
 

 

 

  

Abstract—The Embedded Zerotree Wavelet (EZW) coder  

which can be considered as a degree-0 zerotree coder, and Set 

Partitioning In Hierarchical Trees (SPIHT) coder which can be 

considered as a degree-2 zerotree coder are two well-known 

image compression techniques. However, the performance of a 

degree-1 zerotree coder has not been well investigated. In this 

paper, an Embedded Descendent-Only Zerotree Wavelet 

(EDOZW) coder which can be considered as a degree-1 zerotree 

coder is proposed. The EDOZW coder is a modified version of 

SPIHT coder with Arithmetic Coding (SPIHT-AC). When 

coding the entry in the List of Insignificant Set (LIS) in SPIHT, 

it is necessary to first determine whether the entry is Type A or 

Type B. Then, a different scheme is used to handle the entry. But 

in contrast to SPIHT, it is no longer necessary to differentiate 

the type of entry in EDOZW. Only one type of entry is used in 

EDOZW and a recursive algorithm can be used to encode all the 

entries easily. This will help to reduce the overall complexity. 

Moreover, the EDOZW also achieved better performance at 

high bit rates. The EDOZW can serve as an alternative solution 

for image compression other than EZW and SPIHT. 

 
Index Terms— Degree-1 zerotree coder, Degree-k zerotree 

coder, EZW, image compression, SPIHT.  

 

I. INTRODUCTION 

  The Embedded Zerotree Wavelet (EZW) coder [1] and 

Set Partitioning In Hierarchical Trees (SPIHT) coder [2] are 

gaining popularity in the image compression field, due to their 

superior performance. In fact, similarities do exist in both of 

the coding method, such as the use of wavelet transform and 

zerotree coding.  

In both of the coding methods, a wavelet transform is used 

to decompose an image into different frequency subbands. 

Then, the coefficients in different frequency subbands are 

linked together to form a tree structure. Although the tree 

structure adopted by EZW and SPIHT is slightly different, it 

does not significantly affects the performance. The EZW and 

SPIHT also use a similar magnitude test to determine whether 

the coefficient is significant or insignificant. If the value of a 

coefficient is larger than the predefined threshold, it will be 

considered as significant.  

On the other hand, the zerotree coding is based on the idea 

that if the root of the tree is insignificant, it is very likely that 

all the descendents are also insignificant [3]. If this condition 

 
Manuscript received October 1, 2008.  

W. C. Chia, L-M. Ang, and K. P. Seng are with the School of Electrical & 

Electronic Engineering, The University of Nottingham Malaysia Campus, 

Jalan Broga, 43500, Semenyih, Selangor, Malaysia (phone: 603-89248000; 

fax: 603-89248002; correspond e-mail:  [keyx7cwc / kezklma / kezkps] 

@nottingham.edu.my). 

 

is true, all the coefficients under the tree can be coded by 

using a single symbol to achieve compression. 

A zerotree can be viewed as a tree structure that all the 

descendents are insignificant beyond a certain level. Depends 

on how many top k levels that a zerotree are having non-zero 

values, a zerotree can be classified as various type of degree-k 

zerotree [3]. The structure of degree-0 to degree-2 zerotree is 

illustrated in Fig. 1. 

 For example, EZW is considered as a degree-0 zerotree 

coder because it can only encode an occurrence of degree-0 

zerotree with one symbol. On the other hand, SPIHT can 

encode the occurrence of degree-1 and degree-2 zerotree with 

one symbol. Additional information on type of zerotree and 

how it differentiates the EZW and SPIHT coder can be found 

in [3] and [4]. 

 From the previous results, we can notice that the 

performance of SPIHT is higher than EZW. However, it does 

not imply that a degree-2 zerotree coder is always better than 

a degree-0 zerotree coder. Depending on the tree structure 

and distribution of the significant coefficients, a degree-k 

zerotree coder may send more redundant information than a 

degree-(k-1) zerotree coder. This condition will be explained 

more detail in later section. 

Unlike the case for degree-0 and degree-2 zerotree coder, 

the performance of a degree-1 zerotree coder has not been 

well investigated. Hence, an Embedded Descendent-Only 

Zerotree Wavelet (EDOZW) coder which can be considered 

as a degree-1 zerotree coder is proposed in this paper. The 

EDOZW coder is a modified version of the SPIHT coder that 

can achieve comparable result with lower complexity. In 

contrast to SPIHT, a simple recursive algorithm can be used 

to encode all the entries in the List of Insignificant Set (LIS). 

It is no longer necessary to differentiate whether the entry is 

Type A or Type B. 

