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Abstract—In the practice of scheduling of construction 

projects, there is a great variety of methods and procedures that 

need to be selected at each construction process during project. 

Accordingly, it is important to consider the different modes that 

may be selected for an activity in the scheduling of construction 

projects. In this study, first, we mathematically formulate the 

resource-constrained project scheduling problem with multiple 

modes while minimizing the total project time as the objective 

function. Following, we propose a new random key-based 

genetic algorithm approach which includes the mode reduction 

procedures to solve this NP-hard optimization problem. Finally, 

in order to evaluate the performance of our method, we are 

scheduled in the close future to implement the proposed 

approach on some standard project instances as the 

computational experiment and analyze these experimental 

results comparing with the bi-population-based genetic 

algorithm by Peteghem and Vanhoucke [1]. 

 
Index Terms—Bi-population-based genetic algorithm, 

Makespan, Random key-based genetic algorithm, 

Resource-constrained project scheduling problem.  

 

I. INTRODUCTION 

The resource-constrained project scheduling problem 

(rc-PSP) is the optimization problem of which objective is 

subject to precedence relation between the activities and the 

limited renewable resource availabilities. In rc-PSP, one of 

the important objective for project managers is to minimize 

the total project time, which is referred as makespan. 

Especially in the case of construction project, the desire of the 

future owner and the architect, the construction technology 

used by builders and the building environments affect the 

procedures and/or methods used during the construction. 

Therefore, a lot of methods and/or procedures exist in each 

construction process. In order to deal with this issue, it is 

extremely essential that the methods and/or procedures 
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applied for an activity can be treated as different several 

modes that can be selected in the scheduling of construction 

projects. In this context, rc-PSP problem is extended to a 

more realistic model, the resource-constrained project 

scheduling problem with multiple modes (rc-PSP/mM).  

In rc-PSP/mM, each activity can be performed in one of 

several modes. Each mode of an activity represents an 

alternative way of combining different levels of resource 

requirements with a related duration. In such problems, 

according to Hartmann [2], the resources are categorized as 

renewable, non-renewable and doubly constrained resources. 

While renewable resources have limited per-period 

availability such as manpower and machines, non-renewable 

resources have an availability limited for the entire project, 

such as a budget for the project. Doubly constrained resources 

are limited both for each period and for the whole project. 

However, since doubly constrained resources can simply be 

considered as a combination of renewable and non-renewable 

resources, we do not consider them explicitly.  

The rc-PSP is an NP-hard combinatorial optimization 

problem [3]. Since the pioneering work of Kelley [4], the 

resource-constrained project scheduling problem has been 

addressed by a great number of researchers. The 

meta-heuristic solution techniques have been gaining the 

great attention of researchers [5]. In recent years, among 

meta-heuristic solution techniques, the systematical report in 

application of genetic algorithms (GA) to solve the NP-hard 

combinatorial optimization problems, especially designing 

problem in engineering, are continuously increasing since 

they have been proven to be efficient [6]-[7]. Among GAs, 

random key-based GA (rkGA) is proven to be easily 

implemented with powerful search capability.  

In this study, as a representation of the real-world project 

problems, we consider the rc-PSP/mM with minimization of 

the makespan as objective, and to solve this rc-PSP/mM as 

NP-hard optimization problem, we propose a new random 

key-based GA approach (rkGA) and the reduction procedure, 

which is very useful for reducing the large-sized problems 

into a more acceptable size.   

The rest of this paper is organized as follows. In section II, 

the rc-PSP/mM is defined and the mathematical model of 

rc-PSP/mM is constructed. In Section III, proposed rkGA for 

solving the rc-PSP/mM is introduced. In Section IV, 

concluding remarks and future research directions are given 

as conclusion.  
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II. RESOURCE-CONSTRAINED PROJECT SCHEDULING MODEL 

WITH MULTIPLE MODES  

A. Background Information  

When there are several different modes that may be selected 

for an activity in rc-PSP, the problem is called as 

resource-constrained project scheduling problem with 

multiple modes [5]. In this problem, each mode corresponds 

to a different time and resource trade-off option for the 

activity under consideration. A feasible schedule specifies the 

implementation mode, as well as the start and finish times for 

each activity. The rc-PSP/mM can be stated as follows: A 

project consists of a set of activities V = {0, … , I+1} where 

each activity has to be processed in exactly one of several 

modes. The dummy activities 0 and I+1 represent the 

beginning and the termination of the project, respectively. 

