θ µ α θ

= =
= ∑ ∑  (5) 

 where  
2

0 1( ; ) ( , )i j i i i j if y xθ β β σ= Ν + . (6) 

 The EM algorithm is applied to the mixture distributions 

by treating µ as missing data. The algorithm is easy to 

program in two steps, expectation (E) and maximization (M) 

[17]. According to the initial value of ( , )r α θ= , say (0 )
r , 

the E step requires the calculation of (0)( ( , ) )
c

L rα θΕ , that is 

the expectation of log likelihood ( , )cL α θ  of the complete 

data, conditioning on the observed data and the initial value 
(0 )

r . The M step is to choose the value of r, say (0 )
r , that 

maximizes (0)( ( , ) )
c

L rα θΕ  after the E step. Then the EM 
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algorithm for this mixture of linear regression model is the 

iteration according to the following conditions (see De Veaux 

[6]): 
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= ∑ ,                     (7) 

11

0

1

( )
n

ij j i jj

i n

ijj

y xµ β
β

µ

=

=

−
=
∑

∑
,             (8) 

01

1 2

1

( )
n

ij j i jj

i n

ij jj

y x

x

µ β
β

µ

=

=

−
=
∑

∑
,             (9) 

2

0 112

1

( )
n

ij j i i jj

i n

ijj

y xµ β β
σ

µ

=

=

− −
=
∑

∑
,       (10) 

1

( ; )

( ; )

i i j i

ij c

k k j kk

f y

f y

α θ
µ

α θ
=

=
∑

,    (11) 

where  2

1( ; ) ( , )k j k ok k j kf y xθ β β σ= Ν + , 1, ,i c= �  and 

1, ,j n= � . Note that, EM algorithm for switching 

regression can not be written as a matrix form such as the 

traditional regression analysis. The above update equations 

are available only in a simple case with switching regression 

models (1). For more complex models, the update equations 

need to be modified. However, the objective function of fuzzy 

c-regressions algorithm can be written as a matrix form and 

the update equations for minimizing the objective function are 

similar to the traditional weighted least square estimator. We 

now give a brief review of the fuzzy c-regressions algorithm.   

 

B. Fuzzy C-Regressions 

In unsupervised learning clustering literatures, the fuzzy 

c-means (FCM) [18-22] algorithm is the best-known fuzzy 

clustering method. FCM is an iterative algorithm using the 

necessary conditions for minimizing the objective function 

FCMJ  with  

( )
1 1

, ( , )
c n

m

FCM ij j i

i j

J a d x aµ µ
= =

= ∑∑  (12) 

where the weighting exponent 1m >  is a fuzziness index, 

{ }1 , , cµ µ µ= �  with ( )ij i jxµ µ=   is a fuzzy c-partition, 

{ }1 , , ca a a= �  over the p-dimensional real space p
R  is the 

set of c cluster centers and ( , )j id x a is a dissimilarity 

measure. The necessary conditions for a minimizer ( , )aµ   of 

FCMJ  are the following update equations: 

( )

( )

1/ 1

1/ 1

1
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m
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d x a
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− −
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=

=
∑

   (13) 

and 

1

1

mn
j ij j

i mn
j ij

x
a

µ

µ

=

=

∑
=

∑
,  1, ,i c= � , 1, ,j n= �  (14) 

where the Euclidean distance 
2

( , )j i j id x a x a= −  is used. 

Note that other types of dissimilarity ( , )j id x a  may be used 

to improve the usage and effectiveness of FCM which will be 

discussed in next section.  

The combination of switching regressions with FCM is 

referred to as fuzzy c-regression (FCR) by Hathaway and 

Bezdek [11]. Suppose that, we have a set of data 

{ }1 1( , ), , ( , )n nx y x y�  with each independent observation 

1( , , ) p

j j jpx x x= ∈ ℜ
�

�  and corresponding dependent 

observation 
jy ∈ ℜ . The objective of switching regressions 

is to find c linear regressions  

, 1 1
ˆ

j i i j pi jp j iy x x xβ β β= + + =
�

�

� , 1, ,i c= �  (15) 

which will fit best for the data structure and 

1( , , )i i piβ β β ′=
�

� . The objective of the FCR is to minimize 

the objective function 
FCRJ  with  

,

1 1

ˆ( , )
c n

m

FCR ij j j i

i j

J d y yµ
= =

= ∑∑  (16) 

where 2

,
ˆ( , ) ( )j j i j j id y y y x β= −

�
�

. Suppose that X denotes 

the matrix in n p×ℜ  having 
1( , , )j j jpx x x= �  as its jth row; 

