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Abstract— Behavioural Hybrid Process Calculus
(BHPC) is a formalism for modelling and analysis of
hybrid systems combining process algebras and the
behavioural approach for modelling of instantaneous
changes and continuous evolution. BHPC is suppor-
ted by Bhave toolset, containing a tool for a novel way
of visualisation of hybrid systems simulations msp-svg
and a new version of hybrid simulator. We present
the latest developments of Bhave toolset and apply
it for case studies of system control and mixed-signal
systems design.
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1 Introduction

Process algebras/calculi [2,11,19] are formal languages in
Computer Science that have formal syntax and semantics
for specifying and reasoning about different systems. In
simple words, process algebras are theoretical frameworks
for formal specification and analysis of the behaviour of
various systems. Serious efforts have been made in the
past to deal with various systems (e.g. discrete event sys-
tems [20,25], real-time systems [10,12,26] and hybrid sys-
tems [1, 3, 5, 6, 17, 27]) in a process algebraic way. Over
the years, process algebras have been successfully used in
a wide range of problems and in practical applications in
both academia and industry for analysis of many different
systems.

Hybrid systems are systems that exhibit both discrete
and continuous behaviour. Such systems have proved
fruitful in a great diversity of engineering application
areas including air-traffic control, automated manufac-
turing, chemical process control and system control. On
the other hand, mathematically, the behaviour of electro-
nic system design (e.g. digital, analog and mixed-signal
design) can be described by discrete variables, conti-
nuous variables and a set of differential equations, whe-
reas switching-modes can be used for modelling mixed
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models (i.e. mixed-signal design). Due to all these, di-
gital, analog and mixed-signal design can be mathemati-
cally described as hybrid systems (with various level of
abstraction) by nature.

Computer simulation is a powerful tool for analysing and
optimising real-world systems with a wide range of suc-
cessful applications. It provides an appealing approach
for the analysis of dynamic behaviour of processes and
helps decision makers identify different possible options
by analysing enormous amounts of data.

Behavioural Hybrid Process Calculus (BHPC) [17] is a
hybrid process algebra which was specifically designed
for the description of the dynamic behaviour of hybrid
systems along with a powerful simulator called Bhave
toolset. Currently, simulation results obtained by
means of the BHPC simulator can also be visualised and
analysed via Message Sequence Plots (MSP) [17].

In this paper, we first present the latest development of
Bhave toolset. Through case studies, we show the
use of Bhave toolset for addressing several aspects of
system control and mixed-signal design. Related work
of the research activities presented in this paper can be
found at [17,18].

2 Behavioural Hybrid Process Algebra

One of the useful techniques for simulation of hybrid
systems that includes continuous evolution and discrete
changes, is Behavioural Hybrid Process Calculus (BHPC)
[4, 17], an extension of classical process algebra that is
suitable for the modelling and analysis of continuous and
hybrid dynamical systems and can be seen as a generalisa-
tion of the behavioural approach [22] in a hybrid setting.
The main strengths of the BHPC are the following.

Sound mathematical foundations. BHPC has sound
mathematical foundations. It means that rigorous
reasoning can be applied to investigate diverse pro-
perties of models.

Behavioural approach. In BHPC continuous evolu-
tion is defined in the behavioural setting [22] making
it more general in contrast to other hybrid process
algebras (Hybrid χ [27], HyPA [6], ACPsrt

hs [3]), i.e. it



is defined using trajectories (solutions of differential
equations is one of ways of defining trajectories), not
just (solutions of) differential equations.

Separation of concerns. Continuous and discrete be-
haviours are specified orthogonally, therefore they
can be changed and analysed separately as well as in
hybrid setting.

Bisimulation is congruence in BHPC, i.e. substitu-
ting bisimilar (processes, that exhibit the same ob-
servable behaviour up-to the branching structure)
does not change behaviour of the system.

Tools support. BHPC is supported by Bhave toolset,
see Section 3.

We present main ideas of the BHPC in this section, see
[17] for the details.

