

Abstract—The Embedded Zerotree Wavelet (EZW) coder

which can be considered as a degree-0 zerotree coder, and Set

Partitioning In Hierarchical Trees (SPIHT) coder which can be

considered as a degree-2 zerotree coder are two well-known

image compression techniques. However, the performance of a

degree-1 zerotree coder has not been well investigated. In this

paper, an Embedded Descendent-Only Zerotree Wavelet

(EDOZW) coder which can be considered as a degree-1 zerotree

coder is proposed. The EDOZW coder is a modified version of

SPIHT coder with Arithmetic Coding (SPIHT-AC). When

coding the entry in the List of Insignificant Set (LIS) in SPIHT,

it is necessary to first determine whether the entry is Type A or

Type B. Then, a different scheme is used to handle the entry. But

in contrast to SPIHT, it is no longer necessary to differentiate

the type of entry in EDOZW. Only one type of entry is used in

EDOZW and a recursive algorithm can be used to encode all the

entries easily. This will help to reduce the overall complexity.

Moreover, the EDOZW also achieved better performance at

high bit rates. The EDOZW can serve as an alternative solution

for image compression other than EZW and SPIHT.

Index Terms— Degree-1 zerotree coder, Degree-k zerotree

coder, EZW, image compression, SPIHT.

I. INTRODUCTION

 The Embedded Zerotree Wavelet (EZW) coder [1] and

Set Partitioning In Hierarchical Trees (SPIHT) coder [2] are

gaining popularity in the image compression field, due to their

superior performance. In fact, similarities do exist in both of

the coding method, such as the use of wavelet transform and

zerotree coding.

In both of the coding methods, a wavelet transform is used

to decompose an image into different frequency subbands.

Then, the coefficients in different frequency subbands are

linked together to form a tree structure. Although the tree

structure adopted by EZW and SPIHT is slightly different, it

does not significantly affects the performance. The EZW and

SPIHT also use a similar magnitude test to determine whether

the coefficient is significant or insignificant. If the value of a

coefficient is larger than the predefined threshold, it will be

considered as significant.

On the other hand, the zerotree coding is based on the idea

that if the root of the tree is insignificant, it is very likely that

all the descendents are also insignificant [3]. If this condition

Manuscript received October 1, 2008.

W. C. Chia, L-M. Ang, and K. P. Seng are with the School of Electrical &

Electronic Engineering, The University of Nottingham Malaysia Campus,

Jalan Broga, 43500, Semenyih, Selangor, Malaysia (phone: 603-89248000;

fax: 603-89248002; correspond e-mail: [keyx7cwc / kezklma / kezkps]

@nottingham.edu.my).

is true, all the coefficients under the tree can be coded by

using a single symbol to achieve compression.

A zerotree can be viewed as a tree structure that all the

descendents are insignificant beyond a certain level. Depends

on how many top k levels that a zerotree are having non-zero

values, a zerotree can be classified as various type of degree-k

zerotree [3]. The structure of degree-0 to degree-2 zerotree is

illustrated in Fig. 1.

 For example, EZW is considered as a degree-0 zerotree

coder because it can only encode an occurrence of degree-0

zerotree with one symbol. On the other hand, SPIHT can

encode the occurrence of degree-1 and degree-2 zerotree with

one symbol. Additional information on type of zerotree and

how it differentiates the EZW and SPIHT coder can be found

in [3] and [4].

 From the previous results, we can notice that the

performance of SPIHT is higher than EZW. However, it does

not imply that a degree-2 zerotree coder is always better than

a degree-0 zerotree coder. Depending on the tree structure

and distribution of the significant coefficients, a degree-k

zerotree coder may send more redundant information than a

degree-(k-1) zerotree coder. This condition will be explained

more detail in later section.

Unlike the case for degree-0 and degree-2 zerotree coder,

the performance of a degree-1 zerotree coder has not been

well investigated. Hence, an Embedded Descendent-Only

Zerotree Wavelet (EDOZW) coder which can be considered

as a degree-1 zerotree coder is proposed in this paper. The

EDOZW coder is a modified version of the SPIHT coder that

can achieve comparable result with lower complexity. In

contrast to SPIHT, a simple recursive algorithm can be used

to encode all the entries in the List of Insignificant Set (LIS).

It is no longer necessary to differentiate whether the entry is

Type A or Type B.

The paper is organized in the following manner. Firstly, a

brief introduction on SPIHT coding is given in Section II.

Next, the proposed EDOZW coder will be explained in detail

in Section III. Simulation results and discussions are

presented in Section IV. Finally, we will conclude the paper in

Section V.

II. SPIHT

In SPIHT, a tree structure called Spatial Orientation Tree

(SOT) is used to link the coefficients in different subbands.