The paper is organized in the following manner. Firstly, a 

brief introduction on SPIHT coding is given in Section II. 

Next, the proposed EDOZW coder will be explained in detail 

in Section III. Simulation results and discussions are 

presented in Section IV. Finally, we will conclude the paper in 

Section V. 

II. SPIHT 

In SPIHT, a tree structure called Spatial Orientation Tree 

(SOT) is used to link the coefficients in different subbands. 

The relationship between the root and the descendents in SOT 

is illustrated in Fig. 2. Coefficients in the LL band without the 

‘*’ label are considered as the root of the tree, and all the 

coefficients will have either 4 offspring or no offspring. 

The algorithm uses 3 types of list, which named as List of 

Significant Pixel (LSP), List of Insignificant Pixel (LIP), and 
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LIS to control the coding process. At the initialization phase, 

the LSP is left empty and all the coordinates in the LL band 

are added to the LIP. The entries in the LIS is similar to LIP, 

except that the coordinates with the ‘*’ label are excluded. 

Then, a threshold is chosen for the magnitude test.  

In the sorting phase, the magnitude test is first performed 

on all the entries in the LIP. If the entry in the LIP is 

significant in the current pass, it will be coded and shifted to 

the LSP. Otherwise it will remain in the LIP and tested again 

in the next pass. 

The entries in the LIS can be categorized into 2 types, 

which defined as Type A entry and Type B entry. Type A 

entry contains the set of coordinates for all its descendents and 

Type B entry contains the set of coordinates for all its 

descendents with its 4 direct offspring excluded. In other 

word, Type B entry contains the set of coordinates start from 

its grand descendents to the end of the tree. Throughout the 

paper, we will consider all the coordinates in this set as the 

grand descendents. Since the coding of Type A and Type B 

entry is important for further explanation, we will explain the 

process more in detail. 

When coding a Type A entry, if any coefficient within the 

set is significant, a ‘1’ is sent as the output, and a magnitude 

test will be performed on its 4 direct offspring. The significant 

offspring will be coded and added to the end of the LSP, while 

the insignificant offspring will be added to the end of the LIP. 

If none of the coefficient within the set is significant, a ‘0’ is 

sent as the output. This output bit that used to indicate the 

significance of a Type A entry will be labeled as DESC bit in 

this paper. 

For a Type B entry, if any coefficient within the set is 

significant, a ‘1’ is sent as the output. Then, the coordinate for 

the 4 direct offspring will be added to the end of the LIS and 

marked as new Type A entry. Otherwise, a ‘0’ is sent as the 

output. This output bit that used to indicate the significance of 

a Type B entry will be labeled as GDESC bit in this paper. 

 In the refinement phase, the refinement bit for each entry in 

the LSP except for new entries from the current pass is coded. 

Then, the threshold value is reduced and the coding process 

described above is performed again. 

III. EDOZW 

One of the advantages of EDOZW is no longer necessary to 

differentiate the Type A and Type B entry in the LIS. All the 

entries inside the LIS are processed in the same way, and the 

same algorithm can be used to encode all the entries. Hence, it 

becomes a recursive algorithm that is easier to implement as 

illustrated in Fig. 3. This also implies that the complexity is 

lower as compared to SPIHT. It should be noted that the flow 

chart shown in Fig. 3 only considered the main flow of the 

algorithm. The encoding of various output bits is not shown. 

In EDOZW, the sorting phase of SPIHT is modified. For 

each entry in the LIS, if any coefficient within the set is 

significant, the entry is considered as significant and the 4 

offspring will be coded in the same way as SPIHT. Then, the 

coordinate of the 4 offspring will be added to the end of the 

LIS immediately. In contrast, SPIHT will first mark the entry 

as a Type B entry and perform a magnitude test all the grand 

descendents. Only when any one of the grand descendent is 

significant, the coordinate of the 4 offspring is added to the 

end of LIS. 

For example, consider the tree structure shown in Fig. 4(a). 

We will explain the coding process of EDOZW and SPIHT in 

terms of bit-plane wise. The ‘1’ and ‘0’ are used to represent 

the significant and insignificant coefficient respectively. 

 

                          (a) (b)                 (c) 

Figure 1. Structure of (a) Degree-0, (b) Degree-1, and (c) Degree-2 zerotree. 