Y denotes the vector in nℜ  having  
jy  as its jth component; 

and 
iD  denotes the diagonal matrix in n n×ℜ  having 

ijµ  as 

its jth diagonal element. Than we have the following weighted 

least squares 
1

1( , , ) [ ]t m t m

i i pi i iX D X X D Yβ β β −′= =
�

�  (17) 

which minimizes 

1

c

FCR i ii
J S S

=
′= ∑   (18) 

where 2( ) ( )
m

i i iS D Y X β= −
�

. 

The update equations for the membership function is 
( )

( )

1/ 1

,

1 / 1

,1

ˆ( , )

ˆ( , )

m

j j i

ij c m

j j kk

d y y

d y y
µ

− −

− −

=

=
∑

. (19) 

Note that, the clustering results of both EM and FCR will 

be influenced by the noise and outlier. By replacing the 

residual measurement in the FCR objective function with an 

alternative term, we propose an alternative fuzzy c-regression 

method (AFCR). The proposed method is robust to noise and 

outlier and is quite simple such as the original FCR algorithm. 

III. THE ALTERNATIVE FUZZY C-REGRESSIONS 

A. The Alternative Residual Measurement 

Some alternative distance measurements are used to 

replace the Euclidean distance measurement to extend the 

traditional fuzzy c-means algorithm. The first extension to 

FCM was proposed by Gustafson and Kessel (GK) [23]. They 

considered the effect of different cluster shapes except for 

spherical shape by replacing the Euclidean distance in the 

FCM objective function with the Mahalanobis distance 

( )
2

, ( ) ( )
i

T

j i j i j i i j iA
d x a x a x a A x a= − = − −   (20) 

where 
iA  is a positive definite p p×  matrix with its 

determinate det( )i iA ρ=  being a fixed constant. This 

extension became an important extended type of FCM. 

Krishnapuram and Kim [24] discussed more about the GK 

algorithm with a new variation. Gath and Geva (GG) [25] also 

considered the FCM objective function with the Mahalanobis 

distance that is exactly the same as the GK extension. 
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However, Gath and Geva [25] did not directly minimize the 

extended FCM objective function. They used the Bayesian 

posterior probability via the EM update equations for the 

normal mixture distributions. Although the GG algorithm is 

an effective and useful clustering algorithm, it is an ad hoc 

clustering procedure because there is no obvious objective 

function to be followed. The GG algorithm can be though as 

an extension of the EM for the normal mixture with a 

weighting exponent m.  

In order to make the traditional k-means and fuzzy c-means 

robust to noise and outliers, Wu and Yang [26] proposed an 

alternative distance measurement with  
2

( , ) 1 exp{ }j i j id x a x aη= − − − . (21) 

They then created the alternative k-means and alternative 

fuzzy c-means that can robust to noise and outliers. They also 

adopted the above measurement in competitive learn network 

to propose an alternative learn vector quantization [27]. We 

now use this alternative distance measurement to define a new 

residual measurement in the FCR objective function with  
2

,
ˆ( , ) 1 exp{ ( ) }j j i j j id y y y xη β= − − −

�
�

. (22) 

 

B. Alternative Fuzzy C-Regressions 

Based on the concept of Wu and Yang [26], the new metric 
21 exp{ ( ) }j j iy xη β− − −

�
�

 is used to replace the residual 

measurement in the FCR objective function. Thus, an 

alternative fuzzy c-regression (AFCR) clustering objective 

function is proposed as follows: 
c n m 2

iji 1 j 1
{1 exp{ ( ) }}AFCR j j iJ y xµ η β

= =
= − − −∑ ∑

�
�

. (23) 

The parameter η is defined as  
1

2

1

1
( )

n

jj
y y

n
η

−

=

 
= − 
 
∑  (24) 

which is corresponding to the average of total sum of square. 

