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Abstract—A theoretical proposal is presented for the gener-
ation of mode-locked light-bullets in planar waveguide arrays,
extending the concept of time-domain mode-locking in waveguide
arrays to spatial (transverse) mode-locking in slab waveguides.
The model presented yields three-dimensional localized states
that act as global attractors to the waveguide array system.
Single pulse stationary and time-periodic solutions as well as
the transition to multi-pulse solutions as a function of gain are
observed to be stabilized in such a system.

I. I NTRODUCTION

Semiconductor waveguide arrays (WGAs) are of significant
technological interest in the broader photonics communitydue
to their inherently nonlinear response to an intense applied
electric field [1], [2]. Indeed, the spatial self-focusing and
nonlinear mode-coupling (NLMC) exhibited by the WGAs
have led to their consideration as ideal photonic devices for
all-optical signal processing (routine and switching) in fiber
optic networks and devices [3], [4], [5], [6], pulse reshap-
ing [7], [8], continuous-wave lasing [9], as well as a discrete
form of Kerr lensing (nonlinear saturable absorption) in a
mode-locked laser cavity [10], [11]. In the latter application,
theoretical studies show the WGA can be used with great
success to create passively mode-locked fiber laser cavities
capable of generating high-power, ultra-short pulses in both
the normal and anomalous dispersion regimes [12], [13].
In such mode-locking, the stable pulses are generated by a
fundamental balance of chromatic dispersion and self-phase
modulation [10], [11], [12], [13]. The extension of this mode-
locking concept to constructing a modelocked laser on a chip
architecture are readily apparent. Indeed, significant effort has
gone into the modeling and characterization of such arrays and
their nonlinear mode-coupling (NLMC) properties [7], [13].
These methods predict and characterize the NLMC driven
mode-locking in the quasi one-dimensional geometry of a
ridge waveguide array. The extension of the one-dimensional
geometry to two spatial dimensions follows naturally when
the confinement occurs in a planar geometry, and the creation
of transverse-dimensional light bullets, or cavity solitons, is
desirable. Note that in this analysis the vertical confinement
in the waveguide is averaged over and not dealt with explic-
itly. However, the vertical confinement in conjunction with
transverse confinement creates the desired three-dimensional
localized coherent structure or light bullet. In this paper, we
theoretically analyze an approach to producing spatial mode-
locked light bullets in a physically based but heuristically
motivated model of a planar waveguide structure. The planar
geometry confinement and two transverse dimensions mode-
lock pulses by a fundamental balance of spatial diffraction
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Fig. 1. A schematic of the two-dimensional waveguide array.The waveg-
uides, shown in red, are separated by low-index insulating regions. The
proposed structure of the waveguides are a Bragg grating structure, shown
to the left. Gain is applied to waveguide 0 by means of an injection
current created by biasing the conducting contact (See Ref.[9] for recent
experiments). Additionally, attenuation is applied only to waveguide 2. The
prototypical vertical distribution of the intensity is shown on the right. The
Bragg grating structure confines the fields to the waveguideswith weak
evanescent coupling allowing energy transfer.

and self-phase modulation. The light-bullets considered here
are self-organizing (from white-noise initial conditions) and
stabilized in the transverse dimension via the NLMC in the
planar waveguide geometry. Further, the light-bullets generated
are in a cavity-less configuration since no mirrors are used to
form a cavity or ring geometry. The mode-locking is robust
under perturbation and self-starting, suggesting it may bean
ideal photonic device for numerous all-optical applications.
This adds yet another potential method and technology for
generating localized cavity-like solitons [14].