 

 
Figure 2. The SOT structure adopted by SPIHT. 
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Initially, the LIS content in EDOZW is {(1, 1)}. Since the set 

is significant, a ‘1’ bit is sent as output. Then, the 4 offspring 

will be coded in the same way as SPIHT, and the output will 

be ‘0 0 0 1 1’. In this case, we use ‘1’ to indicate a positive 

coefficient and ‘0’ to indicate a negative coefficient. Next, the 

coordinates of the 4 offspring will be added to the end of the 

LIS, and this (1, 1) entry is discarded. Now, the LIS content is 

changed to {(6, 6); (6, 7); (7, 6); (7, 7)}. The coding process 

will continue until all entries in the LIS are checked. Since 

none of the grand descendent is significant, the output for this  

4 entries will be ‘0 0 0 0’. 

In the same case for SPIHT, the (1,1) entry which initially 

marked as a Type A entry is not directly discarded. In fact, it 

will be marked as a Type B entry, and the LIS content is 

changed to {Type B(1,1)}. The coordinate of the 4 offspring 

is not added to the LIS, because all the grand descendents are 

insignificant in this pass. Only a ‘0’ (GDESC) bit is sent to 

indicate that all the grand descendents are insignificant. The 

output bits for EDOZW and SPIHT are listed under the 

example tree structure shown in Fig. 4(a). Since SPIHT is a 

degree-2 coder, it can use a symbol (bolded bit in Fig. 4(a)) to 

represent a degree-2 zerotree. In contrast, extra 3 bits are 

required to represent the same zerotree in EDOZW. We will 

define the occurrence of this type of tree structure as Case 1.  

Now consider another tree structure shown in Fig. 4(b), 

whereas one of the grand descendents has become significant. 

The output bits for EDOZW and SPIHT are listed under the 

tree structure shown in Fig. 4(b). Notice that the number of 

bits sent for EDOZW is lesser than SPIHT. This is due to the 

GDESC bit (bolded bit in Fig. 4(b)) in SPIHT. The GDESC 

bit is required to indicate that one of the grand descendents is 

significant. Only when the GDESC bit is ‘1’, the tree is breaks 

and the coordinates of the 4 offspring are added to the end of 

LIS as new Type A entry. But in EDOZW, the tree is directly 

breaks without considering the grand descendents. Hence, the 

GDESC bit is not needed. We will define the occurrence of 

this type of tree structure as Case 2. On the other hand, the 

complete EDOZW algorithm is shown in Algorithm I. 

  
 

 Method Output Bits   Method Output Bits  

 EDOZW 1   0 0 0 11   0 0 0 0   EDOZW 1   0 0 0 11  0 0 0 1   0 0 11 0  

 SPIHT 1   0 0 0 11   0   SPIHT 1   0 0 0 11  1 0 0 0 1  0 0 11 0  

(a) (b) 

Fig. 4. Example tree structure of (a) Case 1 and (b) Case 2 illustrated in terms on bit-plane coding. 

 
 

(a) (b) 

Figure 3. The flow chart on encoding the LIS’s entries in (a) SPIHT and (b) EDOZW. 
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IV. SIMULATION RESULTS & DISCUSSIONS 

The performance of the EDOZW coder with AC will be 

compared to EZW coder with AC and SPIHT coder with AC. 

All the 3 coder are using the same AC presented in [5]. The 

result for EZW coder with AC is directly obtained from [1]. 

Hence, only the result reported in [1] is used for comparison. 

On the other hand, the result for SPIHT coder with AC is 

obtained from [6]. 

Simulation is carried out on several gray-scale test images 

which include Lena, Barbara, Goldhill, Baboon, Sailboat, 

and Zelda. These test images are all in the size of 512 x 512. 

For simulation, we use 9/7 tap wavelet filter [7] to perform the 

wavelet transform, and 5 decomposition levels is adopted for 

all the cases. All the simulation results are summarized in 

Table 1. 

A. EDOZW at Low Bit Rates 

For low bit rate (<=1.00Bit/Pixel), the performance of 

EDOZW is not as good as SPIHT. At this level, the threshold 

used for magnitude test is not very small. Therefore, many of 

the descendents are still considered as other insignificant, and 

Algorithm I: 

1) Initialization Phase:  

� Set LSP as an empty list. 

� Add all the coordinates in the lowest frequency subband to the LIP. 

� Add all the coordinates with descendents (without the ‘*’ label) in the lowest frequency subband to the LIS. 

� Set the threshold value. 

2)  Sorting Phase: 

� For each entry (i, j) in the LIP: 

o If the entry (i, j) is significant, output ‘1’ and its sign bit. Then, shift the entry (i, j) to the LSP. Otherwise output ‘0’. 

