
 

 

 

 

Abstract—This paper presents the comparative study of two 

different evolutionary approaches, a genetic algorithm (GA) and 

an estimation of distribution algorithm (EDA), in co-evolving 

negotiation strategies with different preference criteria such as 

optimizing price and optimizing negotiation speed. Empirical 

studies demonstrate that both GA and EDA are successful in 

finding good solutions in price optimizing and speed optimizing 

negotiation, respectively. However, both are not successful in 

price and speed concurrent optimizing (P-S-Optimizing) 

negotiation. From these results, finally, this paper suggests a 

novel method to find best response strategies for P-S-Optimizing 

negotiation.  

 
Index Terms—Software agent, price and negotiation speed 

optimizing negotiation, genetic algorithms, estimation of 

distribution algorithms. 

I. INTRODUCTION 

In multi-agent systems, negotiation is a process whereby 

agents exchange messages, make concessions to reduce their 

differences in the hope of eventually reaching agreements. In 

other words, agents negotiate to coordinate their activities and 

to come to mutually acceptable agreements about the division 

of labor and resources [2, 15]. 

Sim [4, 6, 8, 16] argued that negotiation agents can play an 

essential role in realizing the Grid vision. However, there are 

considerably fewer works on adopting negotiation 

mechanisms for Grid resource management. Grid resource 

management involves multiple criteria optimization, and 

some of these criteria are generally classified into time criteria 

and cost criteria [5]. It is noted in [1,5] that to maintain good 

performance of the system, negotiation agents for Grid 

resource management should be designed to not only 

optimize (price) utility but should also be successful in 

negotiation and reach early agreements. This is because any 

delay in successfully negotiating and acquiring the necessary 

Grid resources before the deadline for executing a job will be 

perceived as an overhead. Different consumers may have 

different preferences [1]. For example, a consumer that 

prefers cheaper resource alternatives at the expense of having 

to wait longer is said to be more price-optimizing 

(P-Optimizing) while a speed-optimizing (S-Optimizing) 
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consumer prefers to obtain a resource more rapidly perhaps 

by paying a higher price at an earlier round of negotiation. 

Different emphasis on optimizing price and optimizing 

negotiation speed can be modeled by placing different 

weights between them. Exact P-S-Optimization has equal 

emphasis on price and negotiation speed. 

To solve negotiation problems, Sim proposed the BLGAN 

model [9, 17] to support negotiation with incomplete 

information, and EDA based co-evolutionary model [1] for 

co-evolving negotiation strategies with different price and 

negotiation speed preference criteria. This paper is based on 

[1] and extends the P-S-Optimizing negotiation to the 

proposed method. Whereas the idea of adopting an EDA for 

co-evolving negotiation strategies of agents that have 

different preference criteria such as optimizing price and 

optimizing negotiation speed is first proposed in [1], this 

paper provides empirical evidence for comparing EDA and 

GA in co-evolving negotiation strategies of agents with 

different preference criteria in optimizing price and 

negotiation speed. 

The rest of the paper is organized as follows. The next 

section specifies the negotiation model of this work. Section 

III presents co-evolutionary algorithms using GA and EDA 

for P-S-Optimizing negotiation. Section IV reports the 

experiments that are carried out. After that, the problem of the 

P-S-Optimization and its solution will be presented in section 

V. Finally, Section VI concludes this work and suggests 

future directions. 

II. PRICE AND NEGOTIATION SPEED OPTIMIZATION 

As formulated in [1], in classical bargaining model, the 

utility function xU  of agent x, where { , }x B S and x̂  

denotes x’s opponent, is defined as follows. Let xIP  and xRP  

be the initial and reserve prices of x. Let D  be the event in 

which x fails to reach an agreement with its opponent x̂ . 
xU :  , [0,1]x xIP RP D   such that   0xU D  , and for 

any possible proposal  ,x x xP IP RP ,  x

xU P   xU D . If 

x and x̂   are sensitive to time, then let x  be the deadline of x, 

and 
x̂

  be the deadline of x̂ . An agreement price that is 

acceptable to both B and S is within the interval  ,
BS

RP RP   . 