There are two kinds of resources, i.e., renewable resources 

with K types and non-renewable resources with N types 

available in limited quantities to process activities. Each 

activity i consumes ijkr  units of renewable resource k during 

each unit period of its processing time and ijnr  units of 

non-renewable resource n when mode j is used, where 

0 1 0 10 ( 0)jk I jk jk I jkr r r r   
     . The maximum-limited 

availability of each renewable resource type k in each time 

period is ka  units, k =1, …, K. The maximum-limited total 

availability of each non-renewable resource type n is na  units, 

n =1, …, N. The processing time of activity i of selected mode 

j is denoted by pij where p0j = pi+1j = 0. All parameters are 

assumed to be non-negative integers.  Each activity is 

performed exactly in one of its modes.  Moreover, the 

activities are interrelated through two kinds of constraints, i.e., 

precedence constraints and resource constraints, where the 

former ensures that the activity i in V is not started before all 

its predecessors have been finished, and the latter ensures that 

the activities are processed consuming required renewable 

and non-renewable resources within limited capacities. In Fig. 

1, the conceptual model of activity in rc-PSP/mM is 

illustrated using the notations and indices. The objective of 

the rc-PSP/mM is to find the precedence and resource feasible 

finish times for all activities such that the makespan of the 

project is minimized.  

B. rc-PSP/mM Model  

For the rc-PSP/mM problems considered in this study, the 

following assumptions are made:  

A1. A single project consists of a number of activities with 

known processing time and multiple resources required 

to process activities. 

A2. The processing times of activities are deterministic. 

A3. The start time of each activity is dependent upon the 

completion of some other activities (precedence 

constraints). 

A4. There are two kinds of resources, i.e., renewable and 

non-renewable resources available in limited quantities. 

A5. There is no substitution between resources. 

A6. Activities can’t be interrupted. 

A7. There is one or more than one execution mode for each 

activity. Mode represents the method and/or procedure 

to perform that activity. 

A8. Each activity must be performed in a mode, where each 

activity-mode combination has a fixed duration and 

requires a constant amount of one or more types of 

renewable resources and non-renewable resources. 

A9. The managerial objective is to minimize the total project 

time.  

Table 1 presents the data set for a rc-PSP/mM model, 

which contains 7 activities including dummy activities 

(dummy beginning and dummy termination activity). That is, 

manpower, cost and material, and predecessors of each 

activity are given in Table 1. Using this data set, the 

precedence graph in Fig. 2 is constructed. 

In order to formulate the mathematical model, the following 

indices, parameters and decision variables are introduced:  

 

 
Fig. 1 Concept of activity in rc-PSP/mM model 

 

Table 1.  Data set of the rc-PSP/mM model 
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Fig. 2.  Precedence graph of the rc-PSP/mM model  



 

 

 

 

Indices 

i: activity index, i = 0, 1, 2, …, I, I+1.  

j: mode index, j = 1, 2, …, mi where mi is the number of 

possible modes for activity i. 

k: renewable resource type index, k = 1, 2, …, K. 

n: non-renewable resource type index, n = 1, 2, …, N. 

T: horizon, i.e., upper bound on the project makespan which 

can be determined by the sum of the maximal activity 

durations. 

Parameters 

Pre( i ): set of immediate predecessors of activity i. 

ijkr : per-period amount of renewable resource k  required to 

execute activity i when mode j is used. 

ijnr : amount of non-renewable resource n required to 

execute activity i when mode j is used. 

ka : maximum-limited renewable resource k only available 

with the constant period availability. 

na : maximum-limited non-renewable resource n with the 

availability for the entire project . 

pij: processing time of activity i of selected mode j.  

Decision variables 

1, if activity  is executed in mode  

      and scheduled to be finished in time 

0,  otherwise

ijt

i j

x t




 



 

Mathematical model of rc-PSP/mM 

The mathematical model for rc-PSP/mM can be stated as 

follows:  

In this mathematical model, the objective (1) is to minimize 

the total project time, which corresponds to the completion 

time of last activity performed in this project. The constraints 

given in equations (2)-(6) are used to formulate the general 

feasibility of the problem. Constraint (2) ensures that each 

activity is performed exactly in one of its modes. Constraint (3) 

ensures that none of the precedence constraints is violated. 

Constraint (4) ensures that the amount of renewable resource 

k used by all activities does not exceed its limited quantity in 

any time periods. Constraint (5) limits the total resource 

consumption of non-renewable resource n to the available 

amount. Constraint (6) represents the usual integrity 

restriction. 