All the technological aspects currently exist to generate the
aforementioned mode-locked light bullets. Figure 1 illustrates
a prototypical example of a waveguide geometry that may
be suitable and appropriate for such purposes. Instead of
the typical ridge waveguide array structure [1], a vertical
cavity surface emitting laser (VCSEL) type slab geometry is
envisioned. In some respects, this overlaps the theoretical con-
cepts used in the experimentally realized broad-area VCSEL
configuration which has been demonstrated to produce cavity
solitons [15]. However, no cavity [15] or broad-area holding
beam is required [16], [17], [18], [19] in the technology
advocated here. Thus unlike the standard VCSEL, which is
often used as a mirror and quantum saturable absorber for
standard mode-locking of ultra-short (in time) pulses (See, for
instance, [20] and references therein), the WGA slab structure
does not confine the field to single-mode operation in the
transverse direction. Instead, the transverse field is allowed
to be large (in comparison to the single-mode diameter) and
unconfined. In the third dimension, the propagation direction,
the Bragg grating type structure is assumed to be sufficient to
create a stationary Bragg soliton in each of the three planar
waveguides so that the field is confined in waveguides zero,
one, and two respectively (See Fig. 1). The zero group-velocity



soliton, which has been considered in the context of slow light,
has been obtained theoretically and is a goal of ongoing ex-
perimental work [21], [22]. In recent years, the use of defects
in a fiber Bragg Grating has been studied as a mechanism
for trapping Bragg solitons [23]. The use of such defects in
slab waveguide arrays provides an alternate way to generatean
effectively zero group-velocity pulse. The coupling of energy
between adjacent waveguide slabs is described by the standard
mode-coupling theory of evanescent field interactions [24].
While certainly different physical situations, the extension
of the waveguide array mode-locking model (WGAML) is
robust enough to capture both arrangements using the same
governing equations [11], [12]. Using the simplified version
of the extended WGAML, the dynamics of the slab waveguide
array are studied for both negative and positive refractiveindex
slabs. It will be shown that in a particular parameter region,
light-bullets evolve naturally from white-noise. Additionally,
the transition from single pulse, to breathing, and finally to
multiple light-bullets will be explored via a simple increase in
the gain applied to the system.

The paper is outlined as follows: In Sec. 2 the governing
equations are given along with their relevant parameters. The
mode-locking dynamics are explored in Sec. 3, initially with
the development of radially symmetry mode-locked solutions,
and then with the full dynamics along with its transition from
one-to-two light bullets, i.e. the multi-pulsing transition which
occurs as a function of increased cavity gain. A brief summary
of the results and its technological outlook is outlined in Sec. 4.

II. GOVERNING EQUATIONS

Mode-locking in waveguide arrays is driven by the compe-
tition between the saturable absorption behavior generated by
NLMC [13] of the waveguides along with an applied band-
width limited gain. The WGAML, which describes temporal
mode-locking in ridge waveguide arrays, has been heuristically
extended from one to two spatial dimensions by replacing
the one-dimensional derivative and norm operators with their
two-dimensional analogs. However, as eluded to in the intro-
duction, the heuristic extension models systems that are quite
physical. One such system is the spatially extended VCSEL-
type architecture system in Fig. 1. The governing equations
for this physical configuration are:
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HereA0, A1, andA2 are the envelope of the electric fields in
the 0th, 1st and 2nd waveguides respectively. The parameter
D is the diffraction coefficient in each of the slab arrays.

Assuming the material is isotropic, the proper choice of non-
dimensional variables givesD = −1 or 1 for negative or
positive index of refraction respectively. The parameterβ is
the strength of self-phase modulation,ρ is proportional to the
probability of three-photon absorption,γj is the coefficient of
linear attenuation in each waveguide, andC is proportional to
the strength of the coupling between waveguides and is the
average value of the overlap integral as calculated in standard
coupled mode theory [24]. Details of the scalings can be found
in Ref. [13]. The saturable gain coefficientg(t), shown in
(2), accounts for the depletion of minority charge carriersat
high optical intensities. Theg(t)∇2 term prohibits the growth
of high frequency spatial modes via the bandwidth limiting
parameterτ . The damping of high frequency spatial modes
is implied by the presence of diffusion in the charge carrier
equations often found in full charge carrier models [25].

