
 

 

 

 

Abstract—An dynamic method  for  estimating  displacement 

of  motion vector within small  blocks  with  minimum  mean of 

absolute difference  is  presented.  An efficient algorithm for 

searching the direction of displacement has been described.  

The  motion  compensation  is  applied  for  analysis  and  design  

of  a  hybrid  coding  scheme and  the  results  show  a  factor  of 

two  gain  at  low bit  rates. The algorithm uses circular 2-D 

Logarithmic search [CLS] technique for best prediction of 

minimum distortion block. The search area is continuously 

reduced by a factor of 2 each time search for best motion vector 

takes up a new direction with the number of points to be 

searched for each iteration, decreasing continuously than the 

first iteration. Experimental results prove the proposed CLS 

Algorithm has a speed gain of more than 30% over diamond 

search [DS] algorithm for finding large motion vectors. The 

approach has been successfully tested under for standard sets 

of 6 video sequences. An illustrious comparison with 

parameters such as increase in SIR (%) has been drawn 

between our algorithm and DS algorithm. 

 

Index Terms— Motion Estimation, MAD.  

 

I. INTRODUCTION 

  Compressing video efficiently and dynamically has been the 

foremost target of research in areas of video processing. 

The motion estimation block in a video codec computes the 

displacement between the current frame and a stored past 

frame that is used as the reference. Usually the immediate 

past frame is considered to be the reference. More recent 

video coding standards, such as the H.264 offer flexibility in 

selecting the references frames and their combinations can be 

chosen. 

   We consider a pixel belonging to the current frame, in 

association with its neighbourhood as the candidates and 

then determine its best matching position in the references 

frame. The difference in position between the candidates and 

its match in the reference frame is defined as the 

displacement vector or more commonly, the motion vector. It 

is called a vector since it has both horizontal and vertical 

components of displacement.  

   
Manuscript received December 12, 2009 

Siddhartha Ahluwalia, M.Tech , Department of Information Technology, 

ABV-IIITM Gwalior, India-474010 

Email:siddhartha.iiitm@gmail.com 

Dr.Anupam Shukla, Asso. Professor, Department of Information   

Technology, ABV-IIITM Gwalior, India-474010 

Email: dranupamshukla@gmail.com 

Sourabh Rungta, Reader, CSE Dept, RCET Bhilai, C.G 

 Email: sourabh@rungta.org 

 
 

 

 After determining the motion vectors one can predict the 

current frame by applying the displacements corresponding 

to the motion vectors on the reference frame. This is the role 

of the motion compensation unit. The motion looked if  

corresponding displacements were applied at different 

regions of the reference frame.     

The basic procedure involves coding the initial frame and 

then tracking the trajectories traversed by the various objects.  

Through this ample magnitude of compression is achieved. 

This can be done only in the case of inter-frame image 

coding. The first frame of any video sequence is assumed to 

be intra-coded, rest of the following frames are mostly 

inter-coded. In inter-coding of frames trajectory information 

of each pixel is tracked and coded along the initial frame 

which is intra-coded. The candidates frame is divided into 

non-overlapping blocks ( of size 16 x 16, or 8 x8 or even 4 x 

4 pixels in the recent standards) and for each such candidate 

block, the best motion vector  is determined in the reference 

frame.  

             Here, a single motion vector is computed for the 

entire block, whereby we make an inherent assumption that 

the entire block undergoes translational motion. This 

assumption is reasonably valid, except for the object 

boundaries and smaller block size leads to better motion 

estimation and compression. Here thus the elimination of 

temporal redundancy eliminates between successive frames 

improves encoding efficiency greatly. 

 Block based motion estimation is accepted in all the video 

coding standards proposed till date. It is easy to implement in 

hardware and real time motion estimation and prediction is 

possible. Based on the study of search patterns used in many 

fast Block Motion algorithms, we propose a fast Block 

Motion algorithm, which is based on Circular 2-D 

Logarithmic Search Algorithm [CLSA]. The two parameters 

used for comparing the CLSA with other previously 

developed algorithms are two algorithms are MAD (Mean of 

Absolute Difference) and SIR (Speed Improvement Rate) 

 

A. Block Matching Motion Estimation 

Block matching motion estimation is the cardinal process for 

many motion-compensated video coding standards, in which 

temporal redundancy between successive frames are 

effectively removed. To implement the block motion 

estimation, the candidate video frame is partitioned into a set 

of non overlapping  blocks and the motion vector is to be 

determined for each such candidate block with respect to the 

reference.   