In the bargaining model with complete information 

between B and S, both agents know its opponent’s initial price, 

reserve price, and deadline. If one of the agents has 

significantly longer deadline than its opponent, the agent 

which has longer deadline will have sufficient bargaining 

advantages. In other words, an agent that has the longer 

deadline will dominate the negotiation. Under these 

conditions, Sim [9, 17] proved that an agent’s optimal 

strategy can be computed using its opponent’s deadline and 

reserve price. It is formulated as follows: 
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Theorem [9, 17]. If agent x’s deadline x  is significantly 

longer than its opponent’s deadline 
x̂

 , agent x  achieves its 

maximal utility when it adopts the strategy x : 
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A.  Utility Functions 

In this work, the utility function xU  of agent x  is defined 

as in [1]. 

     ,c c P P c S S c

x x xU P T w U P w U T         (2) 

where 
cP  and 

cT  is the price and time (number of negotiation 

rounds) at which reaches an agreement.   [0,1]P c

xU P   is the 

price utility of x and   [0,1]S c

xU T   is the speed utility of x. 

Pw  and 
Sw  are weighting factors of B and S respectively, and 

P Sw w =1. 

 Following [1], the price and speed utilities are given as 

follows: 
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where min

Pu  is the minimum utility that x receives a deal at its 

reserve price, and min

Su  is the minimum utility that x receives a 

deal at its deadline. For the experimental purpose, the values 

of min

Pu and min

Su  is defined as 0.1. 

If x  does not reach a consensus before its deadline, 

0P S

x xU U  , and thus  0xU  . Otherwise,  , 0c c

xU P T  . 

B. Negotiation Strategies 

This work considers the bilateral negotiation between B and 

S with incomplete information in which both agents do not 

know each other’s deadline and reserve price. Both B and S 

are sensitive to time and we adopt time-dependent strategies 

in [3]. The proposal x
tP  of x at time t, 0 xt    is defined as 

follows: 

    1
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,       (5) 

where 0   for B and 1  for S are used, and 0 x   . 

 The time-dependent strategies can be classified into three 

categories: a) conservative (conceding slowly, 1x  ), b) 

linear (conceding linearly, 1x  ), and c) conciliatory 

(conceding rapidly, 0 1x  ) [3, 18]. 

C. Negotiation Protocol 

Negotiation between B and S is carried out using the 

well-known Rubinstein’s alternating offer protocol [7]. B and 

S can conduct the negotiation only at discrete time points. B 

makes an offer at 0,2,4,6,...t   and S makes a counter-offer 

at 1,3,5,7,...t  . The negotiation process ends in both cases: 

(a) once an offer or a counter-offer is immediately accepted, 

i.e. an agreement is reached, by the other one, or (b) the earlier 

deadline is reached without agreement. In the latter case, the 

negotiation process ends in a conflict, and thus the utility 

outcome will be zero. 

D. The Objective 

For the given different deadlines and different preferences 

of cost and time criteria (i.e. different
Pw  and 

Sw ), agents will 

face different opponents with different deadlines and different 

strategies. Under these conditions, the objective of this work 

is to find the best response strategy x  that would optimize 

 ,
c c

x
U P T . In this work, learning is based on two asymmetric 

populations having different fitness evaluations. Agents learn 

best response strategies by interacting individuals from the 

other population through random paring. In the following 

section, the detailed procedure will be described. 

III. AN CO-EVOLUTIONARY GA AND EDA FOR 

P-S-OPTIMIZATION 

When populations between two or more species interact, 

each may evolve in response to characteristics of the other. 

The natural co-evolution refers to mutual or inter-dependent 

evolution between interacting populations. The survival skills 

of the natural co-evolution by making mutual beneficial 

arrangements have long inspired scientists to develop 

co-evolutionary algorithms in highly dependent problems in 

which there are strong interactions between two elements or 

among several elements. 

In our bilateral negotiation problem domain, inter- 

population co-evolution having two populations is considered. 

The fitness of each individual of one population depends on 

each individual of the other population, and thus an 

individual’s fitness is not fixed but coupled. Therefore, 

co-evolution is regarded as a kind of landscape coupling 

where adaptive moves by one individual can potentially 

change the landscape of the other. In our problem domain, the 

interaction comes from pairing of strategies between B and S, 

and thus the successful pairing mechanism is important. To 

achieve better performance, the resulting pairing should make 

a sufficiently prevailing set in the feasible set.  

