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Light Bullet Mode-Locking In Waveguide Arrays

Matt Williams and J. Nathan Kutz,

Abstract—A theoretical proposal is presented for the gener-
ation of mode-locked light-bullets in planar waveguide arays,
extending the concept of time-domain mode-locking in wavedde
arrays to spatial (transverse) mode-locking in slab wavegdes.
The model presented yields three-dimensional localized ates
that act as global attractors to the waveguide array system.
Single pulse stationary and time-periodic solutions as wklas
the transition to multi-pulse solutions as a function of gan are
observed to be stabilized in such a system.

|. INTRODUCTION Fig. 1. A schematic of the two-dimensional waveguide arfidye waveg-

. ) .. uides, shown in red, are separated by low-index insulatiegjons. The
Semiconductor waveguide arrays (WGASs) are of significapioposed structure of the waveguides are a Bragg gratimgtste, shown
technological interest in the broader photonics commuhiy [© the left. Gain is applied to waveguide O by means of an fijac
to their inherently nonlinear response to an intense 6@ Iicurrent created by biasing the conducting contact (See [Refior recent
- y p ) - p @xperiments). Additionally, attenuation is applied onlywaveguide 2. The
electric field [1], [2]. Indeed, the spatial self-focusingda prototypical vertical distribution of the intensity is sho on the right. The
nonlinear mode-coupling (NLMC) exhibited by the WGA§522233$T”C%uStlriLr‘]CtU;ﬁo\A‘;%“ﬁgﬁserthetrgﬁﬁzrtO the waveguidith weak
have led to their consideration as ideal photonic devices fo ping g o ‘

all-optical signal processing (routine and switching) ibefi

pptic networks fmd devices [3]'_ [4]. [5]. [6]. pulse re_shapénd self-phase modulation. The light-bullets considerex h
ing [7], 8], contlnqous-wav_e lasing [9], as well as a d|$e_re are self-organizing (from white-noise initial conditignsnd
form of Kerr lensing (nonlinear saturable absorption) in @pijized in the transverse dimension via the NLMC in the
mode-locked laser cavity [10], [11]. In the latter applioat - h4¢ \waveguide geometry. Further, the light-bulletssgated
theoretical studies ShOV\.’ the WGA can be_ used with 9'€4% in a cavity-less configuration since no mirrors are used t
success to create _pa53|_vely mode-locked fiber Iaser_cmvnligrm a cavity or ring geometry. The mode-locking is robust
capable of generating hlgh-povyer, ul_tra-shor_t pulses ith bounder perturbation and self-starting, suggesting it mayie
the normal and anomalous dispersion regimes [12], [134e7) hhotonic device for numerous all-optical applicatio

In such mode-locking, the stablg pullses are generated b)i'rﬂs adds yet another potential method and technology for
fundamental balance of chromatic dispersion and Selfﬁ’hag%nerating localized cavity-like solitons [14].

modulation [10], [11], [12], [13]. The extension of this m®d ~ A} the technological aspects currently exist to generaee t

locking concept to constructing a modelocked laser on a Ché“aorementioned mode-locked light bullets. Figure 1 illatds

archlt_ecturﬁ are rdea}qny apdparr]ent. Ind.eed., S|grfuf|car|:urelffas a prototypical example of a waveguide geometry that may
gone into the modeling and characterization of such arragls e suitable and appropriate for such purposes. Instead of

their nonlinear mode-coupling (NLMC) properties [7], [13]the typical ridge waveguide array structure [1], a vertical

These methods predict and characterize the NLMC driv%ﬁvity surface emitting laser (VCSEL) type slab geometry is

mode-locking in the quasi one-dimensional geometry of & igioned. In some respects, this overlaps the theoretica
ridge waveguide array. The extension of the one-dlmenblo%pts used in the experimentally realized broad-area VCSEL

geometry to wo spatial dimensions follows naturally WheEonfiguration which has been demonstrated to produce cavity

the confinemen_t occurs in a planar geometry, a_md th(_a creatiQfions [15]. However, no cavity [15] or broad-area hotglin
of transverse-dimensional light bullets, or cavity salgois beam is required [16], [17], [18], [19] in the technology

desirable. Note that in this analysis the vertical Conﬁme_advocated here. Thus unlike the standard VCSEL, which is

