


Abstract— This paper proposes a design of byte code

interpreter for 8051 microcontroller. We developed a
program based on Java language “write once, run
everywhere”. It can be employed to operate with another
system since the program interfaces directly to the
interpreter, instead of the real system. There are two
instruction sets provided in the program. The first is
condition commands such as IF and ELSE. The second is
the commands for peripheral interfacing such as I2C,
RS232 interface, for parallel port, timer and LCD
interface. Interpreter is developed with C language, due
to its simple structure. It is easy to develop and to modify
the code. From the results, condition commands and no
condition commands can be execute correctly.

Index Terms— Byte code, Interpreter, Byte code.

I. INTRODUCTION

To use microcontroller, user has to understand its
architecture and language. Microcontroller of each family has
its own architecture and instruction sets. For example PIC
family is RISC and 8051 family is CISC. When user wants to
change microcontroller to the other, user has to develop the
new program to support new microcontroller. It is waste of
time because user has to study architecture and instruction sets
of new microcontroller as well.

Interpreter for microcontroller may be the alternative way
to solve the problem. When user wants to change the new
microcontroller, user only installs interpreter to new
microcontroller but do not write the new program.

Example for byte code is Java language.
The Java as introduced by Sun Microsystems [1] in 1994

has spread throughout the computer industry and has reached
all domains. As good as Java is for providing “write once, run
everywhere” software. In figure 1, programmer writes Java
program. Java compiler will compile Java program to Java
byte code. To use Java program, user has to install Java
virtual Machine [2] to operating system target. In case user
wants to change to new operating system, users just installs
Java virtual Machine and Java program can be ran as normal.
For this case Java virtual Machine is interpreter of Java
system.

Manuscript received December 27, 2009.
N. Jeenjun is a graduate student in Master Degree in the Faculty of

Engineering at King Mongkut’s Institute of Technology, Ladkrabang,
Bangkok Thailand.

S. Khuntaweetep is now with the Department of Electronics, Faculty of
Engineering at King Mongkut’s Institute of Technology, Ladkrabang,
Bangkok Thailand (e-mail: kksuchar@kmitl.ac.th).

S. Somkuarnpanit is with the Department of Electronics, Faculty of
Engineering at King Mongkut’s Institute of Technology, Ladkrabang,
Bangkok Thailand (e-mail: kssuripo@kmitl.ac.th).

Figure 1. Java operation

The favorite toy in the world, Lego mind storm [3]. It has
H8 microcontroller with Lego interpreter inside. User
interface is based on graphic block. It is easy for beginner
even children can develop their own applications.

For the other examples of interpreter are MetaCricket [4]
developed by MIT, GOGO BOARD [5], BasicStamp by
Parallax Inc. [6], picoJava-I [7] picoJava-II [8] by Sun
Microsystems, An Embedded Java Virtual Machine [9][10],
The Byte code Firmware Design for Microcontroller Device
[11].

II. SYSTEM COMPARISON

Standard Microcontroller (MCU) language design is
depicted in figure 2, user writes assembly program to target
MCU and compiles to machine code of each system. In this
case, user has to develop 2 programs for both 8051 and PIC.

Figure 2. Standard MCU

In figure 3, user installs byte code interpreter into both
8051 and PIC microcontroller then writes the program with
byte code instruction sets. In this case user writes the program
only 1 time.

Figure 3. MCU with byte code interpreter

Byte code Interpreter for 8051 Microcontroller

N. Jeenjun S. Khuntaweetep and S. Somkuarnpanit

III. INTERPRETER DIAGRAM

The interpreter for MCU has 3 parts, they are depicted in
figure 4.

 VM Controller is the core of interpreter, it controls
fetch/execute and condition commands, IF, ELSE,
REPEAT and GOTO.

 VM EXECUTE is byte code decoder.
 Peripheral is hardware modules. It consists of,

Parallel Port, Serial Port, I2C Port, Timer, LCD Port
and Arithmetic functions.

Figure 4. Interpreter diagram

The system flow chart is depicted in figure 5. After MCU

is reset, interpreter fetches byte code from built in Flash
memory. Condition1 will be checked, whatever it is normal
task or condition task. If it is normal task, next byte code will
be decoded as normal. If not, interpreter will check condition
before go to next command. After the operation is done,
program counter (PC) will be increased to next line address.

Figure 5. Interpreter flow chart

A. Data Stack

Interpreter is designed to have 16 levels of data stack. The
advantage of data stack is, store the result of condition
command IF/ELSE and WAITUNITL and the result from
arithmetic commands.

