
 
 

 

  
Abstract—In this paper we investigated the pulse 

propagation in a grating using a novel, fast and efficient 
algorithm. This method is used for the related boundary values 
equations and is much faster than other methods such as 
shooting method. The nonlinear coupled equations of a fiber 
Bragg grating are solved numerically for an arbitrary input 
pulse. By this method, the first and second order variations of 
the propagation constants with respect to frequency, β1 and β2, 
are survived and compared with the experimental results. It is 
shown that β1 causes a shift in the pulse peak along the time axis 
and a large dispersion (or equivalently positive or negative β2) is 
exist in a FBG. The effect of different coupling coefficient in 
dispersion and soliton propagation is investigated and we found 
that in strong coupling regime, the FBG operates like an ideal 
filter.  
 

Index Terms— Fiber Bragg grating, dispersion, soliton, 
optical switching  
 

I. INTRODUCTION 
  Fiber Bragg Gratings (FBGs) have attracted interests for 

many researcher groups in last few years and several 
techniques have been proposed to use them in the fiber optic 
communication systems and laser structures [1]. They often 
are used for some applications such as dispersion 
compensations, which can compress the pulses [2]-[4], and 
optical filter applications. For example band-pass filters with 
negative coefficients are made by an electro-optic phase 
modulator (EOPM) and fiber Bragg gratings [5]. In the 
switching applications, the nonlinear behavior of FBGs is 
used to design the optical switches [6]-[7]. Another 
application of FBGs is their usage in ultra-wide band (UWB) 
wireless communications to enhance the operational 
capabilities [8]. FBGs also can be used to select an especial 
frequency, where their frequency selective property can be 
utilized in wavelength division multiplexing (WDM) systems 
[9]-[10]. 
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II. FBG STRUCTURE AND MATHEMATICAL MODELING 
 
FBGs are short lengths of optical fiber that reflect at a 
particular wavelength and are made by laterally exposing the 
core of a single mode fiber to a periodic pattern of intense 
ultraviolet light. The exposure produces a permanent increase 
in the refractive index of the fiber core, creating a fixed index 
modulation according to the exposure pattern. This fixed 
index modulation is called a grating and causes a coupling 
coefficient in the fiber. A simple structure of FBG is shown 
in Fig. 1. 
 

 
 

Fig. 1: A schematic structure of FBG 
 
FBGs can be explained by a set of coupled differential 
equations. In some cases, the ‘gap solitons’ may be provided 
in these mediums which can be used in the optical fibers for 
information-transmission [5]; they can be simulated by the 
nonlinear Schrödinger equation [11]. So, to solve the coupled 
equations of the FBGs, the different methods such as transfer 
matrix method (TMM) and inverse scattering method are 
used; but none of them can solve and analysis the general 
cases of the coupled equations. In this article, we use a 
heuristic numerical method to solve these equations and 
simulate the pulse propagation in FBGs. This is applicable to 
any cases of FBG. 
Modeling of a FBG is based on the refractive index variations 
along the fiber length, in the form of: 
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where ∆n(z) is the periodic index variations, n0 is the 
background index and n2 describes the nonlinear index term 
due to high input signal energy (or the nonlinear Kerr effect). 
Decomposing the field to the forward and backward terms 
and using the Maxwell equations together with (1), a set of 
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two coupled equations can be derived for the forward and 
backward pulses as [12]: 
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in these equations, +f and −f denote the forward and 
backward wave amplitudes respectively. κ is the coupling 
coefficient and can found from κ=(π/λ)∆n, δ is the detuning 
and is equal to 2πn(1/λ−1/λd), where λd is the Bragg 
wavelength. The second and third terms in (2) and (3) show 
the effects of the self phase modulation (SPM) and the cross 
phase modulation (XPM), respectively. 
To investigate the pulse propagation in a FBG, it is assumed 
that the input pulse energy is less than the critical energy 
[12], so the Kerr effect is negligible. For this purpose, we 
should solve and simulate the equations by using the Fourier 
method. The boundary conditions are: 

1- +f which is a pulse amplitude in z=0, and  

2- −f (=0) in z=L.  

Due to these boundary conditions, the nonlinear effects and 
the existence of coupled nonlinear partial differential 
equations, simulation and analyzing of the arbitrary pulse 
propagation in FBGs in general case is difficult. Our method 
to overcome this problem is combination of Gauss-Seidel 
iteration, fourth (or fifth) order, and Runge-Kutta methods 
so the equations can be described in form of initial 
conditions equations, and any pulse propagation is possible 
to simulate. If we use the shooting method to convert this 
boundary value problem to an initial problem, we need a 
large number of iterations, maybe 40 or grater. But when the 
Gauss-Seidel iteration is used, the number of iterations 
decreases to 3-4 times and the calculation time becomes 
very small. 