@n the waveguide is av_eraged over and _not deglt Wi_th eXP“Sften used as a mirror and quantum saturable absorber for
itly. However, the vertical confinement in conjunction with. 1 - mode-locking of ultra-short (in time) pulses (See

transverse confinement creates the desired three-dirm;srhsi(?nStance [20] and references therein), the WGA slab stract
localized coherent structure or light bullet. In this papee c{j ' ’
r

. . X oes not confine the field to single-mode operation in the
theoretically analyze an approach to producing spatialeno

locked liaht bull . hvsically based but heuristizall ansverse direction. Instead, the transverse field isvaliio
ocked 1ig t bullets in a physically base ut heuristigally, 1o large (in comparison to the single-mode diameter) and
motivated model of a planar waveguide structure. The pla

f d di , confined. In the third dimension, the propagation dicecti
geometry confinement and two transverse dimensions moge Bragg grating type structure is assumed to be sufficient t

lock pulses by a fundamental balance of spatial d'ﬁracuoé}eate a stationary Bragg soliton in each of the three planar

M. Williams and J. N. Kutz are with the Department of Appliedatite- waveguides so that Fhe field is Fonﬁned in WaVEgUid?S Z€ro,
matics, University of Washington, Seattle, WA 98195-2420 one, and two respectively (See Fig. 1). The zero group-itgloc
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soliton, which has been considered in the context of slottlig Assuming the material is isotropic, the proper choice of-non
has been obtained theoretically and is a goal of ongoing edimensional variables give® = —1 or 1 for negative or
perimental work [21], [22]. In recent years, the use of difecpositive index of refraction respectively. The parameteis
in a fiber Bragg Grating has been studied as a mechanitim strength of self-phase modulatignis proportional to the
for trapping Bragg solitons [23]. The use of such defects probability of three-photon absorptiof; is the coefficient of
slab waveguide arrays provides an alternate way to gen@mnatdinear attenuation in each waveguide, arids proportional to
effectively zero group-velocity pulse. The coupling of ene the strength of the coupling between waveguides and is the
between adjacent waveguide slabs is described by the sthndeverage value of the overlap integral as calculated in stahd
mode-coupling theory of evanescent field interactions .[24joupled mode theory [24]. Details of the scalings can bedoun
While certainly different physical situations, the extems in Ref. [13]. The saturable gain coefficiep{t), shown in
of the waveguide array mode-locking model (WGAML) iq2), accounts for the depletion of minority charge carriatrs
robust enough to capture both arrangements using the sdrigh optical intensities. The(¢)V? term prohibits the growth
governing equations [11], [12]. Using the simplified versioof high frequency spatial modes via the bandwidth limiting
of the extended WGAML, the dynamics of the slab waveguidemrameterr. The damping of high frequency spatial modes
array are studied for both negative and positive refradgtidex is implied by the presence of diffusion in the charge carrier
slabs. It will be shown that in a particular parameter regiorquations often found in full charge carrier models [25].
light-bullets evolve naturally from white-noise. Additially, This physical interpretation of the WGAML differs from
the transition from single pulse, to breathing, and finatly tthat of Proctor and Kutz [11] in two ways: Firsh represents
multiple light-bullets will be explored via a simple incsain diffraction instead of chromatic dispersion. The modektt
the gain applied to the system. light-bullets are transversely generated and stabilizexus
The paper is outlined as follows: In Sec. 2 the governirlgcalized time pulses in standard mode-locking. WHileis
equations are given along with their relevant parameters. Tpositive for positive index materials, it has been shown by
mode-locking dynamics are explored in Sec. 3, initiallyhwit Kockaert and coworkers [26] that negative index materials
the development of radially symmetry mode-locked solgjonhave a nonlinear Schrodinger-based model with a negative
and then with the full dynamics along with its transitionrfro D. Therefore, a negative value db is taken to mean the
one-to-two light bullets, i.e. the multi-pulsing traneitiwhich index of refraction is negative in the guiding regions. Acet
occurs as a function of increased cavity gain. A brief sunymadifference is the nature of the coupled modes. Typicallg, th
of the results and its technological outlook is outlined@t $4. coupled modes of a waveguide array are the guided modes of
each individual waveguide [24]. In a VCSEL configuration,
the coupled modes are the stationary or trapped Bragg sslito
in each of the waveguides. Coupled mode theory is applicable
Mode-locking in waveguide arrays is driven by the compgyrovided the coupling between slab waveguides remains weak
tition between the saturable absorption behavior gentf@te Therefore, the distinction between truly zero group-vityoc
NLMC [13] of the waveguides along with an applied bandmodes, trapped modes, or stationary modes produced by
width limited gain. The WGAML, which describes temporabnother approach is isolated to Changes in the valye m]'
mode-locking in ridge waveguide arrays, has been heualstic [23]. while the extension from one time dimension to two
extended from one to two spatial dimensions by replacifghnsverse spatial dimensions was motivated by heuristics
the one-dimensional derivative and norm operators witlr thgne resulting model has a clear physical interpretation. In
two-dimensional analogs. However, as eluded to in the 'intrﬁarticular, the variablesly, 4;, and A, represent the spatial,
duction, the heuriStiC extension mOde|S SyStemS that a[e ql{ransverse amp”tude of trapped Bragg solitons in each of
physical. One such system is the spatially extended VCSE}aveguides, and the sign of the dispersion reflects the sign