In this work, co-evolutionary algorithms using real-coded 

GA and EDA are implemented to co-evolve best response 

strategies under different deadlines and different weights of 

time and speed preferences. B and S have each of their 

population 
BD  and 

SD  consisting of a set of candidate 

strategies. Evolving the strategies of one population affects 

the other. In the process of co-evolution, each individual of 

two populations will negotiate with each other through 

one-to-one random pairing. The fitness of each individual is 

determined by its negotiation outcome. Details of the GA and 

EDA are as follows. 

A. Encoding Scheme 

Binary coding mechanism has drawbacks due to the 

existence of Hamming cliffs and the lack of computation 

precision [13, 14]. Thus, in both GA and EDA, each 

negotiation strategy of the populations is encoded as real 

number using a real-coded vector representation. Individuals 

in 
BD  and 

SD  represent each agent’s strategies 
B
 and 

S
 . 

For the experimental purpose, we consider the range of 

strategies 
B
 and 

S
  in [0.1, 10]. 

B. Fitness Function 

The goal of a fitness function is to evaluate each individual 
in population. In co-evolving the strategies of B and S, the 
fitness values are determined by the result of negotiation. In 



 

 

 

the GA and EDA, the fitness function ( )f x  is defined as 

follows: 

      ( ) ,c c P P c S S c

x x xf x U P T w U P w U T       (6) 

In each generation g, randomly pick one individual from 
B

g
D , and also randomly pick the corresponding individual 

from S

g
D . Each selection procedure is done without 

replacement. The selected individuals will negotiate with 
each other and fitness function values will be computed using 
the negotiation outcome. For example, if agents reach an 

agreement,   0P c

xU P  ,   0S c

xU T  , and finally, ( )f x   

 , 0c c

xU P T  . If negotiation is terminated without an 

agreement, ( ) 0xf x U  . 

In the negotiation process, the optimal consensus, in a sense, 
for both sides should be made. The strategies that only 
adapted to one population may not survive because these 
candidates may result in low fitness values under competitive 
co-evolution. 

C. Selection Process 

The purpose of selection is to emphasize the better 
individuals, also called parents, in candidate solutions and to 
retain them to be used in the following reproduction stage.    

The well-known elitism selection is the method where a 
limited number of individuals with the highest fitness values 
are chosen to pass to the next generation without reproduction 
process. However, in the competitive co-evolution, if the 
individuals are highly fitted to its own agent’s objective, then 
as the algorithm is executed for more generations they will 
dominate the whole solution space rapidly, and finally, these 
may result in poor negotiation outcomes. For this reason, the 
method is not adopted. 

The GA uses k-tournament selection which works as 
follows: k individuals are randomly chosen from population. 
The individual with the highest fitness among k individuals is 
copied to the mating pool (MP). This process is repeated N 
times where N is the size of MP. In the k-tournament selection, 
selection pressure is easily controlled by changing the 
tournament size k in that if the k is larger (smaller) strong 
individuals have a higher (lower) chance to be selected. 

The EDA uses the truncation selection as used in [1]. In the 
truncation selection, individuals are sorted according to their 
fitness. Then, the top N individuals are selected to be saved in 
MP and to be used to estimate the probability distribution. 

D. Reproduction Process 

In the GA, there are breeding operators such as crossover 
(CX) and mutation (MU). From the selected parents, 
crossover combines them to create offsprings, and mutation 
enables a parent to create an offspring. There are many 
existing real-coded crossover methods, for example, 
intermediate CX, arithmetic CX, heuristic CX, blend CX, and 
simplex CX. The genetic representation using real-coded 
genes offers more possibilities for defining mutation. Several 
forms have been proposed such as Gaussian MU, Cauchy MU, 
mirror MU, percentage MU, edge MU and tension vector MU. 
In this work, heuristic CX and Gaussian MU are used. 
 In the EDA, this process corresponds to the estimation of 
the probability distribution and sampling solutions from the 

distribution. In 
thg  generation N individuals are selected to 

form x

gd . Then, using the N individuals   and  are 

estimated using maximum likelihood estimation and is 
determined by the following formulas: 
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The probability distribution is estimated using the following 
Gaussian distribution: 
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Probabilistic logic sampling (PLS) has been the choice in 
EDAs, but there are other methods which incorporate Gibbs 
sampling (GS) and find the most probable configurations 
(MPC).  In this work, PLS are used. 

E. Stopping Criteria 

The co-evolutionary GA and EDA algorithms are 
terminated when either the maximum number of generations 

max( )G  is reached, or the absolute difference between the 

average fitness and the best fitness for  both B

g
D  and S

g
D   is 

smaller than 1e-4.  