This physical interpretation of the WGAML differs from
that of Proctor and Kutz [11] in two ways: First,D represents
diffraction instead of chromatic dispersion. The mode-locked
light-bullets are transversely generated and stabilized versus
localized time pulses in standard mode-locking. WhileD is
positive for positive index materials, it has been shown by
Kockaert and coworkers [26] that negative index materials
have a nonlinear Schrödinger-based model with a negative
D. Therefore, a negative value ofD is taken to mean the
index of refraction is negative in the guiding regions. A second
difference is the nature of the coupled modes. Typically, the
coupled modes of a waveguide array are the guided modes of
each individual waveguide [24]. In a VCSEL configuration,
the coupled modes are the stationary or trapped Bragg solitons
in each of the waveguides. Coupled mode theory is applicable
provided the coupling between slab waveguides remains weak.
Therefore, the distinction between truly zero group-velocity
modes, trapped modes, or stationary modes produced by
another approach is isolated to changes in the value ofC [22],
[23]. While the extension from one time dimension to two
transverse spatial dimensions was motivated by heuristics,
the resulting model has a clear physical interpretation. In
particular, the variablesA0, A1, andA2 represent the spatial,
transverse amplitude of trapped Bragg solitons in each of
waveguides, and the sign of the dispersion reflects the sign
of the index of refraction of the guiding region.

III. M ODE-LOCKED DYNAMICS

The dynamical behavior of this system is critically depen-
dent upon the gain parameterg0 that acts as the bifurcation
parameter that governs the transition from stable single-pulses,
to time-periodic breathing solutions, and finally to multiple
pulse solutions [12]. Due to the isotropy of the system, it
is assumed that a steady state output pulse will also posses
radial symmetry. Indeed, for single- and multiple-pulse sta-
tionary solutions this simplification agrees quite well with
simulations of the fully two-dimensional problem. However,
this simplification performs poorly in time-periodic and other
non-static cases due to the generation of a non-radial noise
background that breaks the radial symmetry. Regardless, the
radially symmetric solutions provide an excellent starting point
for considering light-bullet solutions.



A. Radially Symmetric Solutions

The radially symmetric solutions are an important class
of stationary solutions to the modified WGAML equation
because radially symmetry allows the reduction of the govern-
ing partial differential equation system (1) from two spatial-
dimensions to one spatial dimension in the radial variable.This
simplifies the analysis and makes the study of the dynamics
more numerically tractable. In the radially symmetric case, the
system was discretized in space using a second order finite-
difference scheme for the spatial derivatives with 512 points
on a domain of size 30. Additionally, Neumann and Dirichlet
conditions were used for ther = 0 and r = 30 conditions
respectively. The system is evolved in time using the standard
4th order Runge-Kutta methods in MATLAB. This allows a
relatively quick method for exploring the parameter space.

With the proper parameters, negative index waveguides
(defocusing, or normal, nonlinear Schrödinger) are capable
of producing stable pulses from noise. Figure 2 demonstrates
the radially-symmetric mode-locked solution supported ina
three-slab waveguide array structure starting from initial white
noise in the 0th waveguide and no energy in waveguides 1
and 2. This particular initial condition was chosen to mimic
experimental conditions. However, as white-noise posses all
spatial wavenumbers, this initial condition is guaranteedto
posses the specific modes that are amplified by the modu-
lational instabilities of the zero solution. The modulational
instability generates long-wavelength structures in the spatial
domain which then develop into a single localized structure
due to the restriction of the cavity energy restrictions of the
saturable gain. Shown in Fig. 2 are the generated electric field
envelopes in all three waveguides for the parameter values

(D, C, γ0, γ1, γ2, e0, τ, p, g0) = (−1, 10, 0, 0, 10, 1, 0.1, 1, 35).
(3)

These coefficients corresponds to a negative index wave-
guiding regions with attenuation applied in waveguide 2 and
bandwidth-limited amplification applied in waveguide 0. As
gain is only applied in the 0th waveguide, the mode-shapes of
the 1st and 2nd waveguides are inherited from the 0th waveg-
uide. This is consistent with findings in the one-dimensional
case [12]. This single-pulse solution is robust and persists for a
relatively wide range of gains. As the pulse forms from noise,
it is stable with respect to large perturbations of the steady
state solution. It appears that the single-pulse mode-locked
state is a global attractor of the system for the specific value
of gain g0 chosen.