III. RANDOM KEY-BASED GENETIC ALGORITHM APPROACH  

In this section, we introduce a two-phased solution 

approach to solve the rc-PSP/mM model corresponding 

large-sized real world project scheduling problem. The two 

phases are as follows:  

 Phase 1 - Reduction Procedure: Preprocessing 

procedure for reducing search space. 

 Phase 2 – A Random key-based Genetic Algorithm  

A. Phase 1 – Reduction Procedure 

In the first phase, we apply the reduction procedure of 

Sprecher et al. [8] in order to reduce search space, before the 

genetic algorithm is started. This reduction procedure has 

been introduced in order to accelerate a branch-and-bound 

algorithm for rc-PSP/mM and excludes those modes which 

are inefficient or non-executable and those resources which 

are redundant. They defined a mode to be inefficient if its 

duration is not shorter and its every resource request is not 

less than those of another mode of the same activity and a 

mode to be non-executable if its execution would violate the 

renewable or non-renewable resource constraints in any 

schedule. They also defined a non-renewable resource to be 

redundant if the sum of maximal requests of the activities for 

this resource does not exceed its availability. Clearly, 

inefficient and non-executable modes as well as redundant 

non-renewable resources may be deleted from the project data 

without affecting the optimal makespan. So by deleting those 

modes and non-renewable resources, the search space is 

reduced and consequently the reduction of computation time 

is expected.  

B. Phase 2 – Random Key-based Genetic Algorithm  

The second phase of the solution method includes a new 

rkGA. Originally, GA that was introduced by John Holland in 

1975, is a stochastic search algorithm based on the 

mechanism of natural selection and genetics by using 

computer simulation. In GA, a set of initial solutions is first 

expressed as chromosomes, which consist of several genes. 

Next, the chromosomes are used simultaneously to search for 

an optimal solution through crossover and mutation. The 

chromosomes generate offspring. Then, the offspring whose 

fitness is high is preferentially selected. Through this process, 

an optimal solution will be found. 

Among GAs, rkGA has been proven to be easily 

implemented with powerful search capability since it had 

been proposed by Norman and Bean for Job-shop Scheduling 

Problem [9]. For applications of rkGA, the reader may refer to 

Gen et al. [7], [10]. In the following subsections, overall 

procedure, genetic representation and initialization, and 

genetic operators are explained in detail. 

Overall rkGA Procedure   Let P(tgen) and C(tgen) be parents 

and offspring in current generation tgen. The overall procedure 

of rkGA for solving rc-PSP/mM model is outlined as follows: 

1
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
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The genetic procedure starts with the initialization of 

chromosomes as solutions by using random-key based 

encoding and decoding routines. Later, till the termination 

condition is met, convex hull crossover for activity priority 

with one-cut point crossover for activity mode, swap mutation 

for activity priority and mutation for activity mode which 

change the mode randomly, and elitist selection are 

sequentially performed.  

 

Genetic Representation and Initialization   Kim et al. 

[11]-[12] adopted priority-based encoding method for solving 

the single and multiple project scheduling problems. In their 

researches, the authors proved the effectiveness of proposed 

priority-based GA by numerical analysis. However, the nature 

of the priority-based encoding is a kind of permutation 

representation. Generally, traditional permutation 

representation will lead to illegal offspring by one-cut point 

crossover or other simple crossover operators, where some 

node's priority may be duplicated in the offspring. Some 

offspring may generate new chromosomes for which it is 

impossible to inherit the characters of parents and complex 

crossover process, which gives rise to the process of evolution 

being retarded and more computation time needed. 

Later to overcome these additional shortcomings, Gen and 

Lin [13] proposed an extended version of priority-based 

encoding in real number string, i.e., random key-based 

encoding to solve the shortest path routing problems. The 

effectiveness of proposed random key-based encoding has 

been proved in many research areas [7]. 

In this paper, we adopt this random key-based encoding 

method, and a special decoding process for solving 

rc-PSP/mM. In random key-based encoding method, real 

values are used to represent the alleles. To obtain a 

permutation from a chromosome, the genes are treated as 

random keys. Random key-based encoding is a powerful 

method to represent permutations, particularly, by which 

traditional crossover operators always produce legal offspring. 

Moreover, relative and absolute ordering information can be 

preserved after recombination. 