 

1. Set the search space  
min max

,   and generation counter g = 0. 

2. Generate each populations 
B

g
D  of M uniformly distributed individuals. 

    Generate each populations 
S

g
D  of M uniformly distributed individuals. 

3. Evaluate individuals in populations 
B

g
D  and 

S

g
D using fitness function. 

4. While the stopping criteria are not met do 

a. Select a subset 
B

g
d  of the population 

B

g
D  using selection method. 

Select a subset 
S

g
d  of the population 

S

g
D  using selection method. 

b. Compute the average fitness in 
B

g
d  and 

S

g
d .  

c. Apply crossover to 
B

g
d . 

Apply crossover to 
S

g
d . 

d. Apply mutation to 
B

g
d . 

Apply mutation to 
S

g
d . 

e. Evaluate individuals in 
B

g
d  and 

S

g
d using fitness function. 

f. Create new population with  
B

g
d  and 

B

g
D . 

Create new population with  
S

g
d  and 

S

g
D . 

g. g = g+1 

5. Return the best individual with the best fitness and the highest genes from  
B

g
D  and 

S

g
D , respectively. 

Fig. 1. The GA for co-evolving strategies of P-S-optimizing Negotiation 
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B

g
D  and 

S

g
D , respectively. 

Fig. 2. The EDA for co-evolving strategies of P-S-optimizing Negotiation 



 

 

 

IV. EMPIRICAL EVALUATION 

The performance evaluation for finding successful 

negotiation strategies of the P-S-Optimizing negotiation will 

be compared using the co-evolutionary algorithms with the 

GA and EDA described in Section III. Each experiment was 

repeated 500 times using the same condition. If the values of 

each experiment converge to a specific value, then the 

resulting values in the resulting table represents the mean 

value. Otherwise, in the case of dynamic range, we represent 

it as [minimum value, maximum value] in the table. 

A. Experiment settings 

For the experimental purpose, the experimental parameter 

settings are as follows: 

TABLE 1 
The Parameter Settings for the GA and EDA 

Parameters Values 

Population size (M) 25 

Mating pool size (N) 50 

Maximum number of generations 
max

( )G  500 

Crossover rate (
CX

P ) 0.7 

Mutation rate (
MU

P ) 0.002 
 

TABLE 2 
The Parameter Settings for the Negotiation 

Parameters Values 

 ,
B B

IP RP  (5, 85) 

 ,
S S

IP RP  (95, 15) 

 
min max

,   (0.1, 10) 

(Long, Mid)  100, 50
B S

    

(Long, Long)  100, 100
B S

    

(Mid, Mid)  50, 50
B S

    

(Short, Short)  25, 25
B S

    

B. Optimal conditions (only for the P-Optimizing case) 

When an agent B has sufficient bargaining advantage over S, 

in our experiment (Long, Mid), then the negotiation outcome 

follows the theorem in equation (1) as described in section II. 

In this case, B will dominate the negotiation regardless of the 

strategy of S. The value of 
B
  with the above negotiation 

parameters is computed as follows: 

95 5log log
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According to the theorem, when B adopts the strategy
B

 = 3, 

the agreement is made at 
c

P = 15 and 
c

T = 50, and the strategy 

of S, 
S
 , will not converge to a specific value and thus it will 

have dynamic range of values. 

 When both B and S do not have bargaining advantage, the 
agreement of the negotiation with the above negotiation 
parameters should be made at the Pareto optimal point, i.e. 

50
c

P  . 

The results of these two extreme cases are shown in Tables 
4 and 5 respectively. Also, in the experiments three distinctive 

negotiation types were used: P-Optimizing,  ,
P S

w w = (1.0, 

0.0), S-Optimizing,  ,
P S

w w  = (0.1, 0.9) and P-S-Optimizing, 

 ,
P S

w w = (0.5, 0.5), negotiation. 

C. The results of P-Optimizing Negotiation  

When B has sufficient bargaining advantage, both GA and 

EDA found the values of 
B

  which are close to the optimum 

value, 2.9574 in the GA and 2.9403 in the EDA. On the other 

hand, any values of strategies of S are possible in making 

contract, that is, the values of 
S

  have dynamic range in the 

GA and EDA, [0.1596, 9.8913] in the GA and [2.6923, 

9.8340] in the EDA. The agreement point of the GA is at 

c
P =15 and 

c
T = 50. In the case of the EDA, the agreement 

point is at 
c

T =50 but 
c

P  was made at a slightly higher value 

than the optimal value. Details are given in Table 4. 