Trajectories We define trajectories over bounded time
intervals (0, t], and map to a signal space W = (W1 ×
· · · ×Wn, (q1, . . . , qn)). Components of the signal space
W ∈ W correspond to the different aspects of the
continuous-time behaviour, such as current or voltage,
and are associated with trajectory qualifiers qi ∈ T iden-
tifying them. A trajectory in signal space W is a func-
tion ϕ : (0, t] → W1 × · · · × Wn, where t ∈ R+ is the
duration of the trajectory. We define conditions on the
end-points of trajectories or the exit conditions. ⇓ de-
notes such conditions, as the restrictions on the set of
trajectories: Φ ⇓ Predexit = {ϕ : (0, u] → W1, . . . ,Wn ∈
Φ | Predexit(ϕ(u))}, where u is a time parameter, Φ is a
set of trajectories and Predexit(ϕ(u)) is a predicate that
defines restrictions. The set of trajectories Φ can be de-
fined in different ways, e.g. by ODE/DAE. See [17] for
the formal treatment.

Hybrid transition system All behaviours of BHPC
specification are defined by a hybrid transition system
HTS = 〈S,A,→,W,Φ,→c〉

• S is a state space.

• A is a finite set of (discrete) actions names.

• →⊆ S×A×S is a discrete transition relations, where
a ∈ A. We will denote it s

a−→ s′.

• W is a signal space.

• Φ is a set of trajectories.

• →c⊆ S × Φ × S is a continuous transition relation,
where ϕ ∈ Φ are trajectories. We will denote conti-

nuous transitions s
ϕ−→ s′ for the convenience.

Language A core language is used for defining evolu-
tion and interaction of systems

B ::= 0 a . B [f | Φ] . B
∑
i∈I

Bi B ‖HA B P

We will require a consistent signal flow, i.e. only the pa-
rallel composition is allowed to change the set of trajec-
tory qualifiers in the process.

Only a subset of complete language is introduced, see [17]
for auxiliary operators, such as renaming or hiding. Mo-
reover, other operators can be defined on top of the core
language for convenience. We demonstrate it by introdu-
cing parametrised action prefix and guard.

Stop 0 is the process that does not exhibit any behaviour.

Action prefix a . B performs a and continues as B. A
special silent action τ defines directly unobservable be-
haviour, and is usually used to specify a non-determinism
(e.g. as internal actions in [19, p. 37–43]).

We will use parametrisation of action prefix as in [19, p.
53–58] a(v : V ) . B(v) =

∑
v∈V

a(v) . B(v).

Trajectory prefix [f | Φ] .B (f), where f is a trajectory
variable, starts with a trajectory or a prefix of a trajectory
from the set of trajectories Φ. If a trajectory or a part
of it was taken and there exists a continuation of the
trajectory, then the system can continue with a trajectory
from the set of such continuations. If a whole trajectory
(e.g., as defined by exit conditions) was taken, then the
system can continue with B.

Choice
∑
{B(v) | v ∈ I} is a generalised nondetermi-

nistic choice of processes (I is an arbitrary index set). It
chooses before taking an action prefix or trajectory prefix.
Binary version of choice is denoted by B1 +B2.

Parallel composition B1 ‖HA B2, where A and H are
sets of synchronising action names and trajectory qua-
lifiers, respectively, models the behaviour of two parallel
processes. Synchronisation on actions has an interleaving
semantics. Trajectory prefixes evolve only in parallel, and
only if the evolution of the coinciding trajectory qualifiers
is equal.

Recursions allows defining processes in terms of each
other, as in the equation P = B, where P is the process
identifier and B is a process expression that may only
contain actions and signal types of B.

Guard 〈Pred〉 operator evaluates Pred conditions, and if
they are not satisfied, stops the progress of the process.

〈Pred(x)〉 . B(x) =
∑

w|=Pred(w)

B (w)

Here x are process parameters (variables).



Strong bisimulation for hybrid transition systems re-
quires both systems to be able to execute the same trajec-
tories and actions and to have the same branching struc-
ture.

The hybrid strong bisimulation relation (equivalence) de-
fined for the HTS is a congruence relation w.r.t. all ope-
rations defined above [17]. Hence, bisimilar components
can be interchanged without changing systems behaviour,
and that can be effectively employed while building and
improving systems (models).

3 Bhave toolset

BHPC is supported by Bhave toolset [13]. The toolset
allows modelling, simulation and visualisation of the hy-
brid models [14]. It consists of several tools.

Discrete Bhave [16] allows discrete simulation of the
BHPC specifications.

Bhave simulator allows hybrid simulation of BHPC
specifications. Current version supports a subset of
BHPC. A snapshot of the system with examples is
available from bhpc-simulator.sourceforge.net.