The positive index case (focusing or anomalous nonlinear
Schrödinger) requires a more careful selection of parameter
values due to the self-focusing and collapse that is inherent
in the two-dimensional nonlinear Schrödinger operator of
Eq. (1a). Indeed, it is critical in this case to include the
physically relevant effects of three-photon absorption inorder
to avoid the mathematical collapse and blow-up of the solution.
The following parameters were used for the positive index
case:

(D, C, γ0, γ1, γ2, e0, τ, p, g0) = (1, 5, 1, 1, 10, 1, 0.08, 0.5, 4.88).
(4)
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Fig. 4. The energy and derivative fluctuations for the negative diffraction
(left) and positive diffraction (right) regimes. After an initial transient of
tens of time units, the norms settle to a steady state indicating a stationary
pulse. The solid lines are the energy and the dotted lines arethe derivative
fluctuations. The blue lines correspond to waveguide 0 data,the red lines to
waveguide 1 data, and the black lines correspond to waveguide 2 data.

The switch from negative to positive index materials has
a large impact upon the resulting dynamics and parame-
ters required to obtain mode-locking. However, mode-locked
solutions can be achieved as Fig. 3 shows. Additionally,
the solutions are stable with respect to perturbations of the
steady state solution. In these numerical simulations, theinitial
condition used is a hyperbolic secant as opposed to white-
noise. This was done to circumvent numerical difficulties that
arise due to the approximation of a Cauchy problem on a finite
domain. At low amplitudes, the leading order solutions are
Bessel functions. However, Bessel functions represent infinite
energy solutions to the Cauchy problem, and are thus spurious
solutions produced by the numerics. While no numerical
solutions have been obtained that form from noise, this in
no way implies that positive index materials are unable to be
used for passive mode-locking. This is simply a mathematical
difficulty in the reduction of the problem to radial coordinates.

Regardless of the initial condition, the pulses that form
are true mode-locked light bullets. To help illustrate the
mode-locking formation, Fig. 4 plots the energy (‖Aj‖

2 =
∫

∞

−∞

∫

∞

−∞
|Aj |

2dxdy) and derivative (‖∇Aj‖
2) fluctuations

for both the positive and negative index cases. The energy and
solution derivative, or mathematically theL2 andH1 norms,
are shown to quickly settle to a steady state. Hence, the radial
solutions evolve to a steady state which is the mode-locked
light bullet.

The radially symmetric solutions give a great deal of insight
into the underlying stable structures in the system. However,
what is most important is the full dynamics of Eq. (1) without
the assumption of radial symmetry. Specifically, whether or
not the radially symmetric solutions spontaneously arise from
non-radially symmetric initial conditions. Relaxing the radial
symmetry assumption and repeating the computation with both
spatial dimensions and a white-noise initial condition, the
system again evolves to a steady state as shown in Fig. 5
for the parameters considered in Fig. 2. For this result, a
pseudo-spectral method was used in space with the same
Runge-Kutta method to evolve the system in time. Spatially,
256 points were used in each of the spatial directions on a
square domain of length 80. The quantitative similarities in the
mode-locked solution in comparison to the radially symmetric
solution show that the radial approximation is an accurate and
valid representation of the true solution in the stable case.

