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On the Application of Algorithmic
Differentiation to Newton Solvers

Emmanuel M.

Abstract— Newton solvers have the attractive prop-
erty of quadratic convergence but they require deriva-
tive information. An efficient way of computing
derivatives is by Algorithmic Differentiation (AD) also
known as automatic differentiation or computational
differentiation. AD allows us to evaluate derivatives
usually at a cheap cost without the truncation errors
associated with finite-differencing. Recent years wit-
nessed an intense activity to produce tools enabling
systematic calculation of derivatives. Efficient and re-
liable AD tools for evaluating derivatives have been
published. In this paper, we sketch some of the main
theory at the heart of AD, review some of the best
AD codes currently available and put into context the
use of AD for iterative solution methods of nonlinear
systems or adjoint equations. Our aim is to direct
scientists and engineers confronted with the need of
exactly calculating derivatives to the use of AD as
a highly useful tool and those AD tools which they
could try primarily. Moreover, we show that the use
of AD increases the performance of the quadratically
convergence solution of a parabolised Navier-Stokes
equations.

Keywords: Algorithmic Differentiation, Newton

solvers, Adjoint equations, vertex elimination

1 Introduction

Algorithmic Differentiation (AD) also known as Auto-
matic Differentiation or Computational Differentiation, is
a set of algorithms for generating derivatives of functions
represented by computer programs of arbitrarily complex
simulations. It uses the chain rule of calculus applied to
elementary operations in an automated fashion. AD is
an old technique, which has been invented and rediscov-
ered many times but still has not reached all its potential
users, see [24, 17] for some historical notes.

Computing derivatives is ubiquitous in scientific compu-
tation and is essential to enable Newton solvers. In CFD
(Computational Fluid Dynamics) for example, the calcu-
lation of steady compressible flow solutions reduces to the
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solution of a nonlinear system of equations of the form

(1)

in which R represents the residual vectors in a finite-
volume or finite-element calculation, q represents the set
of flow variables at each point of the mesh, and x is the
supplied mesh. Typically, the resolution of (1) is part of
a rather large computation of the form

R(q,x) =0

(2)

y = F(q,x)

To solve the system in (1), one can use the following two
approaches:

e explicit time marshing based on Runge-Kutta
solvers, with acceleration methods such as enthalpy
damping, implicit residual smoothing, and multigrid,
see for example [14].

e Newton-like iteration methods involving derivative
calculations, see for instance [10, 30].

We focus on the second, which can be written as

(3)

Some CFD algorithms use an approximation of P but
their convergence is asymptotically linear [14]. The
Newton-Raphson algorithm defines P to be (%%)’1 and
exhibits a quadratic convergence. However, Newton-
Krylov solvers are of great interest as they are matrix-
free solvers [20]. Therefore they use vector-Jacobian or
Jacobian-vector products instead of constructing the full
Jacobian. The efficiency of vector-Jacobian or Jacobian-
vector products is explored in for example [35]. Success-
ful Newton-Krylov methods depend on how good the re-
sulting Newton-Krylov iteration is preconditioned. This
preconditioning is usually done using successive Jacobian
approximations [20]. In [18], the Jacobian approximation
is done using finite differences but one could use AD to
evaluate a more accurate Jacobian. It is shown that a
mixed finite differencing and AD scheme for evaluating
Jacobian-vector products increased the convergence rate
and the speedup of a GMRES [25], which is a Krylov-type
method solver [18].

qn+1 = dn — P(qna X)R(qna X)
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In [5], the nonlinear system of the equation (1) is de-
rived from a system of differential algebraic equations and
solved with the following Gauss-Newton iteration:

qn+1 =qn — anI(qna X) TR(qna X) (4)

where R'(q,,x) T R(qy, X) represents the minimum norm
least squares solution of the system

Rl(qn: X)q = R(qna X)7

and p,, is a factor seeking to increase the convergence re-
gion of the iteration. This Newton iteration needs the
calculation of the Jacobian %—l:. Loosely speaking, New-
ton solvers have asymptotic superlinear or quadratic con-
vergence but required derivative calculation. It is not our
intention to present a detailed study of the convergence
properties of Newton solvers. However, we present a case
study from CFD by which the use of AD in a Newton-
Raphson solver ensure quadratic convergence. We mainly
focus on using AD as a powerful tool to systematically
calculate the derivative required by a Newton solver.