The relationship between the root and the descendents in SOT

is illustrated in Fig. 2. Coefficients in the LL band without the

‘*’ label are considered as the root of the tree, and all the

coefficients will have either 4 offspring or no offspring.

The algorithm uses 3 types of list, which named as List of

Significant Pixel (LSP), List of Insignificant Pixel (LIP), and

Embedded Descendent-Only Zerotree Wavelet

Coding for Image Compression

Wai Chong Chia, Li-Minn Ang, and Kah Phooi Seng

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

LIS to control the coding process. At the initialization phase,

the LSP is left empty and all the coordinates in the LL band

are added to the LIP. The entries in the LIS is similar to LIP,

except that the coordinates with the ‘*’ label are excluded.

Then, a threshold is chosen for the magnitude test.

In the sorting phase, the magnitude test is first performed

on all the entries in the LIP. If the entry in the LIP is

significant in the current pass, it will be coded and shifted to

the LSP. Otherwise it will remain in the LIP and tested again

in the next pass.

The entries in the LIS can be categorized into 2 types,

which defined as Type A entry and Type B entry. Type A

entry contains the set of coordinates for all its descendents and

Type B entry contains the set of coordinates for all its

descendents with its 4 direct offspring excluded. In other

word, Type B entry contains the set of coordinates start from

its grand descendents to the end of the tree. Throughout the

paper, we will consider all the coordinates in this set as the

grand descendents. Since the coding of Type A and Type B

entry is important for further explanation, we will explain the

process more in detail.

When coding a Type A entry, if any coefficient within the

set is significant, a ‘1’ is sent as the output, and a magnitude

test will be performed on its 4 direct offspring. The significant

offspring will be coded and added to the end of the LSP, while

the insignificant offspring will be added to the end of the LIP.

If none of the coefficient within the set is significant, a ‘0’ is

sent as the output. This output bit that used to indicate the

significance of a Type A entry will be labeled as DESC bit in

this paper.

For a Type B entry, if any coefficient within the set is

significant, a ‘1’ is sent as the output. Then, the coordinate for

the 4 direct offspring will be added to the end of the LIS and

marked as new Type A entry. Otherwise, a ‘0’ is sent as the

output. This output bit that used to indicate the significance of

a Type B entry will be labeled as GDESC bit in this paper.

 In the refinement phase, the refinement bit for each entry in

the LSP except for new entries from the current pass is coded.

Then, the threshold value is reduced and the coding process

described above is performed again.

III. EDOZW

One of the advantages of EDOZW is no longer necessary to

differentiate the Type A and Type B entry in the LIS. All the

entries inside the LIS are processed in the same way, and the

same algorithm can be used to encode all the entries. Hence, it

becomes a recursive algorithm that is easier to implement as

illustrated in Fig. 3. This also implies that the complexity is

lower as compared to SPIHT. It should be noted that the flow

chart shown in Fig. 3 only considered the main flow of the

algorithm. The encoding of various output bits is not shown.

In EDOZW, the sorting phase of SPIHT is modified. For

each entry in the LIS, if any coefficient within the set is

significant, the entry is considered as significant and the 4

offspring will be coded in the same way as SPIHT. Then, the

coordinate of the 4 offspring will be added to the end of the

LIS immediately. In contrast, SPIHT will first mark the entry

as a Type B entry and perform a magnitude test all the grand

descendents. Only when any one of the grand descendent is

significant, the coordinate of the 4 offspring is added to the

end of LIS.

For example, consider the tree structure shown in Fig. 4(a).

We will explain the coding process of EDOZW and SPIHT in

terms of bit-plane wise. The ‘1’ and ‘0’ are used to represent

the significant and insignificant coefficient respectively.

 (a) (b) (c)

Figure 1. Structure of (a) Degree-0, (b) Degree-1, and (c) Degree-2 zerotree.

Figure 2. The SOT structure adopted by SPIHT.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

Initially, the LIS content in EDOZW is {(1, 1)}. Since the set

is significant, a ‘1’ bit is sent as output. Then, the 4 offspring

will be coded in the same way as SPIHT, and the output will

be ‘0 0 0 1 1’. In this case, we use ‘1’ to indicate a positive

coefficient and ‘0’ to indicate a negative coefficient. Next, the

coordinates of the 4 offspring will be added to the end of the

LIS, and this (1, 1) entry is discarded. Now, the LIS content is

changed to {(6, 6); (6, 7); (7, 6); (7, 7)}. The coding process

will continue until all entries in the LIS are checked. Since

none of the grand descendent is significant, the output for this

4 entries will be ‘0 0 0 0’.