Thus, the necessary conditions for the minimization of 
AFCRJ  

are as follows: 
2

1

2 2

1

exp{ ( ) }( )

exp{ ( ) }

n m

ij j j i j j i ki jk jkj

ki n m

ij j j i jkj

y x y x x x

y x x

µ η β β β
β

µ η β

=

=

− − − +
=

− −

∑
∑

� �
� �

�
�

 (25) 

and 

 
( )

( )

1/ 1

,

1 / 1

,1

ˆ( , )

ˆ( , )

m

j j i

ij c m

j j kk

d y y

d y y
µ

− −

− −

=

=
∑

 (26) 

where 2

,
ˆ( , ) 1 exp{ ( ) }j j i j j id y y y xη β= − − −

�
�

, 1, ,i c= � , 

1, ,j n= �  and 1, ,k p= � . According to above necessary 

conditions, we have the following exact AFCR algorithm: 

Exact AFCR algorithm 

Initializing ( )l

iβ
�

.  

Repeat 

Compute ( 1)l

ijµ +  with (26). 

Repeat 

 Use (25) to approximate  
iβ
�

 by the fixed-point iterative 

method.  

Until Converge. 

Get ( 1)l

iβ +
�

 with the result of fixed-point iterative method. 

Until Change in 
iβ
�

 is very small. 

 

Note that, 
kiβ  in (25) cannot be solved directly and we 

need to use the fixed-point iterative method to approximate it. 

This is not efficiently. We then use a one-step method to 

approximate it in the following AFCR algorithm: 

 

AFCR algorithm 

Let ( )if β
�

 be the right term of (25) and initialize ( )l

iβ
�

.  

Repeat 

Compute ( 1)l

ijµ +  with (26). 

Compute ( 1)l

iβ +
�

 with ( 1) ( )( )l l

i ifβ β+ =
� �

. 

Until Change in 
iβ
�

 is very small 

 

Obviously, if both algorithms converge, then their solutions 

shall satisfy the necessary condition (25). We recommend 

using the AFCR algorithm to speed up the process and we also 

use it in following numerical examples.  

 

IV. EXAMPLES 

We consider a c=2 simple switching regression model with 

two parallel lines. Figure 1 present the random generated 

dataset and add an outlier with its coordinate (10,0). The 

estimated regression models of EM, FCR and AFCR are 

shown in Figs. 1(a), 1(b) and 1(c), respectively. The results of 

EM and FCR are affected by this outlier point as shown in 

Figs. 1(a) and 1(b), respectively. Under the same initial values 

and stopping conditions, the result of AFCR is robust to the 

outlier as shown in Fig. 1(c). We also consider a regression 

model with two crossed lines and two outlier points. The 

coordinate of the outliers are (10,10) and (15,5). The data set 

Fig. 1 Clustering results of EM, FCR and AFCR for the two parallel lines data set with one outlier point. 
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0
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X

Y
Y=21-2X+0.0625X     &     Y=-5+2X-0.0625X

2 2

β11 β21 β31 β12 β22 β32

21.0000 -2.0000 0.0625 -5.0000 2.0000 -0.0625

outlier x y β11 β21 β31 β12 β22 β32

1 16 0 21.1215 -2.0291 0.0631 -5.3651 2.0287 -0.0630

2 16 -10 21.5038 -2.0995 0.0652 -5.0333 1.9736 -0.0614

3 16 -20 21.8274 -2.1590 0.0670 -4.6506 1.9097 -0.0594

4 16 -30 22.1695 -2.2221 0.0689 -4.2575 1.8438 -0.0574

outlier x y β10 β11 β12 β20 β21 β22

1 16 0 21.0110 -2.0009 0.0623 -5.1271 2.0003 -0.0623

2 16 -10 20.9952 -2.0012 0.0624 -5.1102 1.9995 -0.0624

3 16 -20 21.4607 -1.9243 0.0633 -5.1086 2.0071 -0.0617

4 16 -30 20.9920 -1.9890 0.0620 -5.2242 2.0084 -0.0623

Table 1. Switching regression coefficients obtained by FCR and AFCR.

FCR 

AFCR

model values

and clustering results are shown in Fig. 2. Similar to above 

example, AFCR also presents the robust properties in this 

example as shown in Fig. 2(c). Since the results of EM 

algorithm are heavily influenced by the noise and outliers, we 

only compare the performance of FCR and AFCR in the 

following artificial examples.   

 We know that the number of outliers is often more than one 

and the outliers scatter more dispersible in general data sets. 