BHPC2Mod can translate a restricted set of BHPC
models to Modelica [9] language, and then simulate
them using Dymola [8] or OpenModelica [21]. Ho-
wever, because Modelica does not have formal se-
mantics, translation does not necessary preserves all
the properties. Moreover, parallel composition is not
translated [28].

msp-svg is a visualisation tool that uses Message Se-
quence Plots (MSP) [17,24] approach for visualising
hybrid evolution. It is available at http://msp-svg.
sourceforge.net/. See Section 3.1 for details about
msp-svg.

The current versions of both tools (Bhave and msp-svg)
are built not just as a prototypes, but also as a hybrid
“sand-box”, a place to experiment with BHPC and re-
lated developments. Architecture and implementation of
the both tools allows accommodating diverse changes and
test the algorithms developed for BHPC or other (hybrid)
process algebras or MSP-based visualisation techniques
comparatively easy.

Our plans include further development of the process al-
gebra and Bhave toolset. We are planning to improve
and extend Bhave and integrate it with msp-svg.

3.1 Visualisation of Hybrid Evolutions

Simulation results usually visualise the evolution of the
system in time. Event traces or message sequence charts

(MSC) [23] adequately represent discrete system beha-
viour, and graphs are convenient for the ordinary conti-
nuous systems. However, in hybrid systems we have both
the evolution of system variables and events. Hence, a
combined view is crucial to fully analyse hybrid system
behaviour. See [17, p. 118-124] for the details.

We believe, that Message Sequence Plots (MSP) [17,
p. 118-124] contains all necessary components for ade-
quate visualisation of hybrid systems. It has two com-
pounds: message-sequence charts rotated 90◦ combined
with plots. We explain MSP by an example depicted in
Figure 1.

Plots over time-lines show continuous-time evolution.

A legend allows selecting qualifiers of interest, that
are depicted in the plot. If several processes
evolve concurrently, the synchronising qualifiers ap-
pear for both processes. In Figure 1 qualifiers
qual1, qual2, qual3 and qual4 are depicted. Processi

is related with qualifiers qual1, qual2 and qual3, and
only qualifiers qual1 and qual3 are selected to be vi-
sible. Processj is related with qualifiers qual1, qual2

and qual4, and qualifiers qual2 and qual4 are selected
to be visible.

Single horizontal lines connected to the correspon-
ding boxes with process identifiers, represent pro-
cesses and the time-line (or life-line in MSC ter-
minology). Time is assumed to flow to the right
along each time-line at the same speed. Processi

and Processj are represented by the horizontal lines
and boxes with processes identifiers in the example.

Labelled vertical lines going across time-lines re-
present communication, i.e. (parameterised) action
prefixes in BHPC. Notice that we use simple lines
instead of arrows, because communication in BHPC
is not directed. Communication of Processi and
Processj consists of actions act1, act2 and act3.

Triple horizontal time-lines depict suspension of the
time-flow. Single actions are placed on the time-line
at the time that relates to their moment of occur-
rence. A sequence of actions occurs at one moment
in time, when there is no continuous behaviour bet-
ween the actions. We suspend the flow of time to
allow insight in the ordering of these actions. In the
example, suspension of the time is depicted on the
time-line as three parallel solid lines.

Figure 1 contains all information that would be available
in an ordinary plot. Correspondingly, all information
that is visible in message sequence charts, is also visible
in MSP. Furthermore, in MSP all processes and com-
munication between them are visualised. The proposed
technique can be easily adopted to other hybrid system
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Figure 1: MSP example.
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Figure 2: Simulation of the simple vessel.

modelling frameworks with minimal changes, e.g., if com-
munication is directed, arrows can be used to depict it.

Additional notation, such as decorating the results with
process expressions (e.g. action and trajectory prefixes),
adding recursive calls, providing information about rena-
ming of qualifiers in the legend, forking of processes to
depict parallelism. See [15] for details.

Figure 2 depicts an evolution of the simple vessel simula-
tion 4.1 using a proof of concept tool msp-svg. Exe-
cutable and source code of msp-svg are available at
sourceforge.net/projects/msp-svg/.

4 Application of BHPC

4.1 Simple Vessel

Simple vessel models a system with a constant outflow
of fluid (lout) and controlled inflow (lin ≥ lout). Level
of the fluid should be maintained in a certain interval
[lmin, lmax]. Inflow is controlled by opening (open) and
closing (close) a valve.

We provide a model in BHPC that simulates behaviour
of such systems.