type architecture system in Fig. 1. The governing equatiogsthe index of refraction of the guiding region.
for this physical configuration are:

94y D I1l. M oDE-LOCKED DYNAMICS
el EVQAO + BlAo|* Ao + C A1 + iAo The dynamical behavior of this system is critically depen-
—ig(t) (1 n TVQ) Ag + ip|Ao[* Ay = 0(1a) dent upon the gain parametey thgt acts as the b?furcation
parameter that governs the transition from stable singlegs,

Il. GOVERNING EQUATIONS

z% +C(Ag+ Az) +im A1 =0 (1b) to time—per!odic breathing squtioqs, and finally to mukip _
9 A, pulse solutions [12]. Due to the isotropy of the system, it
z‘w +CA; +i7A2 =0 (1c) is assumed that a steady state output pulse will also posses
radial symmetry. Indeed, for single- and multiple-pulsa- st
whereV? = 92 + 85 and tionary solutions this simplification agrees quite well lwit
240 simulations of the fully two-dimensional problem. However
(2) this simplification performs poorly in time-periodic anchet

90 = T Ao rer
+114o[[*/eo non-static cases due to the generation of a non-radial noise
Here Ay, A1, and A; are the envelope of the electric fields irbackground that breaks the radial symmetry. Regardless, th
the Oth, 1st and 2nd waveguides respectively. The parametatially symmetric solutions provide an excellent stayioint
D is the diffraction coefficient in each of the slab arraydor considering light-bullet solutions.
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A. Radially Symmetric Solutions 2 o 2 15
The radially symmetric solutions are an important class E» § 1
of stationary solutions to the modified WGAML equation § sf “--"""""" g 05
because radially symmetry allows the reduction of the gover & | —— 8 Tl=========
ing partial differential equation system (1) from two spéti g o i obk=========
0 500 1000 0 500 1000

dimensions to one spatial dimension in the radial variakiés t t
Slmpllfles th? analySIS and makes th.e StUdy of th.e dynamﬁﬁ. 4. The energy and derivative fluctuations for the negatliffraction
more numerically tractable. In the radially symmetric Gake (left) and positive diffraction (right) regimes. After amitial transient of
system was discretized in space using a second order finigss of time units‘, the norms settle to a steady state ‘irid'@ax stat‘ion_ary
diff h for th tial derivati ith 512 . pulse. The solid lines are the energy and the dotted linesharelerivative
irerence _SC em_e or the spa lal aerivatives wi - _tmlnﬂuctuations. The blue lines correspond to waveguide O datayed lines to
on a domain of size 30. Additionally, Neumann and Dirichlataveguide 1 data, and the black lines correspond to wavediidata.
conditions were used for the = 0 andr» = 30 conditions