When both has no bargaining advantage, both B and S reach 

an agreement at 
c

P  48.1, the optimum is at 50
c

P  , and 

48
c

T   in both GA and EDA, respectively.  

Accordingly, we can conclude that both GA and EDA find 

good candidate solutions for P-Optimizing negotiation. 

D. The results of S-Optimizing Negotiation 

When B has sufficient bargaining advantage, both B and S 

finish the negotiation near 
c

T =1 and the agreement price
c

P  is 

near the Pareto optimal point. The reason is that because the 

negotiation finishes rapidly, the effect of price negotiation is 

of no great importance. 

The case without bargaining advantage also has a value near 

c
T =1. However, both have the agreement price

c
P  at 

somewhat higher values than the Pareto optimal point, 
c

P =50. 

Using the GA, B obtained 
c

P =55.2985 and S obtained 

c
P =55.8283. Using the EDA, B obtained

c
P = 53.0005 and S 

obtained 
c

P = 53.1861. 

In this case, both GA and EDA find good candidate 

solutions for S-Optimization but the EDA has slightly better 

performance in finding the optimum values. 

E. The results of P-S-Optimizing Negotiation 

When B has sufficient bargaining advantage, the GA 

obtained a range of values of 
c

P = [15, 30.5074] and 
c

T = [8, 

50]. Hence,
c

P  and 
c

T   did not converge. In the case of the 

EDA,
c

P  and 
c

T  converge to near the optimal values of 

P-Optimizing negotiation, which is not the values of 

P-S-Optimizing negotiation that we have expected. 

Under the condition that there is no bargaining advantage, 

the GA and EDA find 
c

P  near the Pareto optimal point close 

to the deadline, which is also not what we have expected. 

In this type of negotiation, for both GA and EDA, 
B
  and 

S
  did not converge to the values that we have expected 

(Similarly, using the EDA in [1], 
B
  and 

S
  did not converge 

for the case of P-S-optimization). 

V. THE PROBLEM OF P-S-OPTMIZATION AND ITS NOVEL 

SOLUTION  

A. The Problems of P-S-Optimizing Negotiation 

The objective of P-Optimizing negotiation is to find the 

best strategies which maximize the utility function (3). Also, 

the objective of S-Optimizing negotiation is to find the best 

strategies which maximize the utility function (4). After 

fitness evaluation, the population, x

g
D , of an agent x is 



 

 

 

consisted of weighted sum of the two objectives. However, as 

negotiation rounds proceeds, the P-S-Optimizing solution 

candidates which are more S-optimizing, in which the 

candidates make urgent agreement, will be severely affected 

by the number of negotiation rounds. Therefore, the 

candidates will be discarded rapidly as negotiation rounds 

increased. For these reasons, the negotiation results are 

inclined to be more P-optimizing as described in section IV. E. 

In addition, GA and EDA with different parameter settings, 

especially, large population size, may converge to a proper 

solution but it will take extremely large number of generations, 

and thus it is not realistic in practice.  

B. The Proposed Methods 

To solve this problem, the novel P-S-optimizing method, 

using restriction scheme of feasible solution (strategy) space 

is suggested in this section. The idea comes from the 

characteristics of the range of negotiation strategies [3, 18] 

(see section II. B). In response to different deadlines, an agent 

adopts different strategies in making concessions [18]. With a 

longer deadline, an agent may find it advantageous to adopt 

more a conservative strategy since it has plenty of time for 

negotiating deals (Proposition 5, [18]). A conciliatory 

strategy may be more suitable if an agent is coerced to 

complete a deal rapidly (Proposition 6, [18]). Regardless of 

deadline, agents with linear strategies are more likely to make 

deals than with conservative strategies while achieving higher 

utility than with conciliatory strategies (Proposition 7 [18]). 

Hence, to finish negotiation in an earlier time than its deadline, 

an agent has to select conciliatory strategies, 0 1
x
  , at the 

expense of price. In this case, both price and negotiation 

speed is able to be adjusted simultaneously. 

Following propositions 5-7, we define three different 

negotiation speed options ( modeS ): fast, moderate and slow. 