SimpleVessel(level) =

OutFlow(level)[simpleVessel.level/level];

InFlow(level) =

[ level’ = (3 - 2) |

(level - 10 - 0.5 * rand()) ]

. off

. OutFlow(level)[InFlow.level/level];

OutFlow(level) =

[ level’ = (0 - 2) |

(level - 1 + 0.5 * rand()) ]

. on

. InFlow(level)[OutFlow.level/level];

It consists of main process SimpleVessel and two sub-
processes SimpleVessel, InFlow and OutFlow, that,
respectively, simulate inflow and outflow modes. Swit-
ching occurs in the predefined ranges, i.e. the sys-
tem switches to inflow mode when level ∈ [lmin, lon] (in
our case level ∈ [0.5, 1.5] ) and to outflow mode when
level ∈ [loff, lmax] ([9.5, 10.5]). Ranges allow to model
measuring devices errors and delays. We model non de-
terminism using rand() function, but in the future we are
planning to introduce other techniques [17, p.115-117] for
it. Inflow and outflow are, respectively 3 and −2 units
of fluid per time unit. Simulation results are depicted in
Figure 2. Slanted (blue) lines depict growing and decrea-
sing level. Inflow and outflow speed (derivatives of fluid
level change) are depicted by black horizontal lines, res-
pectively, at level 1 and −2 (notice, different axes) in the
upper part of the figure. Actions are depicted by vertical
lines, and shown in the lower part of the figure.

4.2 Application of BHPC for Tunnel Diode
Modelling

We present results of experiments with the tunnel-diode
circuit from [7]. The circuit is depicted in Figure 3. State
of the system is defined by two state variables: the cur-
rent through the inductor Il and the voltage across the
diode Vd. Behaviour is defined by differential equations

İl =
1

C
(−Id(Vd) + Il) (1)

V̇d =
1

L
(E −RIl − Vd) . (2)

where
Id(Vd) = V 3

d − 1.5V 2
d + 0.6Vd

defines non-linear characteristics of the tunnel diode.

We provide a simple model of the system, that consists of
one process, namely TunnelDiode, that contains a tra-
jectory prefix defining evolution of the circuit over time.
Exit conditions of the trajectory prefix define expected
intervals for the current Il and voltage Vd.
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Figure 4: Non-oscillating
tunnel diode circuit: current
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Figure 5: Non-oscillating tun-
nel diode circuit: voltage
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Figure 6: Non-oscillating
tunnel diode circuit: cur-
rent vs voltage
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Figure 7: Oscillating tunnel diode
circuit: current
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Figure 8: Oscillating tunnel
diode circuit: voltage
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Figure 9: Ooscillating tunnel
diode circuit: current vs voltage

TunnelDiode(Il, Vd) =

[ Vd’ = (1 / C) * (Il -

(Vd * Vd * Vd -

1.5 * Vd * Vd + 0.6 * Vd));

Il’ = (1 / L) * (E - R * Il - Vd)

| (Vd - 0); (Vd - 0.92);

(Il - 0); (Il - 0.08) ]

. stop;

We performed simulation with two different sets of para-
meters.

Non-oscillating Oscillating
C (F ) 10−9 10−9

L (H) 10−6 10−6

E (V ) 0.3 10−9

R (Ω) 50 0.3

Initial values: Il = 0.025A and Vd = 0.74V . Notice, that
only voltage differs.

As expected, in the first case simulation stabilises in the
equilibrium. Figures 4, 5 and 6 depict the current, voltage
and current vs voltage of the non-oscillating tunnel diode
circuit, respectively.

With the second set of parameters we get an oscillating
system in the expected intervals. Simulation of the oscil-
lating tunnel diode circuit is depicted in Figures 7, 8 and
9.

5 Conclusions

Modelling and analysis of the tunnel diode circuit shows
that Behavioural Hybrid Process Calculus and its toolset
can be used for the formal specification and simulation
of electronic systems.

Application of the proof-of-concept msp-svg tool for vi-
sualisation of simple vessel simulation demonstrates ad-
vantages of the Message Sequence Plots over simple plots,
because not only switching points are visible, but a cause
(a related event) as well.

Our future work will focus on several aspects.

• Application of the toolset to analog and mixed elec-
tronic systems.

• Modular specifications of diverse circuits, i.e. model-
ling of circuits as parallel components, e.g. modelling
tunnel diode circuit as parallel interconnection of ca-
pacitor, inductor, resistor, tunnel diode and power
source.

• Improvements of the modelling language. Currently
we use the language, that consists only of basic
constructs. We are planning to add some syntactical
constructs for convenience.

• Improvements of tools. We are planning to improve
simulator and msp-svg tools, integrate them.
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