� For each entry (i, j) in the LIS: 

o Check all the descendents of entry (i, j). If any descendent is significant, output ‘1’ and entry (i, j) is considered as 

significant. 

o  If entry (i, j) is significant: 

�  For each offspring (k, l) of entry (i, j): 

� If offspring (k, l) is significant, output ‘1’ and its sign bit. Then, shift the offspring (k, l) to the LSP. 

Otherwise output ‘0’ and shift offspring (k, l) to the LIP. 

� Add the 4 offspring to the end of the LIS as new entries directly. 

3) Refinement Phase: 

� Except for new entries in the LSP, output the refinement bits for each entry (i, j) in the LSP. 

4) Update: 

� Decrease the threshold value and repeat the steps above again. 

 

 

Table 1. The PSNR (db) for various gray-scale test images coded with different image coding method.   

Lena Barbara Baboon Bit Rate 

(Bit/Pixel) EZW EDOZW SPIHT EZW EDOZW SPIHT EZW EDOZW SPIHT 

0.10 - 30.1813 30.2284 - 24.2391 24.2564 - 22.6121 22.6352 

0.25 33.17 34.0786 34.1102 26.77 27.5145 27.5818 - 24.5347 24.5487 

0.50 36.28 37.1931 37.2064 30.53 31.3609 31.3955 - 26.9878 27.0265 

1.00 39.55  40.4191 40.4051 35.14 36.3995 36.4144 - 30.5927 30.6013 

1.50 - 42.9183 42.9187 - 39.9949 39.9456 - 33.4454 33.4042 

2.00 - 45.1885 45.0627 - 42.6905 42.6483 - 36.3193 36.2943 

2.50 - 48.1995 47.9055 - 45.2991 45.1185 - 38.9224 38.7857 

3.00 - 50.7131 50.0568 - 48.0763 47.7476 - 41.9059 41.7568 

Goldhill Sailboat Zelda Bit Rate 

(Bit/Pixel) EZW EDOZW SPIHT EZW EDOZW SPIHT EZW EDOZW SPIHT 

0.10 - 27.9158 27.9382 - 26.5447 26.5930 - 34.1882 34.1925 

0.25 - 30.5291 30.5597 - 29.9759 30.0629 - 37.5174 37.4990 

0.50 - 33.0772 33.1272 - 32.8586 32.9043 - 39.6748 39.6608 

1.00 - 36.5157 36.5518 - 36.1435 36.1811 - 42.1437 42.1341 

1.50 - 39.2235 39.2005 - 38.7708 38.7927 - 44.4148 44.3012 

2.00 - 42.0418 42.0164 - 41.7198 41.7682 - 47.0256 46.8379 

2.50 - 44.4975 44.3293 - 44.4206 44.2544 - 49.7380 49.1866 

3.00 - 47.6848 47.3573 - 47.5531 47.2525 - 52.7161 51.7010 
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the occurrence of Case 1 is higher than Case 2. In this case, 

the number of bits sent in EDOZW is higher. However, the 

difference in terms of PSNR between EDOZW and SPIHT is 

less than 0.1 dB. With the help of AC, the redundant 

formation in EDOZW can be compensated. As shown in the 

list of output bits in Table 1, all the redundant bits are ‘0’. In 

this case, the probability model for AC will heavily skew to 

‘0’ and AC can code the ‘0’ bit efficiently. 

B. EDOZW at High Bit Rates 

For high bit rate (>1.00Bit/Pixel), the performance of 

EDOZW is better than SPIHT. At this level, the threshold 

used for magnitude test is very small. Hence, many of the 

descendents are considered as significant. In this case, the 

occurrence of Case 2 is higher than Case 1. The number bits 

sent in EDOZW will be lower than SPIHT, since EDOZW 

does not required to send a GDESC bit to indicate whether the 

grand descendents of an entry is significant or insignificant. 

This also shows that a degree-k coder is not always better than 

a degree-(k-1) coder. 

 

V. CONCLUSIONS 

The EDOZW which considered as a degree-1 zerotree 

coder achieves a result that is comparable to SPIHT. At low 

bit rate, the performance of EDOZW is not as good as SPIHT. 

However, the difference in terms of PSNR is less than 0.1 dB. 

At high bit rate, the performance of EDOZW is always better 

than SPIHT, and the gain can be as high as 0.65 dB. 

Moreover, the complexity of EDOZW is also lower than 

SPIHT. Since it is no longer necessary to differentiate the type 

of root, a simple recursive algorithm can be used to complete 

the coding process. This also helps reduce the overall 

processing time and power consumption. The EDOZW can 

serve as an alternative solution where high performance coder 

with lower complexity is preferable. 
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