For the representation of rc-PSP/mM models, random 

key-based encoding for activity sequences and randomly 

mode assignment for activity mode are used. The genetic 

representation (v, m) of an individual solution is composed of 

two chromosomes where the first chromosome v shows the 

feasible activity sequence and the second chromosome m 

consists of activity mode assignment. To develop this genetic 

representation for rc-PSP/mM model, there are two main 

procedures, i.e., initialization and decoding procedure; 

initialization: Creating an activity sequence and activity 

mode, i.e., generating a random key priority using encoding 

procedure and an activity mode using randomly mode 

assignment procedure to each activity. 

decoding procedure: 

step 1: Decode a feasible activity sequence that satisfies the 

precedence constraints. 

step 2: If the schedule found in step 1 is infeasible with respect 

to non-renewable resource, improve it by applying the 

local search procedure of Hartmann [2]. 

step 3: If the schedule found in step 2 is infeasible regarding 

renewable resource, transform it into feasible one 

using the revised serial method. 

 

The detailed explanations of these procedures are as 

follows:  

initialization: Creating an activity sequence and activity 

mode 

Firstly, here we used the position to denote an activity ID 

and the random real value ν(i) to denote the priority 

associated with the activity i as shown in Fig. 3 for the 

example rc-PSP/mM project in Fig. 2. In the part of random 

key-based chromosome in Fig. 3, the value of a gene is a real 

number exclusively within [1, I+3). The larger the number 

means the higher priority. The detailed procedure of random 

key-based encoding is shown in Procedure 1 (see Fig. 4).  

Secondly, all activities are assigned with an activity mode 

by randomly mode assignment procedure which assigns a 

mode m(i) to each activity i randomly. The second part of Fig. 

3 illustrates a randomly assigned mode chromosome obtained 

by using this encoding procedure.  

 

 

 

overall procedure: rkGA for rc-PSP/mM 

input: reduced problem data, GA parameters 

output: the best schedule 

begin:  

tgen ← 0; 

initialize P(tgen) by random key-based and randomly  mode assignment 

encoding routine; 

evaluate P(tgen) by random key-based and  randomly  mode assignment  

decoding routine; 

while (not terminating condition) do 

create C(tgen) from P(tgen) by routine of convex hull crossover for 

activity priority  with one-cut point crossover for activity mode; 

create C(tgen) from P(tgen) by routine of swap mutation for activity 

priority and randomly changing activity mode; 

evaluate C(tgen) by random key-based and randomly mode 

assignment decoding routine; 

select P(tgen +1) from P(tgen) and C(tgen) by elitist selection routine; 

tgen ←tgen +1; 

end  

output the best schedule; 

end 

 

 
Fig. 3.  An individual solution composed of random 

key-based and randomly assigned mode chromosomes  
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Fig. 4.  Procedure for random key-based encoding 



 

 

 

 

decoding procedures: 

Here in step 1, we identify the activity sequence SA by the 

random key-based decoding process while considering 

activity precedence constraints. We define an activity 

sequence SA containing the activities among candidates based 

on the chromosome v which have been already scheduled, and 

a decision set S  containing the unscheduled activities which 

are eligible for scheduling. The procedure of creating activity 

sequence is shown in Procedure 2 (see Fig. 5). 

For the illustration of this decoding procedure, the 

chromosome found in Fig. 3 is used. Table 2 presents the trace 

table for the decoding procedure. In the example, we obtained 

a precedence feasible sequence of SA = {0, 2, 1, 4, 3, 5, 6}. 

In step 2, if the schedule S found in step 1 is infeasible with 

respect to non-renewable resource, we improve it by applying 

the local search procedure of Hartmann [2]. For an individual 

(v, m) where v is a chromosome and m is a mode assignment, 

let L
v
n(m) denote the leftover capacity of non-renewable 

resource n = 1, 2, …, N, with respect to the mode assignment m,  

that is,  

   
1

,  1, , .
I

n n im i n
i

L m a r n N  



    (7) 

Then a negative leftover capacity L
v
n(m) < 0 implies 

infeasibility of mode assignment m with respect to 

non-renewable resource n. Let the number of non-renewable 

resource units that exceed the capacities be given by 

   

 
1, ,

0n

n
n N

L m

L m L m



 





   
(8) 

Then the procedure chooses an activity randomly and for that 

activity, a different mode is chosen. If the L
v
(m)

 
remains the 

same or decreases, the mode for that activity is changed. This 

step is repeated until the mode assignment is feasible (L
v
(m) = 

0) or until J consecutive unsuccessful trials to improve the 

mode assignment have been made.  