In the same case for SPIHT, the (1,1) entry which initially

marked as a Type A entry is not directly discarded. In fact, it

will be marked as a Type B entry, and the LIS content is

changed to {Type B(1,1)}. The coordinate of the 4 offspring

is not added to the LIS, because all the grand descendents are

insignificant in this pass. Only a ‘0’ (GDESC) bit is sent to

indicate that all the grand descendents are insignificant. The

output bits for EDOZW and SPIHT are listed under the

example tree structure shown in Fig. 4(a). Since SPIHT is a

degree-2 coder, it can use a symbol (bolded bit in Fig. 4(a)) to

represent a degree-2 zerotree. In contrast, extra 3 bits are

required to represent the same zerotree in EDOZW. We will

define the occurrence of this type of tree structure as Case 1.

Now consider another tree structure shown in Fig. 4(b),

whereas one of the grand descendents has become significant.

The output bits for EDOZW and SPIHT are listed under the

tree structure shown in Fig. 4(b). Notice that the number of

bits sent for EDOZW is lesser than SPIHT. This is due to the

GDESC bit (bolded bit in Fig. 4(b)) in SPIHT. The GDESC

bit is required to indicate that one of the grand descendents is

significant. Only when the GDESC bit is ‘1’, the tree is breaks

and the coordinates of the 4 offspring are added to the end of

LIS as new Type A entry. But in EDOZW, the tree is directly

breaks without considering the grand descendents. Hence, the

GDESC bit is not needed. We will define the occurrence of

this type of tree structure as Case 2. On the other hand, the

complete EDOZW algorithm is shown in Algorithm I.

 Method Output Bits Method Output Bits

 EDOZW 1 0 0 0 11 0 0 0 0 EDOZW 1 0 0 0 11 0 0 0 1 0 0 11 0

 SPIHT 1 0 0 0 11 0 SPIHT 1 0 0 0 11 1 0 0 0 1 0 0 11 0

(a) (b)

Fig. 4. Example tree structure of (a) Case 1 and (b) Case 2 illustrated in terms on bit-plane coding.

(a) (b)

Figure 3. The flow chart on encoding the LIS’s entries in (a) SPIHT and (b) EDOZW.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

IV. SIMULATION RESULTS & DISCUSSIONS

The performance of the EDOZW coder with AC will be

compared to EZW coder with AC and SPIHT coder with AC.

All the 3 coder are using the same AC presented in [5]. The

result for EZW coder with AC is directly obtained from [1].

Hence, only the result reported in [1] is used for comparison.

On the other hand, the result for SPIHT coder with AC is

obtained from [6].

Simulation is carried out on several gray-scale test images

which include Lena, Barbara, Goldhill, Baboon, Sailboat,

and Zelda. These test images are all in the size of 512 x 512.

For simulation, we use 9/7 tap wavelet filter [7] to perform the

wavelet transform, and 5 decomposition levels is adopted for

all the cases. All the simulation results are summarized in

Table 1.

A. EDOZW at Low Bit Rates

For low bit rate (<=1.00Bit/Pixel), the performance of

EDOZW is not as good as SPIHT. At this level, the threshold

used for magnitude test is not very small. Therefore, many of

the descendents are still considered as other insignificant, and

Algorithm I:

1) Initialization Phase:

� Set LSP as an empty list.

� Add all the coordinates in the lowest frequency subband to the LIP.

� Add all the coordinates with descendents (without the ‘*’ label) in the lowest frequency subband to the LIS.

� Set the threshold value.

2) Sorting Phase:

� For each entry (i, j) in the LIP:

o If the entry (i, j) is significant, output ‘1’ and its sign bit. Then, shift the entry (i, j) to the LSP. Otherwise output ‘0’.

� For each entry (i, j) in the LIS:

o Check all the descendents of entry (i, j). If any descendent is significant, output ‘1’ and entry (i, j) is considered as

significant.

o If entry (i, j) is significant:

� For each offspring (k, l) of entry (i, j):

� If offspring (k, l) is significant, output ‘1’ and its sign bit. Then, shift the offspring (k, l) to the LSP.

Otherwise output ‘0’ and shift offspring (k, l) to the LIP.

� Add the 4 offspring to the end of the LIS as new entries directly.

3) Refinement Phase:

� Except for new entries in the LSP, output the refinement bits for each entry (i, j) in the LSP.

4) Update:

� Decrease the threshold value and repeat the steps above again.

Table 1. The PSNR (db) for various gray-scale test images coded with different image coding method.