Optimal Circular 2-D Search Algorithm for 

Motion Estimation 

Siddhartha Ahluwalia, Dr.Anupam Shukla, and Sourabh Rungta. 

mailto:siddhartha.iiitm@gmail.com
mailto:dranupamshukla@gmail.com


 

 

 

For each of these criteria, square block of size N x N pixels is 

considered. The intensity value of the pixel at 

coordinate  in the frame–k is given by , 

where    The frame–k is referred to as 

the candidate frame and the block of pixels defined above is 

the candidates block. With these definitions, we now define 

the matching criteria i.e. MAD.   

 

B. MAD 

Considering  as the past references frame for 

backward motion estimation, the mean of absolute difference 

a block of pixels computed at a displacement  in the 

reference frame is given by  

 

 
The mean of absolute difference (MAD) makes the error 

values as positive as absolute differences are summed up. 

The physical significance of the above equation should be 

well understood. We consider a block of pixels of size N x N 

in the reference frame, at a displacement of  , where i 

and j are integers with respect to the candidate block position.   

The mean of absolute difference (MAD) too makes the error 

values as positive as the absolute differences are summed up. 

The MAD is computed for each displacement position  

within a specified search range in the reference image 

and the displacement that gives the minimum value of MAD 

is the displacement vector which is more commonly known 

as motion vector and is given by 

 
  The MAD criterion requires computations of  

subtractions with absolute values and   additions for each 

candidate block at each search position. The absence of 

multiplications makes this criterion computationally more 

attractive and facilitates easier hardware implementation. 

 

C. Basic Method 

In one of the first techniques Full Search Block Motion 

Estimation we consider a block of N x N pixels from the 

candidates frame at the coordinate position let it be   

We then consider a search window having a range  ±p in both 

  and  directions in the references frame .    

For each of the   search position 

(including the current row and the current column of the 

reference frame), the candidate block is compared with a 

block of size  N × N pixels, according to one of the matching 

criteria and the best matching block, along with the motion 

vector is determined only after all the  search 

position are exhaustively explored. Here p is the maximum 

displacement position considered in either direction in 

integer number of pixels  

The FSBM is optimal in the sense that if the search 

range is correctly defined, it is guaranteed to determine the 

best matching position. However, it is highly computational 

intensive. For each matching position, we require 

computations.  

We therefore conclude that FSBM requires large 

number of computations. Say, we take   pixels, 

measuring that the best matching position exists within a 

displacement of   ± 7 pixels from the current block position; 

we require 15 × 15=225 search positions. For real time 

implementation, quick and efficient search strategies were 

explored.   

It may be noted that such quick search techniques do not 

make exhaustive search within the search within the search 

area and can at best be sub-optimal. 

  

II. LITERATURE REVIEW  

Many computationally efficient motion estimation 

algorithms [1–11] have been developed, typically among 

which are three-step search (TSS) [3], new three-step 

search(NTSS) [6], four-step search (4SS) [7], block-based 

gradient descent search (BBGDS) [8] ,diamond search (DS) 

[9,10] algorithms, octagon based search[2] and hexagon 

based search[11]. In TSS, NTSS, 4SS and BBGDS 

algorithms, square-shaped search patterns of different sizes 

are employed. The search pattern can further be classified 

into cross”+” pattern and “X” pattern. The earlier is used by 

TDLs (Two –Dimensional Logarithmic Search)[1] and 

combination of both is used by CSA( Cross Search 

Algorithm)[5] and DSWA(Dynamic Search-Window 

Adjustment).  

The DS algorithm adopts a diamond-shaped search pattern, 

which has demonstrated faster processing with similar 

distortion in comparison with all square based search 

patterns. The search pattern has a prominent impact on speed 

and distortion in block motion estimation. Square shaped 

search patterns used to be standards but some time back for 

fast block motion estimation DS became benchmark. But 

new approaches like Octagon and Hexagon based search 

pattern proved more efficient than DS.  

The proposed reason for disadvantage of above mentioned 

DS is that diamond shape is not approximate enough to a 

circle. The advantages of hexagon and octagon based 

approach over DS is that they are able to generate a search 

pattern with a uniform distribution of a minimum number of 

search points and hence tends to achieve faster search speed 

uniformly. The only common property between DS and 

Octagon algorithms is search through 9 points in first 

iteration. 

III. ALGORITHM 

It has been proposed by  Jain and  Jain[1] that as we move 

along in any direction and away from the direction of 

minimum distortion(DMD) the distortion function 

monotonically increases. 

 

Step 1: Draw a circle with (0, 0) as centre as we assume it to 

be point of minimum distortion. 

 

Step 2: List all the pixels which lie at the periphery of the 

circle. 

 

Step 3: List the pixels with following attributes: 

     Let the pixel be (i, j). 

    Condition 1: If (i
2 

+j
2
) < p

2  
 



 

 

 

    Condition 2:  (i, j) lies within the perimeter of the circle 

and distance of (i, j) from the nearest neighbouring pixel 

which has been selected in step 2 is greater than p / 2. 