Data stack example is depicted in figure 6.
00,02,09,01,00,06,00,01,40,01,35,1C,0A

 00,02 : Line address of program
 09 : SUM
 01 : Condition1 (IF statement)
 00 : No Condition2
 06 : Number slave of IF statement
 00 : This is master line
 01,40 : Push data 40H to current stack
 01,35 : Push data 35 to next stack
 1C : Equal comparison byte code

 0A : Comparison data in stack and stack+1, the result
will be in stack

Figure 6. Data stack

B. The byte code format

The byte code format consists of 7 parts, it is depicted in
figure 7

 AddrH and AddrL are 16 bits line address.
(Maximum is 65,535 lines)

 SUM is used byte in each line (AddrL, AddrH and
SUM are not included)

 Condition1 is the primary condition.
 Condition2 is the secondary condition.
 CondListH, in case if Condition1 is not 00H

o Equal 00H : It is slave line address.
o Not equal 00H : It is master line address.

 CondListL, in case if Condition1 is not 00H
o Equal 00H : It is master line address.
o Not equal 00H : It is slave line address.

 Byte code is 8 bits command.

Figure 7. Byte code format

C. Byte code Instruction sets

 The instruction sets are categorized to 2 sections:
No condition commands

For no condition commands, Condition1 will be 00H,
Condition2 CondListH and CondListL will not be appeared in
the line. Format is depicted in figure 8. Example for this
commands are TX232, RX232, I2CSTART, I2CWRITE,
LCD, WAITTIME, OUTPORT and INPORT.

Figure 8. No condition command format

Condition commands
For condition commands consist of, IF, ELSE, REPEAT

and GOTO. The format is depicted in figure 9. Condition1
will not be 00H and Condition2 is 00H reserved for further
use.

Figure 9. Condition command format

Interpreter is designed to have 8 levels of IF and ELSE
commands. In figure 10 shows 3 levels of IF command and 2
levels of ELSE command.

For IF command, byte code 01H-08H are reserved and
81H-88H are reserved for end of IF line. ELSE command,
byte code 09H-0FH are reserved and 89H-8FH are reserved
for end of ELSE line.

Figure 10. Example IF/ELSE commands

 For REPEAT command, interpreter is designed to have 8
levels. Number of repeating can be 0-255. Byte code
21H-28H is reserved for REPEAT command.

GOTO command, it must have label to go to. Label or
address can be 0000H-FFFFH. Byte code 80H is reserved for
GOTO command.

All of commands will be explained in testing result
section.

D. Memory allocation

Memory allocation is depicted in figure 11, the first 16KB
is reserved for interpreter installation and the second is user
code area is 16KB Flash or 32KB EEPROM as configuration
setting. In this paper, user code area is in 16KB Flash
memory.

Figure 11. Memory allocation

E. Hardware

Hardware for testing the system is ETT-JR51USB [12]
below is specification of hardware.

 AT89C5131 MCU with 6 clocks running
 32KByte Flash and 1Kbyte Sram
 USB cable for downloading program
 1xUART with maximum 11520 bps
 1x I2C port
 5VDC power supply on board

IV. TESTING RESULTS

We chose some of byte code examples for testing the
interpreter. It consists of I2C, RS232, LCD and Parallel Port
with delay time.

The first example code is depicted in figure 12, the
program will produce I2C start signal, write data to I2C with
5AH then produce I2C stop signal. The testing result is
depicted in figure 13.

Figure 12. Example program#1

The first line 00,00,02,00,4E
 00,00 : Line address
 02 : SUM
 00 : Condition1 (No condition command)
 4E : Write start I2C signal

The second line 00,01,04,00,01,5A,4A
 00,01 : Line address
 04 : SUM
 00 : Condition1 (No condition command)
 01,5A : Push data 5AH to data stack
 4A : Send data in data stack to I2C

The third line 00,02,02,00,4F
 00,02 : Line address
 02 : SUM
 00 : Condition1 (No condition command)
 4F : Write stop I2C signal

Figure 13. I2C Start, Write data and Stop signals

The second example is depicted in figure 14. The program
receives data from RS232 channel and sends the same data
back to host (Personal computer). Figure 15 shows RS232
signals.

The first line 00,00,06,64,00,00,05,00,01
 00,00 : Line address
 06 : SUM
 64 : Condition1 (Label command)
 00 : No Condition2
 00,05 : Label stack location
 00,01 : Line address for go to command

The second line 00,01,02,00,14
 00,01 : Line address
 02 : SUM
 00 : Condition1 (No condition command)
 14 : Read data from RS232

The third line 00,02,02,00,04,13
 00,02 : Line address
 02 : SUM
 00 : Condition1 (No condition command)
 04 : Push RS232 data to data stack
 13 : Write data from data stack to RS232

The fourth line 00,03,05,65,00,00,05,00
 00,03 : Line address
 05 : SUM
 65 : Condition1 (Go to command)
 00 : No Condition2
 00,05 : Reload Label at stack location 05
 00 : Reserved for further used

Figure 14. Example program#2

Figure 15. TX232 and RX232

The third example is depicted in figure 16, the program
will send data to parallel port with data 1, 2, 4, 8, 10H, 20H,
40H and 80H with 400mS delay time. Testing result is
depicted in figure 17.
The first line 00,00,06,64,00,00,05,00,01