Lena Barbara Baboon Bit Rate

(Bit/Pixel) EZW EDOZW SPIHT EZW EDOZW SPIHT EZW EDOZW SPIHT

0.10 - 30.1813 30.2284 - 24.2391 24.2564 - 22.6121 22.6352

0.25 33.17 34.0786 34.1102 26.77 27.5145 27.5818 - 24.5347 24.5487

0.50 36.28 37.1931 37.2064 30.53 31.3609 31.3955 - 26.9878 27.0265

1.00 39.55 40.4191 40.4051 35.14 36.3995 36.4144 - 30.5927 30.6013

1.50 - 42.9183 42.9187 - 39.9949 39.9456 - 33.4454 33.4042

2.00 - 45.1885 45.0627 - 42.6905 42.6483 - 36.3193 36.2943

2.50 - 48.1995 47.9055 - 45.2991 45.1185 - 38.9224 38.7857

3.00 - 50.7131 50.0568 - 48.0763 47.7476 - 41.9059 41.7568

Goldhill Sailboat Zelda Bit Rate

(Bit/Pixel) EZW EDOZW SPIHT EZW EDOZW SPIHT EZW EDOZW SPIHT

0.10 - 27.9158 27.9382 - 26.5447 26.5930 - 34.1882 34.1925

0.25 - 30.5291 30.5597 - 29.9759 30.0629 - 37.5174 37.4990

0.50 - 33.0772 33.1272 - 32.8586 32.9043 - 39.6748 39.6608

1.00 - 36.5157 36.5518 - 36.1435 36.1811 - 42.1437 42.1341

1.50 - 39.2235 39.2005 - 38.7708 38.7927 - 44.4148 44.3012

2.00 - 42.0418 42.0164 - 41.7198 41.7682 - 47.0256 46.8379

2.50 - 44.4975 44.3293 - 44.4206 44.2544 - 49.7380 49.1866

3.00 - 47.6848 47.3573 - 47.5531 47.2525 - 52.7161 51.7010

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

the occurrence of Case 1 is higher than Case 2. In this case,

the number of bits sent in EDOZW is higher. However, the

difference in terms of PSNR between EDOZW and SPIHT is

less than 0.1 dB. With the help of AC, the redundant

formation in EDOZW can be compensated. As shown in the

list of output bits in Table 1, all the redundant bits are ‘0’. In

this case, the probability model for AC will heavily skew to

‘0’ and AC can code the ‘0’ bit efficiently.

B. EDOZW at High Bit Rates

For high bit rate (>1.00Bit/Pixel), the performance of

EDOZW is better than SPIHT. At this level, the threshold

used for magnitude test is very small. Hence, many of the

descendents are considered as significant. In this case, the

occurrence of Case 2 is higher than Case 1. The number bits

sent in EDOZW will be lower than SPIHT, since EDOZW

does not required to send a GDESC bit to indicate whether the

grand descendents of an entry is significant or insignificant.

This also shows that a degree-k coder is not always better than

a degree-(k-1) coder.

V. CONCLUSIONS

The EDOZW which considered as a degree-1 zerotree

coder achieves a result that is comparable to SPIHT. At low

bit rate, the performance of EDOZW is not as good as SPIHT.

However, the difference in terms of PSNR is less than 0.1 dB.

At high bit rate, the performance of EDOZW is always better

than SPIHT, and the gain can be as high as 0.65 dB.

Moreover, the complexity of EDOZW is also lower than

SPIHT. Since it is no longer necessary to differentiate the type

of root, a simple recursive algorithm can be used to complete

the coding process. This also helps reduce the overall

processing time and power consumption. The EDOZW can

serve as an alternative solution where high performance coder

with lower complexity is preferable.

REFERENCES

[1] J. M. Shapiro, “Embedded image coding using zerotrees of wavelet

coefficients,” IEEE Trans. on Signal Processing, vol. 41, no. 12,

December 1993, pp. 3445-3462.

[2] A. Said and W. A. Pearlman, “A new, fast, and efficient image codec

based on set partitioning in hierarchical trees,” IEEE Trans. on

Circuits and Systems for Video Technology, vol. 6, no. 3, June 1996,

pp. 243-250.

[3] Y. Cho and W. A. Pearlman, “Quantifying the coding performance of

zerotress of wavelet coefficients: degree-k zerotree,” IEEE Trans. on

Signal Processing, vol. 55, no. 6, June 2007, pp.2425-2431.

[4] Y. Cho and W. A. Pearlman, “Quantifying the coding power of

zerotrees of wavelet coefficients: a degree-k zerotree model,” IEEE Int.

Conf. on Image Processing, vol. 3, Sept. 2005, pp. III-53-56.

[5] I. H. Witten, R. Neal and J. G. Cleary, “Arithmetic coding for data

compression,” Comm. ACM, vol. 30, June 1987, pp. 520-540.

[6] A. Said and W. A. Pearlman, “SPIHT image compression programs,”

June 1996. [Online] Available:

http://www.cipr.rpi.edu/Research/SPIHT/EW_Code/SPIHT.zip

[7] M. Antonini, M. Barlaud, P. Mathiew, and I. Daubechies, “Image

coding using wavelet transform,” IEEE Trans. on Image Processing,

vol. 1, Apr 1992, pp. 205 – 220.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