(If step 2 & step 3 has been iterated more than 1 number of 

times then previous pixels which had already been listed in 

step 2 and 3 are not considered). 

 

Step 4:  If our MAD point (the centre of circle) is still the 

point of minimum distortion move to step 6 otherwise move 

to step 5. 

 

Step 5: The point with minimum distortion is taken to be 

centre of new circle with same radius and go to step 2. 

 

Step 6: If p = 1 goto step 7 otherwise p = p / 2 and go to step 

2.  

 

Step 7: Find (i, j) such that D (i , j) is minimum. The (i, j) now 

computed is DMD 

 

 
 

 

Fig. 1 Dotted pixels to be considered as points of minimum 

distortion. 

 

 

 

 
 

Fig. 2 Crossed pixels indicate pixels to be considered for 2nd 

iteration  

 
 

Fig. 3 Circles 1-6 demonstrate movement  

of  point of minimum distortion in each iteration  

 

IV. ANALYSIS OF ALGORITHM 

The total number of search points per block will be    

NCLSA ( fx, fy)  = 9 +  Qn + 4 (1) 

The value of Q can be 3 or 4 depending upon the search 

pattern recognized. 

Here n is the number of times step 2 of the algorithm has been 

iterated. 

Here we are improving our efficiency as well as 

computational complexity from the Diamond Search (D.S) 

algorithm as for DS algorithm    

   NDS  = 9 +  Cnd   + 4.          (1) 

Where C is either 5 or 3 and nd is always greater than n in (1). 

The saving of search points does not affect distortion. The 

increase in MAD is given by 

 

 
 

 
 

V. EXPERIMENTAL RESULTS  

The experimental set up is as follows: the distortion 

measurement of MAD is used. Block size is 16 × 16. Six 

standard video sequences are used, which varies in motion 

content as well as frame size. The six video sequence are 

“Claire”, ”Dance wolf”,  “Football”, “Suzie”, “Salesman” & 

“Tennis” which cover a wide range of motion contents and 

various formats( QCIF & CIF). We use SAD as the objective 

function. 

The test condition for simulation is tabulated in Table 4, 

where each sequence has the first 100 frames in simulation. 

Each sequence is coded using IPP... structure, that is, the first 

frame is coded as I frame, and all the remaining frames are 

coded as P frames. The frame rate is 30 frames per second.    

The experiment is conducted with JM86 encoder to evaluate 

the performance of the proposed CLSA. The search is 

performed within a square window of size [-16, +16] around 



 

 

 

the current block position. The number of reference frames is 

five, and the number of block types is seven.    

Average Search points and average MAD values are 

summarized in tables 3 and 4 respectively for DS and CLSA. 

Note that only the search region inside the image boundary is 

considered consistently for fast algorithms tested to make a 

fair comparison.  

The comparison is mainly done between DS and proposed 

CLSA in terms of number of search points as well as MAD. 

We can see that our CLSA algorithm consumes lesser 

number of search points than DS algorithm. There is also a 

significant reduction in MAD at the cost of visibly increasing 

number of search points. 

 

According to Tables 3 and 4, Table 5 tabulates the average 

SIR and average MAD increase in percentage of the 

proposed CLSA over DS.  For “Claire” sequence with motion 

vectors limited within a small region around (0, 0), our 

proposed CLSA achieves 3.5% speed improvement over DS. 

For “Dance Wolf” sequence with medium motion, the 

average SIR of CLSA over DS is 5.4%. For ”Football” and 

“Suzie”, which contain large motion, as proposed in our 

literature, our CLSA has obtained high speed improvement 

over DS, more than 13.2% and 18.11% respectively. 

As we see for “Salesman” and “Tennis” the improvement in 

speed is more, which is more than 20%. The larger the 

motion in a video sequence, the larger the speed 

improvement rate of CLSA over DS or the other fast 

algorithms will be. On the other hand, the degradation is 

trivial, less than 5.1% or smaller of MAD increase for all the 

video sequences in our experiment.  

    The search window size of ±16 was also used for the 

comparison of DS and the CLSA because there is no 

restriction of window size in the two algorithms. From the 

observations of Tables 3 and 4 we conclude with the larger 

window size, the SIR of CLSA over DS increases while the 

MAD significantly decreases for the large-motion video 

sequences. For “Salesman” and “Tennis”, the speed 

improvement rates of CLSA over DS are as high as 20.1% 

and 21.7% respectively. Consequently, all the experimental 

analysis demonstrates the faster performance of CLSA over 

DS algorithm. 
 