The range of strategy  , search space in the GA and EDA, is 

restricted to the given range in each mode. By choosing one of 

the modes, we can select the degree of price and negotiation 

speed. The settings for the proposed method are in the 

following Table 3. For the experiments, the same 

experimental parameters in Tables 1 and 2 were used. 

TABLE 3 
The Parameter Settings for the Proposed Method 

Negotiation Speed Mode (
modeS ) The Range of Strategy 

Fast min 1
     

Moderate 1 2
     

Slow 2 max
     

C. Experimental Results 

To verify the correctness of the proposed method, we 

consider two extreme cases again: (a) B has significant 

bargaining advantage. And (b) both B and S have no 

bargaining advantages. In these experiments, 
1

0.5   and 

2
1.0   were used for the purpose of experiment. The results 

are in Tables 7 and 8.  

As you can see, the proposed method is able to do 

P-Optimizing, S-Optimizing and P-S-Optimizing negotiation 

moderately. In the slow mode, it is able to find a strategy that 

reaches near optimal price close to the deadline and it almost 

reaches the theoretical optimum value. In the fast mode, it can 

reach an agreement at an earlier time and thus, in this sense, it 

is able find an S-Optimizing negotiation strategy. Finally, in 

the moderate mode, it can find a P-S-Optimizing negotiation 

strategy that reaches an agreement near a moderate point in 

terms of price and speed. The same analysis used in section IV 

can be applied to analyze the proposed method. 

VI. CONCLUSIONS AND FUTURE WORK 

In this work, we have studied two kinds of co-evolutionary 

algorithms using the GA and EDA in price and speed 

optimizing negotiation problem domain to find the best 

response strategies. 

The experimental results show that adopting the GA and 

EDA are an effective choice to co-evolve best response 

strategies for P-Optimizing and S-Optimizing negotiation. 

However, we found that both GA and EDA do not converge to 

proper values for P-S-Optimizing negotiation. 

From the analysis, we proposed the novel method using 

restriction scheme of feasible solution space to solve the 

difficulties in P-S-Optimization. And we showed that the 

proposed method is appropriate in optimizing price and 

negotiation speed simultaneously. Due to the space limitation 

this paper only reports the preliminary results on the issue. 

Extensive empirical results on the proposed P-S-Optimization 

case will be reported in a future paper. And more complex 

negotiation model [6, 10] will be considered. 

For future study, GA-EDA hybrid model [11] or other 

possible candidates, for example, real-coded Bayesian 

optimization algorithm [12], can be adopted in the 

co-evolution process. In addition, random pairing issue 

discussed briefly in Section III, and adjusting selection 

pressure are also important issues to solve the difficulties of 

P-S-Optimizing negotiation as mentioned in the section V. A. 

and to expect further improvements. 
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TABLE 4 
The Results of Co-evolving Strategies using the GA and EDA with sufficient Bargaining Advantage 

(Long, Mid) GA EDA 

 ,
P S

w w  (1.0, 0.0) (0.5, 0.5) (0.1, 0.9) (1.0, 0.0) (0.5, 0.5) (0.1, 0.9) 

B
  2.9574 [0.4624,2.9979] 9.9785 2.9403 2.9524 0.1178 

S
  [0.1596, 9.8913] [0.1012, 9.7045] 9.6486 [2.6923, 9.8340] [1.3272, 9.4068] 0.1478 

( , )
B B

c c
P T  (15, 50) ([15, 30.5074], [8,50]) (51.9763, 1.16) (15.0183, 50) (15, 50) (49.6131, 1.06) 

( , )
S S

c c
P T  (15, 50) ([15, 30.5074], [8,50]) (52.3486, 1.16) (15.0199, 50) (15.0003, 50) (49.8052, 1.06) 

 ,
B B

best avg
f f  (0.8875, 0.8875) (0.7429, 0.7429) (0.9377, 0.9378) (0.8873, 0.8873) (0.7188, 0.7188) (0.9412, 0.9412) 

 ,
S S

best avg
f f  (0.1, 0.1) (0.2025, 0.2025) (0.9332, 0.9332) (0.1002, 0.1002) (0.1000, 0.1000) (0.9320, 0.9320) 

Gen
N  22.06 91.8 63.24 15.48 15.2 44.98 

(Long, Mid) represents the scenario when 100
B
    and 50

S
  . In this case B has a significant  bargaining advantage in terms of time over S 