respectively. The system is evolved in time using the stahda
4th order Runge-Kutta methods in MATLAB. This allows arhe switch from negative to positive index materials has
relatively quick method for exploring the parameter space. 5 large impact upon the resulting dynamics and parame-
With the proper parameters, negative index waveguidggs required to obtain mode-locking. However, mode-ldcke
(defocusing, or normal, nonlinear Schrodinger) are clpalyolutions can be achieved as Fig. 3 shows. Additionally,
of producing stable pulses from noise. Figure 2 demonstratfie solutions are stable with respect to perturbations ef th
the radially-symmetric mode-locked solution supportedain steady state solution. In these numerical simulationsiitiel
three-slab waveguide array structure starting from intlaite  condition used is a hyperbolic secant as opposed to white-
noise in the Oth waveguide and no energy in waveguidesndise. This was done to circumvent numerical difficultiest th
and 2. This particular initial condition was chosen to mimigrise due to the approximation of a Cauchy problem on a finite
experimental conditions. However, as white-noise pos#les @omain. At low amplitudes, the leading order solutions are
spatial wavenumbers, this initial condition is guarantéed Bessel functions. However, Bessel functions representiiafi
posses the specific modes that are amplified by the mo@rergy solutions to the Cauchy problem, and are thus spiriou
lational instabilities of the zero solution. The modulagd selutions produced by the numerics. While no numerical
instability generates long-wavelength structures in thetial solutions have been obtained that form from noise, this in
domain which then develop into a single localized structutg way implies that positive index materials are unable to be
due to the restriction of the cavity energy restrictions e t ysed for passive mode-locking. This is simply a mathemiatica
saturable gain. Shown in Fig. 2 are the generated electlit figifficulty in the reduction of the problem to radial coordies.
envelopes in all three waveguides for the parameter values Regardless of the initial condition, the pulses that form
_ are true mode-locked light bullets. To help illustrate the
(D, €90, 71, 72 €0, 7P, 90) = (~1,10,0,0,10,1,0.1,1, 35). mode-locking formation, Fig. 4 plots the energyA(|? =

(3) [o'e) fo'e) 2 . . 2 : .
These coefficients corresponds to a negative index waye- /o 14;]°dzxdy) and derivative [[V.4;[%) fluctuations

guiding regions with attenuation applied in waveguide 2 and" both the positive and negative index cases. The energy an

S e L : olution derivative, or mathematically the, and H; norms,
bandwidth-limited amplification applied in waveguide 0. AS p shown to quickly settle to a steady state. Hence, thelradi

gain is only applied in the Oth waveguide, the mode—shapesacg : S
the 1st and 2nd waveguides are inherited from the Oth wavﬁ _Luttltc))l:llfetevolve to a steady state which is the mode-locked

uide. This is consistent with findings in the one-dimension ; ) ) ) o
The radially symmetric solutions give a great deal of insigh

case [12]. This single-pulse solution is robust and peréista y :
relatively wide range of gains. As the pulse forms from noist0 the underlying stable structures in the system. Howeve

it is stable with respect to large perturbations of the stead¥'hat is most important is the full dynamics of Eq. (1) without
state solution. It appears that the single-pulse modeectmckNe assumption of radial symmetry. Specifically, whether or

state is a global attractor of the system for the specificevalff©t the radially symmetric solutions spontaneously anieenf
of gain g, chosen. non-radially symmetric initial conditions. Relaxing thadral

The positive index case (focusing or anomalous nonlineByMMetry assumption and repeating the computation with bot

Schrodinger) requires a more careful selection of parame?'oat'al dlmgn5|onT and a Whlte(-jnmse initial Eondm_one _th
values due to the self-focusing and collapse that is intier&St€M again evolves to a steady state as shown in Fig. 5

in the two-dimensional nonlinear Schrodinger operator & ”:je paramelters %or(ljmdered |ndF|_g. 2. For th'ﬁ rre]sult, a
Eq. (1a). Indeed, it is critical in this case to include th@S€Udo-spectral method was used In space with the same

physically relevant effects of three-photon absorptioorider Runge-Kutta method to evolve the system in time. Spatially,

to avoid the mathematical collapse and blow-up of the smiuti 256 points were used in each of the spatial directions on a

The following parameters were used for the positive indeluare domain of length 80. The quantitative similaritrethe
mode-locked solution in comparison to the radially syminetr

solution show that the radial approximation is an accurate a
(D, C,%0,71,7Y2, €0, T, D, 90) = (1,5,1,1,10,1,0.08,0.5, 4.88). valid representation of the true solution in the stable case
(4) The dynamical evolution and mode-locking formation dy-
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Fig. 2. Radial optical field amplitudes for the negative rdiftion regime in the Oth, 1st, and 2nd waveguides resgdgtiConsistent with the assumptions
of the model, the fields in waveguides 1 and 2 have inherited #hape from waveguide 0. Note that the radial solutiom#from a white-noise initial
condition in waveguide O.