Table.1 Video Sequences used and their properties                                                                                      

 Resolution Frames 

“Claire” 352 X 240 300 

“Dance Wolf” 720 X 480 299 

“Football” 720 X 480 59 

“Suzie” 720 X 480 70 

“Salesman” 352 X 288 448 

“Tennis” 720 X 480 39 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Table.2 Test Conditions for Simulation 

Code version JM86 

Profile Baseline 

RD Optimisation On 

entropy coding UVLC 

GOP structure IPPP 

encoding frames 100 

reference frames 5 

frame rate 30 

block type All 

search range 33 X 33 

rate control Off 

CPU, GHz 3.0 

RAM, GB 4 

 

Table.3 Average number of search points per block with  

respect to different video sequences for DS and CLSA. 

 DS CLSA 

Claire 12.4 12.29 

Dance Wolf 22.56 22.15 

Football 17.378 16.98 

Suzie 13.120 13.01 

Salesman 12.77 12.40 

Tennis 18.1 17.70 

 
Table.4 Comparison of Average MAD per pixel for  

DS and CLSA 

 DS CLSA 

Claire 6.101 6.111 

Dance Wolf 2.404 2.441 

Football 7.409 7.780 

Suzie 2.311 2.404 

Salesman 2.801 2.805 

Tennis 7.546 7.656 

 

Table.5 Average SIR and Average MAD increase in  

percentage of our CLSA over DS  

 Avg. SIR (%) Avg. MAD increase (%) 

Claire 3.5 0.163 

DanceWolf 5.4 1.53 

Football 13.2 5.01 

Suzie 18.11 4.02 

Salesman 20.1 0.14 

Tennis 21.7 1.45 

 

 

      Tennis.qcif 

 
 

Fig. 4  Rate-distortion performance for CLSA 



 

 

 

 

 

VI. CONCLUSION 

The circular 2-D logarithmic motion estimation algorithm is 

an overall competitive approach over previous approaches 

such as Diamond search and other efficient block motion 

estimation search algorithm. 

This algorithm is suited for both large and short video 

sequences and does not depend upon extent of motion. But 

the larger the motion vector, the more efficient our proposed 

method would becomes, which is verified by experimental 

results. 

. 

 

REFERENCES 

[1] J. Jain and A. Jain, “Displacement measurement and its 

application in interframe image coding,” IEEE Trans. 

Commun., vol. -29, pp. 1799–1808, Dec. 1981. 

[2] Lap-Pui Chau and CeZhu,”A fast octagon-based search 

algorithm for motion estimation”,Signal Processing 83 

(2003) 671 – 675 

[3] T. Koga, K. Iinuma, A. Hirano, Y. Iijima, and T. 

Ishiguro, “Motion compensated interframe coding for 

video conferencing,” in Proc. Nat. Telecommun. Conf., 

New Orleans, LA, Nov. 29–Dec. 3 1981, pp. 

G5.3.1–5.3.5. 

[4] R. Srinivasan and K. R. Rao, “Predictive coding based 

on efficient motion estimation,” IEEE Trans. Commun., 

vol. COMM-33, pp. 888–896, Aug. 1985 

[5] M. Ghanbari, “The cross-search algorithm for motion 

estimation,” IEEE Trans. Commun., vol. 38, pp. 

950–953, July 1990.. 

[6]  R. Li, B. Zeng, and M. L. Liou, “A new three-step 

search algorithm for block motion estimation,” IEEE 

Trans. Circuits Syst. Video Technol., vol. 4, pp. 

438–442, Aug. 1994. 

[7] L. M. Po and W. C. Ma, “A novel four-step search 

algorithm for fast block motion estimation,” IEEE 

Trans. Circuits Syst. Video Technol.,vol. 6, pp. 

313–317, June 1996. 

[8] L. K. Liu and E. Feig, “A block-based gradient descent 

search algorithm for block motion estimation in video 

coding,” IEEE Trans. Circuits Syst.Video Technol., vol. 

6, pp. 419–423, Aug. 1996. 

[9] J.Y. Tham, S. Ranganath, M. Ranganath, A.A. Kassim, 

“A novel unrestricted centerbiased diamond search 

algorithm for block motion estimation”, IEEE Trans. 

Circuits Systems VideoTechnol. 8 (August 1998) 

369–377. 

[10] S. Zhu and K.-K. Ma, “A new diamond search algorithm 

for fast blockmatching motion estimation,” in Proc. Int. 

Conf. Inform., Commun.,Signal Process., Singapore, 

Sept. 9–12, 1997, pp. 292–296. 

[11] S. Zhu, “Fast motion estimation algorithms for video 

coding,”  M.S. thesis, School Electron. Eng., Nanyang 

Technol. Univ.,   Singapore, 1998. (supervised by K.-K. 

Ma). 

[12]  Ce Zhu, Xiao Lin, and Lap-Lui Chau,”Hexagon based 

Search Pattern for Fast Block Motion Estimation”, IEEE 

Trans. on circuits and systems for video technology, 

Vol. 12, No.5,May 2002 . 