 
TABLE 5 

The Results of Co-evolving Strategies using the GA and EDA with no Bargaining Advantage 

(Mid, Mid) GA EDA 

 ,
P S

w w  (1.0, 0.0) (0.5, 0.5) (0.1, 0.9) (1.0, 0.0) (0.5, 0.5) (0.1, 0.9) 

B
  9.9931 9.5089 0.1162 9.9901 8.6693 0.1179 

S
  9.7487 9.3096 0.1884 9.4845 9.9228 0.1659 

( , )
B B

c c
P T  (48.1077, 48) (47.7413, 46.54) (55.2985, 1.1) (48.1156, 48) (50.3378, 47.36) (53.0005, 1) 

( , )
S S

c c
P T  (48.1304, 48) (47.8476, 46.52) (55.8283, 1.1) (48.1310, 48) (50.3659, 47.36) (53.1861, 1) 

 ,B B

best avg
f f  (0.5150, 0.5150) (0.3407, 0.3407) (0.9257, 0.9257) (0.5149, 0.5149) (0.3187, 0.3187) (0.9297, 0.9298) 

 ,S S

best avg
f f  (0.4727, 0.4727) (0.3161, 0.3161) (0.9381, 0.9381) (0.4727, 0.4727) (0.3226, 0.3227) (0.9367, 0.9368) 

GenN  19.16 35.4 67.1 24.08 52.48 53.16 

(Mid, Mid) represents the scenario when 50
B
    and 50

S
  .  In this case both B and S  has no  bargaining advantage in terms of time 

 

TABLE 6 
The Proposed Method of Co-evolving Strategies using the GA and EDA with sufficient Bargaining Advantage 

(Long, Mid) GA EDA 
Speed mode slow moderate fast slow moderate fast 

B
  2.9615 0.9999 0.4992 2.9901 0.9998 0.4998 

S
  [0.1215, 9.9984] 0.9884 0.4975 [0.1274, 9.8615] 0.9732 0.4998 

( , )B B

c c
P T  (15, 50) (34.5778, 37.94) (41.8578, 21.98) (15, 50) (34.6067, 37.98) (41.9069, 22) 

( , )S S

c c
P T  (15, 50) (34.6269, 38) (41.8963, 22) (15, 50) (34.6190, 38) (41.9259, 22) 

 ,B B

best avg
f f  (0.8875, 0.8875) (0.6672, 0.6672) (0.5853, 0.5853) (0.8875, 0.8875) (0.6669, 0.6669) (0.5847, 0.5848) 

 ,S S

best avg
f f  (0.1004, 0.1004) (0.3208, 0.3208) (0.4026, 0.4026) (0.1, 0.1) (0.3207, 0.3207) (0.4028, 0.4029) 

GenN  22.06 23.24 21.94 19 23.24 33.66 

(Long, Mid) represents the scenario when 100
B
    and 50

S
  . In this case B has a significant  bargaining advantage in terms of time over S 

 
TABLE 7 

The Proposed Method of Co-evolving using the GA and EDA with no Bargaining Advantage 

(Long, Long) GA EDA 
Speed mode slow moderate fast slow moderate fast 

B
  9.9785 0.9960 0.4996 9.9886 0.9999 0.4996 

S
  9.6486 0.9961 0.4997 9.4727 0.9959 0.4997 

( , )B B

c c
P T  (48.1470, 95) (49.8699, 56.82) (49.6986, 31.96) (48.1297, 94.98) (49.8069, 56.96) (49.7152, 32) 

( , )S S

c c
P T  (48.1663, 95) (49.8917, 56.86) (49.7331, 31.96) (48.1334, 95) (49.8256, 57) (49.7342, 32) 

 ,B B

best avg
f f  (0.5146, 0.5146) (0.4952, 0.4952) (0.4971, 0.4971) (0.5149, 0.5149) (0.4959, 0.4959) (0.4969, 0.4969) 

 ,S S

best avg
f f  (0.4731, 0.4731) (0.4925, 0.4925) (0.4907, 0.4907) (0.4727, 0.4728) (0.4917, 0.4918) (0.4907, 0.4908) 

Gen
N  19.72 23.58 22.88 22.42 24.7 30.02 

(Long, Long) represents the scenario when 100
B
    and 100

S
  . In this case both B and S  has no  bargaining advantage in terms of time 