 

III. SIMULATION RESULTS 
 

At first, consider the input pulse with a power less than the 
Pc; the critical power. To compare the results of our method, 
assume that there is a very wide pulse in the steady state case 
at the input. Without the nonlinear effects in FBGs, the 
coupled equations can be solved analytical as: 
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Backward and forward wave can be computed with these 
analytical relations and at the same time with our numerical 
method too. The results are shown in Fig. 2. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Fig. 2: (a) The forward field amplitude of the propagated pulse using 

analytical solution and (b) the analytical backward amplitude (c) 
numerical results of the forward field and (d) backward fields 



 
 

 

For the case of κδ < , or equivalently when the frequency 
center of the input pulse is in the forbidden band, the FBG 
behaves as a filter. In Fig. 2(a) and Fig. 2(c) the forward and 
backward waves are obtained from the analytical relations (4) 
and (5) and shown the filter behavior of FBG. Now by 
considering a wide input pulse and ignoring the nonlinear 
effects, the numerical results are shown in Fig. 2(b) and (d). 
As expected, there is a good compatibility between the 
analytical and our numerical method. This compatibility can 
be obtained for the case κδ >  (the pulse central frequency 
lies at the outside of the forbidden band) too.  
Now consider the general case of (2) and (3) that should be 
solved with the proposed numerical method, including the 
partial differentiation and nonlinear terms. For κδ < , the 
FBG shows a filtering effect and some of the input 
frequency components are reflected (Fig. 3). Indeed, due to 
first order dispersion, β1, the soliton pulse peak shifts to the 
right or left for positive or negative β1 respectively during 
propagation, so provides an asymmetric soliton. This peak 
power shift is because of the group velocity changes, vg, of 
pulse (T = (t - z/vg)/to). 
 

 
(a) 
 

 
(b) 

 
Fig. 3: Numerical results that show β1 causes a peak power shift in the 

(a) propagated forward pulse and (b) asymmetric backward pulse shape 
in a FBG 

 

Without this term, the shape of the input soliton pulse is 
expected to be constant when it propagates along a lossless 
fiber (as shown in Fig. 2). 
The periodic variations of the refractive index can change 
the coupling strength and hence the output pulse shape. This 
is because of the reflected pulse will be changed. The 
transmitted and reflected waves are depended on the amount 
of the coupling strength. As seen in Fig. 4, for higher 
coupling (and when the input pulse wavelength is in the 
forbidden gap), there is more reflectance of the input light. 
Therefore, the FBG reflected spectrum is the same as the 
ideal case. 
 

 
 

 
Fig. 4: The power of output pulse to input pulse versus coupling 

coefficient for δ = 1 cm-1 
 
The coupling coefficient affects the pulse amplitude 
oscillations and the reflected pulse peak. As shown in Fig. 
5(a) and (b), for the case κδ > , the soliton propagates 
through FBG in an oscillatory shape.  
 As shown in Fig. 5(c), if the coupling coefficient increases, 
we have a growth in the pulse amplitude oscillation for 
solitons along the propagation direction. This is due to 
coupling increment between forward and backward waves 
where more energy is transferred to the reflected wave. Fig. 
5(d) shows the periodic oscillations of the forward pulse is 
increased for a constant coupling, when δ increases. It is clear 
that the amplitude of the propagated pulse becomes more 
than the input pulse. This is due to the pulse narrowing; a 
fraction of its energy is transferred to the backward part, 
since the total energy is constant.  
Usually FBGs provide large total group velocity dispersion 
(GVD) for κδ > . The reason is additive dispersion effects 
of the grating structure and the fiber dispersions. The 
grating dispersion depends hardly on the parameters κ and 
δ, which is, maximize near the forbidden band. For negative 
value of detuning, δ, the input pulse is compressed during 
the propagation. Indeed, for negative detuning, δ<0, the 
grating dispersion g

2β , is positive and the pulse is 
broadened which it can be used for dispersion compensation 
device.  
To study these effects, we verified and simulated the 
situation of soliton pulse propagation into the fiber, for the 
case of κδ > . 



 
 

 

 

 
(a) 

 

 
(b) 

 
(c) 

 
(d) 

 
Fig. 5: Variation of oscillation amplitude of soliton propagation versus 

coupling coefficient for κδ > , (a) Forward soliton propagation, (b) 

Backward soliton propagation (c) Amplitude oscillations of input pulse 

with different values of κ, (d) Periodic variations of the input pulse with 
different values of δ 

Shown in Fig. 6, for δ>0, near the forbidden band there is a 
large dispersion. As an example, for a fixed coupling less 

than 110 −≈ cmδ there are 25% and 50% broadening for 
forward and backward parts of the pulse respectively. When 
the absolute value of the detuning becomes larger (more 
negative), the imposed dispersion is lower and the full width 
at half maximum (FWHM) of output and reflected pulse 
decrease as plotted in Fig. 6. 
 

 
 

Fig. 6: Numerical results of the effects of GVD versus detuning 
δ. Decreasing the detuning δ, the imposed dispersion (GVD) on input 
pulse increases and for large value of δ, GVD is zero nearly (κ=5cm-1) 

 
Higher negative detuning is equivalent to lower FWHM. This 
is in accordance with the experimental results in reported in 
Fig. 7 [13]. 
 
 

 
 

Fig. 7: Experimental results show the effects of GVD in FBGs versus 
detuning δ [13] 

 
In Fig. 8, the FWHM of output pulse is plotted versus 
negative detuning (δ<0).  
It is clear that for negative values of δ, the input pulse 
becomes narrower (a compressed pulse). This effect is used 
for dispersion compensating concept. Note that the fiber 
dispersion is very smaller than the FBG dispersion. In fact, 
the effects of the fiber dispersion are comparable to the FBG 
dispersion only for very long fiber lengths. 



 
 

 

 
 

Fig. 8: The pulse compression with FBG for κ=5cm-1 and  
negative detuning 

 
 
 

IV. CONCLUSION 
 
In this article we simulate the pulse propagation in the FBG 
considering all the nonlinear effects, using a fast and 
efficient method for the first time. We showed that, there is 
a movement in the pulse peak due to β1. For κδ < the 
FBGs have a filtering effect and they will be ideal for larger 
couplings. Our simulation results are compatible to 
experimental reports.  
We also found that the FBGs have large amounts of 
dispersion respect to the ordinary silica fibers 
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