We take an example to demonstrate this result. The example 

illustrates the data set with 2 regression lines. Each line was 

generated with 50 data points and we scatter 50 noise points 

around the regression models. The scatter plot of the data set 

is shown in Fig. 3. The estimated regression models obtained 

by FCR and AFCR are shown in Figs. 3(a) and 3(b). AFCR 

also gives precision parameter estimation in this noisy data. 

 

 

 

 

 

 

 

 

 

 
(a)                                                              (b) 

Fig. 3. The clustering results. (a) FCR. (b) AFCR  

 

 Above examples only consider the case of p=2 (i.e. 

regression lines). We now give an example of two regression 

curves with 
2

1 11 1 21 2 31 3 1 121 2 0.0625y x x x x xβ β β ε ε= + + + = − + +
2

2 12 1 22 2 32 3 1 25 2 0.0625y x x x x xβ β β ε ε= + + + = − + − +  

where 
1ε  and 

2ε  follow the uniform distribution U[-1,1] 

over the closed interval [-1,1]. This data set is shown in Fig. 4. 

We add one outlying point into the data set and then estimate 

the switching regression coefficients using FCR and AFCR. 

Four kinds of outlier coordinates are adopted in turn and the 

results are shown in Table 1. We see that, when the outlier 

location is increasingly distant from the data set (i.e., the 

distance from outlier 1 to outlier 4), the parameter estimates 

obtained by FCR are increasingly imprecise. However, 

parameter estimates obtained by AFCR are not influenced by 

the outlier. Note that in our simulations, the noise and outlier 

locations are considered in y-coordinates (i.e. not high 

leverage points). If a high leverage outlier is added (i.e., an 

outlier location in x-coordinates), we find that both FCR and 

AFCR will be influenced. This phenomenon is similar to the 

traditional regression analysis, where the fitted lines are 

almost completely determined by this high leverage outlying 

point. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5. Randomly generated switching regression data set with two 

regression curves. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V. CONCLUSIONS AND DISCUSSIONS 

In this paper, we use an alternative residual measurement to 

modify the traditional fuzzy c-regressions (FCR) objective 

function and then propose an alternative fuzzy c-regressions 

(AFCR) algorithm. The iterative procedure to optimize the 

AFCR objective function is summarized in Section III. The 

clustering results of both EM and FCR will be influenced by 

Fig. 2 Clustering results of EM, FCR and AFCR for the two crossed lines data set with two outlier points. 
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the noise and outlier. By replacing the residual measurement 

in the FCR objective function with an alternative term, the 

proposed method is robust to noise and outlier and is quite 

simple such as the original FCR algorithm.  

 Both FCR and AFCR have the constraint that 
1

1
n

ijj
µ

=
=∑ . 

The membership values for the noise and outliers belong to 

each cluster will equal to 1/c. This is the mean reasonable that 

FCR will cause trouble in a noisy environment. However, this 

problem will be solved in AFCR by using the alternative 

residual measurement. Let 2exp{ ( ) }ij j j iS y xη β= − −
�

�

, we 

find that the AFCR update equation (25) has an extra 

weighted item 
ijS . Since 

ijS  decreases monotonically in 

2( )j j iy x β−
�

�

,  the update equation (25) will reasonable 

assign a suitable weight to each data point including the noise 

and outliers. Thus, using (25) will make AFCR more robust to 

noise and outliers than traditional FCR.  

 

REFERENCES 

[1] R.E. Quandt, “The estimation of the parameters of a linear regression 

system obeying two separate regimes,” Journal of the American 

Statistical Association, vol. 53, pp. 873-880, 1958. 

[2] R.E. Quandt, “Tests of the hypothesis that a linear regression system 

obeys two separate regimes,” Journal of the American Statistical 

Association, vol. 55, pp.324-330, 1960. 

[3] G. Chow, “Tests of the equality between two sets of coefficients in two 

linear regressions,” Econometrica, vol. 28, pp. 561-605, 1960. 

[4] R.E. Quandt, “A new approach to estimating switching regressions,” 

Journal of the American Statistical Association, vol. 67, pp. 306-310, 

1972. 

[5] R.E. Quandt and R.B. Ramsey, “Estimating mixtures of normal 

distributions and switching regressions,” Journal of the American 

Statistical Association, vol. 73, pp. 730-752, 1978. 

[6] R.D. de Veaux, “Mixtures of linear regressions,” Computational 

Statistical and Data Analysis, vol. 8, pp. 227-245, 1989. 