Fig. 3. Optical field amplitudes in the positive diffractisagime in the Oth, 1st, and 2nd waveguides respectively. gaoed to the results in Fig. 2, this
pulse is obtained for far lower values of gain. In this caké initial condition is a hyperbolic secant pulse in eactthaf waveguides.

namics for the full system of equations (1) with (2) ighe energy fluctuations in the middle panel of the figure. The
illustrated in the first movie (Media 1). The parameters usexbcillations take place on two distinct timescales. Thavslo
are identical to those of Fig. 5. The four panel movie illagts oscillations are visible on the amplitude plot and the pibt o
the intensity dynamics in waveguide O (top left) as well asnergy fluctuations. The fast timescale may be seen there too
waveguides 1 and 2 (bottom left). Note that that the fielout exhibits itself in the lack of smoothness on the ampétud
in the first waveguide has been uniformly raised by 1.5 fglot and the thickness of the lines in the energy fluctuation
illustrative purposes. The energy in the waveguides and tpiets.
spectrum of the Oth waveguide solution are shown in the topThe dynamics of the full, non-radially symmetric system for
and bottom right panels respectively. the two-dimensional case are similar in character, buecffit
in quantitative values. Even with the larger gain of the eyst
. L the energy fluctuations for the two-dimensional case shown i
B. Time Periodic Solutions: Breathers Fig. 6 in the right panel exhibit smaller amplitude oscitdats

For larger values of gaimo, the system undergoes whathan in the radial case. However, they do possess the same fas
is conjectured to be a Hopf Bifurcation and transitions fromind slow timescales of oscillation seen in the radial cake. T
Stationary solutions to time'periOdiC breather solutionkis difference is again due to the non-radial noise background_
Conjecture is based upon recent Stablllty anaIySiS flndlngﬁns appears to consume the energy that norma”y would
in one-dimension [12] for which the Hopf bifurcation canorce the pulse to oscillate. We are currently investigatime
be concluded explicitly. In two dimensions, these solwionole of the CW noise background and its facilitation and/or

are characterized by an oscillating radial pulse and a noisgppression of mode-locking of light bullets.
background. The noise background cannot be represented

radially, creating a discrepancy between the radial anly fulC Multi-Pulsing Transition

two-dimensional analysis. Due to this difference, two s#ts i ) ) .
parameters were used. For the radial analysis, the coetfcie Increasing the gain to even higher valueggfthe breathing
used were: one-pulse solution becomes unstable. At that point, makip

pulse solutions obtain stability and become the dominant

(D, C,v0,71,72, €0, TP, 90) = (—1,10,0,0,10,1,0.1,1,50), solution type. The explanation for this behavior is simiiar

(5) that observed by Kutz and Standstede [12], who studied the
but in the full two-dimensional governing model Eq. (1)loss of stability of the breather solutions and also theikityab
go = 60 in order to account for energy supplied to the noisef non-interacting multiple-pulse solutions. An exampié¢he
background not present in the radially symmetric reductiosplitting process for this particular array is shown in Fgln
Solving the radial problem numerically produces the breaththe first three frames, the single pulse splits into two, bet t
solution shown in Fig. 6. This solution is periodic and formsiteraction between the newly formed pair of pulses causes
from noise. The oscillation can be noticed most clearly vidlbem to recombine into a single pulse. For sufficiently long
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Fig. 5. Formation of a radially symmetric mode-locked solutin the negative diffraction regime starting from seeadtte-noise. The intermediate image
shows the presence of both noise and a hyperbolic-secanplilse. The intensity discrimination and saturating gédimieate the background noise. This
full simulation is the proto-typical mode-locking behaviexpected in the slab waveguide array structure.
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Fig. 6. A time-periodic breathing solution (left panel)pag with the energy fluctuations of the radially symmetrimgliations (center panel), and energy
fluctuations of the full governing equation simulationgiti panel). The mean value of the energy fluctuations in badiat and cartesian cases are similar
in magnitude, and both settle into periodic orbits.

time, the system reaches a steady state configuration dregtresently being studied.

by two pulses being spaced far enough apart so as to be

effectively non-interacting. Thus, we have obtained a lsimi IV. CONCLUSION

pulse-splitting behavior in the two-dimensional array b@ t  We demonstrate that mode-locking of light bullets is possi-

one-dimensional array. The pulse splitting process in Fig.ble within a planar waveguide array structure. The WGAML

is illustrated in the second movie (Media 2). The intensitias been heuristically extended from one propagation ame ti

in the all three waveguides (Oth, 1st and 2nd) is included Vmariable to one propagation and two transverse spatiat vari

the left, middle and right panels respectively. This predess ables. This extension requires the physical reinterpostatf

been repeated to obtain and three- and four-pulse solutioseveral of the terms in the WGAML, resulting in mode-locked