In step 3, if the schedule found in step 2 is infeasible with 

respect to renewable resource, we transform it into renewable 

resource feasible one applying the revised serial method [4], 

[18]. Let A(t) denote the set of activities in progress in period [t, 

t+1) and let 

    
,  1, ,k k im i ki A t

a t a r k K  


    (9) 

be the remaining capacity of renewable resource type k at time 

instant t. Also let Fi denote the finish time of activity i. Then a 

schedule is given by a vector of finish times (F1, … , FI). Let ig 

denote the activity which is selected in iteration g of an 

execution of the serial schedule generation scheme (serial 

SGS). Then an execution of the serial SGS can be recorded by 

a list λ = (i1, i2, … , iI ) which prescribes that activity ig has 

been scheduled in iteration g. Note that this list is precedence 

feasible in our case. Let Sg be the schedule set containing the 

activities which have been already scheduled at iteration g 

and set   .g i gF i S    Given a list λ, we can give the serial 

SGS (the revised serial method) for activity list as in 

procedure 3. The finish time of i is calculated by firstly 

determining the earliest precedence feasible finish time EFi 

and then calculating the earliest (precedence- and) renewable 

resource-feasible finish time Fi within [EFi, LFi], where LFi 

denotes the latest finish time as calculated by backward 

recursion [19] from upper bound of project’s finish time T. 

Genetic Operators   In this subsection, the crossover, 

mutation and selection operators used in the rkGA approach 

are explained in detail. 

Crossover Operator: As crossover operator, Convex Hull 

Crossover [14] for activity priority together with one-cut 

point crossover for mode are used simultaneously for two 

individuals. Combining two parents’ chromosome vj(i) and 

vk(i), Convex Hull Crossover makes two new offspring 

chromosome vj’(i) and vk’(i) ; 

   1 2' ,       j j kv v i v i i     (10) 

   1 2' ,       k k jv v i v i i     (11) 

   1 2 1 21,   0 and 0        (12) 

Mutation Operator: As a mutation operator, in this 

research, we have used the swap mutation for activity priority 

and changed activity mode randomly for rc-PSP/mMs. The 

swap mutation (SM) operator by Syswerda [20] was used here, 

which simply selects two positions (genes) at random and 

swaps them. 

Evaluation Function: We denote the makespan of a 

schedule related to an individual (v, m) as Cmax(v, m). 

Makespan is an appropriate fitness value for a single mode 
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Fig. 5.  Procedure for creating activity sequence 

 

 

Table 2.  Trace table for activity sequence 
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Fig. 7 Serial schedule generation scheme for activity list 

 



 

 

 

 

rc-PSP. However, using the makespan as fitness value for the 

rc-PSP/mM is inappropriate since the infeasible schedule can 

have the same fitness value as the feasible schedule. So, 

Hartmann [2] defined the fitness function for an individual as 

follows: 

   

 
max ,     if 0,

  
    otherwise,

HART

C m L m
f

T L m




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 (13) 

where T is the upper bound on the project’s makespan which 

is given by the sum of the maximal durations of the activities. 

However, Alcaraz et al. [21] have shown that two different 

individual with the same value of L
v
(m) and a different 

makespan can have the same fitness value fHART and they have 

defined their fitness function as follows: 

   

 

 

max

max max

min

,                                       if 0,

, max_ _   

                           otherwise,
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where max_feas_Cmax gives the maximal makespan of the 

feasible schedules related to individuals of the current 

generation and CP
min

 is the critical path using the minimal 

duration of each activity. We use this fitness function. 

Selection Operator: As a selection operator, the elitist 

selection, which preserves the best chromosomes in the next 

generation and overcome the stochastic errors of sampling, is 

used. With the elitist selection, if the best individual in the 

current generation is not reproduced into the new generation, 

one individual is randomly removed from the new population 

and the best one is added to the population.  

IV. CONCLUSION  

In this study, we have designed a novel two-phased solution 

approach for rc-PSP/mM. In the first phase, we applied the 

reduction procedure which excludes those modes and 

resources which may be deleted from the project data without 

affecting the optimal makespan. By this procedure, the 

reduction of computation time is expected. In the second 

phase, we proposed a novel rkGA. The proposed rkGA has 

two main advantages. The first is the usage of random 

key-based encoding with randomly mode assignment which is 

used to represent permutations by which traditional crossover 

operators always produce legal offspring. The second is the 

usage of a serial schedule generation scheme with local search 

procedure which improves the mode selection with respect to 

non-renewable resource feasibility. For the future research 

directions, the computational experiments which are 

supposed to show the effectiveness of the proposed approach, 

should be shown in the close future.  In those experiments, we 

will implement the proposed approach on some standard 

project instances as the computational experiments and 

analyze their results comparing with the bi-population-based 

genetic algorithm by Peteghem and Vanhoucke [1] which is 

considered as one of the most powerful meta-heuristics to 

solve rc-PSP/mM today. 
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