[7] L.F. Lee, “Simulation estimation of dynamic switching regression and 

dynamic disequilibrium models - Some Monte Carlo results,” Journal 

of Econometrics, vol. 78, pp. 179-204, 1997. 

[8] H.A. Freeman, S.K. Ehui and M. Jabbar, “Credit constraints and 

smallholder dairy production in the East African highlands: 

Application of a switching regression model,” Agricultural Economics, 

vol. 19, pp. 33-44, 1998. 

[9] G. Peters, “A linear forecasting model and its application to economic 

data,” Journal of Forecasting, vol. 20, pp. 315-328, 2001. 

[10] G. Alperovich and J. Deutsch, “An application of a switching regimes 

regression to the study of urban structure,” Papers in Regional Science, 

vol. 81, pp. 83-98, 2002. 

[11] R.J. Hathaway and J.C. Bezdek, “Switching regression models and 

fuzzy clustering,” IEEE Trans. Fuzzy Systems, vol. 1, pp. 195-204, 

1993. 

[12] S. Wang, H. Jiang and H. Lu, “A new integrated clustering algorithm 

GFC and switching regressions,” International Journal of Pattern 

Recognition and Artificial Intelligence, vol. 16, pp. 433-446, 2002. 

[13] J. Leski, “ε-Insensitive Fuzzy c-Regression Models: Introduction to 

ε-Insensitive Fuzzy Modeling,” IEEE Trans. Systems, Man, and 

Cybernetics, Part B: Cybernetics, vol. 34, pp. 4-15, 2004. 

[14] V. Vapnik, The Nature of Statistical Learning Theory, New York: 

Springer, 1995. 

[15] G. Cauwenberghs and T. Poggio, “Incremental and decremental 

support vector machine learning,” in Proc. Adv. Neu. Inf. Proc. Sys. 

Cambridge, MA: MIT Press, vol. 13, 2001. 

[16] M.S. Yang and K.L. Wu, “Alpha-cut implemented fuzzy clustering 

algorithms and switching regressions”, IEEE Trans. Systems, Man and 

Cybernetics, Part B, vol. 38, pp. 588-603, 2008. 

[17] A.P. Dempster, N.M. Laird and D.B. Rubin, “Maximum likelihood 

from incomplete data via the EM algorithm (with discussion),” Journal 

of the Royal Statistical Society B, vol. 39, pp. 1-38, 1977. 

[18] J.C. Bezdek, Pattern Recognition with Fuzzy Objective Function 

Algorithms, New York: Plenum Press, 1981. 

[19] M.S. Yang, “A survey of fuzzy clustering,”Mathematical and 

Computer Modeling, vol. 18, pp. 1-16, 1993. 

[20] A. Baraldi and P. Blonda, “A survey of fuzzy clustering algorithms for 

pattern recognition-part I and II”, IEEE Trans. Systems, Man, and 

Cybernetics, Part B: Cybernetics, vol. 29, pp. 778-801, 1999. 

[21] F. Hoppner, F. Klawonn, R. Kruse and T. Runkler,  Fuzzy Cluster 

Analysis: Methods for Classification Data Analysis and Image 

Recognition.  New York: Wiley, 1999. 

[22] J. Yu and M.S. Yang, “Optimality test for generalized FCM and its 

application to parameter selection,” IEEE Trans. Fuzzy Systems, vol. 

13, pp. 164-176, 2005. 

[23] D.E. Gustafson and W.C. Kessel, “Fuzzy clustering with a fuzzy 

covariance matrix,” Proc. IEEE CDC, San Diego, CA, pp.761-766, 

1979. 

[24] R. Krishnapuram and J. Kim, “A note on the Gustafson-Kessel and 

adaptive fuzzy clustering algorithms,” IEEE Trans. Fuzzy Systems, vol. 

7, pp. 453-461, 1999. 

[25] I. Gath and A.B. Geva, “Unsupervised optimal fuzzy clustering, IEEE 

Trans. Pattern Analysis and Machine Intelligence,” vol. 11, pp. 73-781, 

1989. 

[26] K.L. Wu and M.S. Yang, “Alternative c-means clustering algorithms,” 

Pattern Recognition, vol. 35, pp. 2267-2278, 2002. 

[27] K.L. Wu and M.S. Yang, “Alternative learning vector quantization,” 

Pattern Recognition, vol. 39, pp. 351-362, 2006. 

 

 

 

 

 

 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009