The dynamical evolution and mode-locking formation dy-
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Fig. 2. Radial optical field amplitudes for the negative diffraction regime in the 0th, 1st, and 2nd waveguides respectively. Consistent with the assumptions
of the model, the fields in waveguides 1 and 2 have inherited their shape from waveguide 0. Note that the radial solution forms from a white-noise initial
condition in waveguide 0.
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Fig. 3. Optical field amplitudes in the positive diffractionregime in the 0th, 1st, and 2nd waveguides respectively. Compared to the results in Fig. 2, this
pulse is obtained for far lower values of gain. In this case, this initial condition is a hyperbolic secant pulse in each ofthe waveguides.

namics for the full system of equations (1) with (2) is
illustrated in the first movie (Media 1). The parameters used
are identical to those of Fig. 5. The four panel movie illustrates
the intensity dynamics in waveguide 0 (top left) as well as
waveguides 1 and 2 (bottom left). Note that that the field
in the first waveguide has been uniformly raised by 1.5 for
illustrative purposes. The energy in the waveguides and the
spectrum of the 0th waveguide solution are shown in the top
and bottom right panels respectively.

B. Time Periodic Solutions: Breathers

For larger values of gaing0, the system undergoes what
is conjectured to be a Hopf Bifurcation and transitions from
stationary solutions to time-periodic breather solutions. This
conjecture is based upon recent stability analysis findings
in one-dimension [12] for which the Hopf bifurcation can
be concluded explicitly. In two dimensions, these solutions
are characterized by an oscillating radial pulse and a noise
background. The noise background cannot be represented
radially, creating a discrepancy between the radial and fully
two-dimensional analysis. Due to this difference, two setsof
parameters were used. For the radial analysis, the coefficients
used were:

(D, C, γ0, γ1, γ2, e0, τ, p, g0) = (−1, 10, 0, 0, 10, 1, 0.1, 1, 50),
(5)

but in the full two-dimensional governing model Eq. (1),
g0 = 60 in order to account for energy supplied to the noise
background not present in the radially symmetric reduction.
Solving the radial problem numerically produces the breather
solution shown in Fig. 6. This solution is periodic and forms
from noise. The oscillation can be noticed most clearly via

the energy fluctuations in the middle panel of the figure. The
oscillations take place on two distinct timescales. The slow
oscillations are visible on the amplitude plot and the plot of
energy fluctuations. The fast timescale may be seen there too,
but exhibits itself in the lack of smoothness on the amplitude
plot and the thickness of the lines in the energy fluctuation
plots.

The dynamics of the full, non-radially symmetric system for
the two-dimensional case are similar in character, but different
in quantitative values. Even with the larger gain of the system,
the energy fluctuations for the two-dimensional case shown in
Fig. 6 in the right panel exhibit smaller amplitude oscillations
than in the radial case. However, they do possess the same fast
and slow timescales of oscillation seen in the radial case. The
difference is again due to the non-radial noise background.
This appears to consume the energy that normally would
force the pulse to oscillate. We are currently investigating the
role of the CW noise background and its facilitation and/or
suppression of mode-locking of light bullets.

C. Multi-Pulsing Transition

Increasing the gain to even higher values ofg0, the breathing
one-pulse solution becomes unstable. At that point, multiple-
pulse solutions obtain stability and become the dominant
solution type. The explanation for this behavior is similarto
that observed by Kutz and Standstede [12], who studied the
loss of stability of the breather solutions and also the stability
of non-interacting multiple-pulse solutions. An example of the
splitting process for this particular array is shown in Fig.7. In
the first three frames, the single pulse splits into two, but the
interaction between the newly formed pair of pulses causes
them to recombine into a single pulse. For sufficiently long



Fig. 5. Formation of a radially symmetric mode-locked solution in the negative diffraction regime starting from seededwhite-noise. The intermediate image
shows the presence of both noise and a hyperbolic-secant like pulse. The intensity discrimination and saturating gain eliminate the background noise. This
full simulation is the proto-typical mode-locking behavior expected in the slab waveguide array structure.
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Fig. 6. A time-periodic breathing solution (left panel), along with the energy fluctuations of the radially symmetric simulations (center panel), and energy
fluctuations of the full governing equation simulations (right panel). The mean value of the energy fluctuations in both radial and cartesian cases are similar
in magnitude, and both settle into periodic orbits.