For large enough gains, the waveguide should be able galses which are fundamentally balanced with diffractiod a

produce a generiévV-pulse solution. Note that the splittingself-phase modulation. Ultimately, the pulses obtainedhiisy

process generates non-radially symmetric solutions irsldi® model correspond to high intensity spatially-confined tohs

waveguide. as opposed to the short femtosecond pulses predicted by the
For all of the solutions discussed above, the qualitatiGAML model. Using this model, we have found that this

structure of the light-bullets are relatively insensittedmpact type of waveguide array may be used to create stable three-

of noise-like perturbation. For instance, a stable simmllse dimensional modelocked light bullets for a broad range of

solution will remain a stable single-pulse solution everewh parameters. Indeed, the generated mode-locked statearappe

subjected to a large noise-like perturbations. Due to the be global attractors to the planar waveguide array system

translational symmetry inherent in this system, the pulsg mThe stability of these pulses persists for a wide range of

translate until the perturbation has been attenuated. Hawe gains, but eventually stability is lost and the system acsa

it will retain the same radial hyperbolic secant like enpelo periodic breather state. For larger gains, the breathetisol

it previously had once the system returns to a steady stdteses stability and multiple-pulse solutions are formeasi

Mathematically, it appears to be orbitally stable. For multimportantly, as the initial condition for all these solut®is

pulse solutions, the interaction between pulses allowstmie noise, this type of laser configuration is a candidate foiptioe

complex behaviors to exhibit themselves, and the stahility duction of three-dimensional light bullets using passivade:

the pulses is less well established. However, if the pulskgking techniques. Additionally, the mode-locked budlare

are sufficiently far apart such that the inter-pulse intéoac done in a cavity-less physical geometry since no mirrors are

is negligible the pulses again retain their radially symmet required to form a cavity. From a technological point of view

(hyperbolic secant like) shape and orbital stability. @éf one can also consider ramping the current injection so as to

this limiting case, the dynamics of multi-pulse solutioss iinduce controlled movement of the cavity bullets. This apen
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Fig. 7. Dynamics of pulse splitting for the negative-diffian regime withgo = 100. The value of gain is too large to support either single-pdtationary
or time periodic solutions. The single pulse is unable tddaivinto two as shown the top row of images. Instead, an exteseed, due to noise or other
physical effects, is required to generate the second puleetwo-pulse scenario is the long-time steady state soludf the system after the initial transients
decay as observed.

the door for many photonic switching and optical processingp] J. N. Kutz,Mode-Locking of Fiber Lasers via Nonlinear Mode-Coupling,
operations where moving cavity solitons are of critial impo Vol 661 ofLecture Notes in Physics (Springer Berlin / Heidelberg, 2005).

. N Fll] J. Proctor and J. N. Kutz, “Theory and Simulation of RassMode-
tanc_e' ThIS.WOI’k also fits in th_e bfoao_'ef co_ntext of pa_tte N locking with Waveguide Arrays,” Optics Lettets3, 2013-2015 (2005).
forming optical systems for which cavity solitons and lighft2] J. N. Kutz and B. Sandstede, “Theory of passive harmomide-locking
bullets are of special interest. In this context, the presemk using waveguide arrays,” Opt. Expre8 636-650 (2008).

. . . ..._[13] B. G. Bale, J. N. Kutz and B. Sandstede, “Optimizing wpude array
demonstrates a novel technique for generating and stalgiliz mode-locking for high-power fiber lasers.” IEEE J. Sel. Tquantum
localized solutions. These solutions, their interacti@msl Electron.15 220-231 (2009).
stability will be considered in greater depth elsewheree@i [14] See the Fundamentals, Functionaliies, and Appbaati of Cavity

. . e Solitons (FUnFACS) webpage for a complete overview of curand
Current teChn()IOg'_eS* it !S envisioned that Su_Ch a gepm_nt(y potential methods and realizations of generating locdliaptical struc-
experimental configuration can be achieved in practicejmgak  tures: www.funfacs.org.

the WGAML a promising photonic device for applications. [15] Y. Tanguy, T. Ackemann, W. J. Firth, and R. Jager, “azdion of a
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