 00,00 : Line address
 06 : SUM
 64 : Condition1 (Label command)
 00 : No Condition2
 00,05 : Label stack location
 00,01 : Line address for go to command

The second line 00,01,04,00,01,01,4C
 00,01 : Line address
 04 : SUM
 00 : Condition1 (No condition command)
 01,01 : Push data 01 to data stack
 4C : Write data in data stack to parallel port

The third line 00,02,04,00,01,04,10
 00,02 : Line address
 04 : SUM
 00 : Condition1 (No condition command)
 01,04 : Push data 01 to data stack
 10 : Delay time with data in data stack multiply by

100mS
The fourth line 00,03,04,00,01,02,4C

 00,03 : Line address
 04 : SUM
 00 : Condition1 (No condition command)
 01,02 : Push data 02 to data stack
 4C : Write data in data stack to parallel port
The rest program will be repeated the same as line1 and

line2 but only change data out.

Figure 16. Example program#3

Figure 17. Parallel Port

The last example is LCD command, figure 18 is program
and figure 19 is testing result.
The first line 00,00,02,00,A2

 00,00 : Line address
 02 : SUM
 00 : Condition1 (No condition command)
 A2 : Initial LCD byte code command

The second line

00,01,19,00,01,31,A0,01,32,A0,01,33,A0,01,34,A0,01,35,A

0,01,36,A0,01,37,A0,01,38,A0,

 00,01 : Line address
 19 : SUM
 00 : Condition1 (No condition command)
 01,31 : Push data 31(character “1”) to data stack
 A0 : Write data in data stack to LCD
 01,32 : Push data 32(character “2”) to data stack
 A0 : Write data in data stack to LCD
 01,33 : Push data 33(character “3”) to data stack
 A0 : Write data in data stack to LCD
 01,34 : Push data 34(character “4”) to data stack
 A0 : Write data in data stack to LCD

The rest program will write data “5678abcdefgh” to LCD.

Figure 18. LCD program

Figure 19. LCD output

A. Result analysis: Memory usage

 This paper we have installed byte code interpreter into
8051(CISC) microcontroller. The interpreter is written by C
language with KEIL compiler. Table4.1 is comparison for
memory usage.

TABLE I. TABLE4.1 MEMORY USAGE

B. Result analysis: Speed improvement

From the previous paper, the byte code firmware for
Microcontroller Device [11], user program was stored in

MCU IDE Code Data

AT89C5131 KEIL 10.97KB 434B

PIC18F4620 MPLAB 14.96KB 450B

external memory EEPROM with I2C protocol. It is the bottle
neck of the system because it took 10 clocks to fetch data from
EEPROM 1 Byte. In this paper we have improved the
problem by use built in Flash memory of the microcontroller,
it took only 2 clocks to fetch data 1 Byte.

V. CONCLUSIONS

From testing result, even we changed system from PIC to
8051 microcontroller: the interpreter still can execute byte
code commands as correctly. It is proven the independent
hardware conception. The execution byte code command is
improved by changing external memory to internal Flash
memory. In the further: to reduce interpreter code size and
speed improvement, we can use Assembly language instead of
C language. Finally: to check byte code syntax, the complier
should be developed as well.

REFERENCES
[1] S. Wilson and J. Kesselman, “Java platform perform ance strategies

and tactics”, Addison-Wesley, Boston, 2000.

[2] T. Lindholm and F. Yellin, “The Java virtual machine specification”,
Addison-Wesley, Reading, Mass., 1997.

[3] Jin Sato, “LEGO MINDSTORMS: The Master's Tech nique”,
O'Reilly Media, Inc.,2008.

[4] F.Matin, B.Mikhak, B.Silverman, “MetaCricket: A de signner’s kit for
making computational devices”, IBM Systems Journal, Vol. 39, NOS
3&4, 2000.

[5] Arnan (Roger) Sipitakiat, “GOGO BOARD”, Available from:
http://www.gogoboard.org

[6] Al Williams, “Microcontroller Projects Using the Basic Stamp”, CMP
Books, 2002.

[7] Sun Microsystems, “picoJava-I: picoJava-I Core Micro
processorArchitecture”, Sun Microsystems white paper, October
1996.

[8] Sun Microsystems, “picoJava-II: Java Processor Core”,
SunMicrosystems data sheet, April 1998.

[9] Graham Mathias, Kenneth B. Kent “An Embedded Java Virtual
Machine Using Network-on-Chip Design”, IEEE Int. Workshop on
Rapid System Prototyping, 2006.

[10] Kenneth B. Kent, Micaela Serra, “Hardware/Software Co-Design of a
Java Virtual Machine”, IEEE, 2000.

[11] Narakorn Jeenjun, “The Byte code Firmware Design for
Microcontroller Device”, KKU Journal, Vol 34, Page 535-546, 2007.

[12] ETT-JR51USB Board Available from: www.ett.co.th