time, the system reaches a steady state configuration created
by two pulses being spaced far enough apart so as to be
effectively non-interacting. Thus, we have obtained a similar
pulse-splitting behavior in the two-dimensional array to the
one-dimensional array. The pulse splitting process in Fig.7
is illustrated in the second movie (Media 2). The intensity
in the all three waveguides (0th, 1st and 2nd) is included in
the left, middle and right panels respectively. This process has
been repeated to obtain and three- and four-pulse solutions.
For large enough gains, the waveguide should be able to
produce a genericN -pulse solution. Note that the splitting
process generates non-radially symmetric solutions in theslab
waveguide.

For all of the solutions discussed above, the qualitative
structure of the light-bullets are relatively insensitiveto impact
of noise-like perturbation. For instance, a stable single-pulse
solution will remain a stable single-pulse solution even when
subjected to a large noise-like perturbations. Due to the
translational symmetry inherent in this system, the pulse may
translate until the perturbation has been attenuated. However,
it will retain the same radial hyperbolic secant like envelope
it previously had once the system returns to a steady state.
Mathematically, it appears to be orbitally stable. For multi-
pulse solutions, the interaction between pulses allows formore
complex behaviors to exhibit themselves, and the stabilityof
the pulses is less well established. However, if the pulses
are sufficiently far apart such that the inter-pulse interaction
is negligible the pulses again retain their radially symmetric
(hyperbolic secant like) shape and orbital stability. Outside of
this limiting case, the dynamics of multi-pulse solutions is

presently being studied.

IV. CONCLUSION

We demonstrate that mode-locking of light bullets is possi-
ble within a planar waveguide array structure. The WGAML
has been heuristically extended from one propagation and time
variable to one propagation and two transverse spatial vari-
ables. This extension requires the physical reinterpretation of
several of the terms in the WGAML, resulting in mode-locked
pulses which are fundamentally balanced with diffraction and
self-phase modulation. Ultimately, the pulses obtained bythis
model correspond to high intensity spatially-confined solutions
as opposed to the short femtosecond pulses predicted by the
WGAML model. Using this model, we have found that this
type of waveguide array may be used to create stable three-
dimensional modelocked light bullets for a broad range of
parameters. Indeed, the generated mode-locked states appear
to be global attractors to the planar waveguide array system.
The stability of these pulses persists for a wide range of
gains, but eventually stability is lost and the system achieves a
periodic breather state. For larger gains, the breather solution
loses stability and multiple-pulse solutions are formed. Most
importantly, as the initial condition for all these solutions is
noise, this type of laser configuration is a candidate for thepro-
duction of three-dimensional light bullets using passive mode-
locking techniques. Additionally, the mode-locked bullets are
done in a cavity-less physical geometry since no mirrors are
required to form a cavity. From a technological point of view,
one can also consider ramping the current injection so as to
induce controlled movement of the cavity bullets. This opens



Fig. 7. Dynamics of pulse splitting for the negative-diffraction regime withg0 = 100. The value of gain is too large to support either single-pulse stationary
or time periodic solutions. The single pulse is unable to divide into two as shown the top row of images. Instead, an external seed, due to noise or other
physical effects, is required to generate the second pulse.The two-pulse scenario is the long-time steady state solution of the system after the initial transients
decay as observed.

the door for many photonic switching and optical processing
operations where moving cavity solitons are of critial impor-
tance. This work also fits in the broader context of pattern
forming optical systems for which cavity solitons and light
bullets are of special interest. In this context, the present work
demonstrates a novel technique for generating and stabilizing
localized solutions. These solutions, their interactionsand
stability will be considered in greater depth elsewhere. Given
current technologies, it is envisioned that such a geometryand
experimental configuration can be achieved in practice, making
the WGAML a promising photonic device for applications.
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