There are different ways of calculating derivatives includ-
ing hand-coding [33], using computer algebra systems [32]
such as Mathematica or Maple, using finite-differencing,
or AD [24, 15,2, 17, 6]. AD is not about symbolic manip-
ulation as performed in computer algebra systems such
as Maple. It systematically augments the floating-point
part of a computer program with extra instructions cal-
culating derivatives. It is an efficient way of calculat-
ing derivatives in terms of accuracy and runtime. In the
AD terminology, input variables with respect to which we
need to compute the derivatives are called independents,
and outputs whose derivatives are desired are called de-
pendents.

Excellent AD tools that are efficent and reliable have been
published (see www.autodiff.org). ADIFOR, ODYSSEE,
Tamc, and ADIC are well-established tools, which make
use of the standard forward and reverse modes of AD. The
forward mode propagates directional derivatives along
the flow of the program. The reverse mode first com-
putes the function, then calculates the sensitivities of the
dependent variables with respect to the intermediate and
independent variables in the reverse order to their calcu-
lation in the function. The sensitivities of the dependent
to the independent variables give the desired derivatives.

ELIAD [29, 10, 11] is an AD tool that also uses source
transformation but, in contrast to the AD tools listed
above, ELTAD uses the vertex elimination algorithm of
Griewank and Reese [16]. The Jacobian code created re-
quires fewer floating-point operations than that obtained
by the traditional forward and reverse AD methods as
implemented by ADIFOR or TAMC. The vertex elimi-
nation AD algorithm efficiently exploits the sparsity of
the Jacobian calculation. Careful experiments showed
ELIAD produced Jacobian codes running 2 to 10 times
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faster than those by ADIFOR or TaMC, see [11, 23]. As
shown in [10], the application of ELIAD to flux calcula-
tions in a finite-volume parabolised Navier-Stokes space-
marched flow-solver ensured quadratic convergence for
the associated Newton solver and increased overall per-
formance compared with traditional forward or reverse
AD or sparse finite-differencing for Jacobian assembly.

2 Adjoint Iterative Solvers

Adjoint iterative solvers [14] using AD exploit the fact
that it is cheaper to calculate the transposed Jacobian
when the number of the dependent variables is lower com-
pared to the number of independent variables, see for
example [17] for further details. The Newton iteration
becomes

= qg - P(qna X)TR(qn: X)T (5)

T

T
qn+1

and since the transposition is an adjoint operator, q
can be denoted as q. Typically, in design optimization,
we wish to minimize a scalar cost function of many pa-
rameters. A gradient-based algorithm [22] uses the sen-
sitivities of the cost function to the design parameters.
One can use the reverse mode AD to systematically eval-
uate such quantities as the gradient of the cost function.
This is cheaper as the cost of the gradient evaluation is
independent from the number of design parameters.

Tterative solutions of adjoint equations can be found by
an "intelligent” application of the reverse mode AD. This
could be done by adjoining the last iterations of equation
(3) [17]. If the Newton iteration (3) converges after N
iterations, and if we evaluate the quantity in equation
(2), then we have:

S OF(an,x)  ~

X=Yy 9x v OF(an . x) (6)

q=Y dq

The convergence issues of iterative solvers as well as their
adjoints have been investigated in for example [12, 7]. It
is usually found that the convergence of the derivative it-
erates is R-linear and possibly Q-linear under some nice
assumptions (regularity, contractivity) on the original it-
erates. The references [12, 7, 17] should be consulted
for further details. In [7], it is shown that reverse mode
AD enables us to adapt the number of iterations so as to
reach the required degree of accuracy and then achieve
derivative convergence.

Current implementations of the reverse mode AD use
either storage (e.g., TAMC) or recomputation (e.g.,
ODYsSEE, TAPENADE) schemes for the required variables
in order to reverse the derivative calculation. This leads
to memory or time requirement bottlenecks for large-scale
applications. TAF, which is currently a commercial tool,
provides a certain number of directives allowing to ex-
ploit knowledge of the code to increase efficiency. To
tackle these complexity issues, we usually use checkpoint-
ing schemes inspired by the so-called strategy of “divide
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and conquer” to achieve an acceptable tradeoff between
memory and time requirements, see for instance [17].

3 Principles and Techniques of Algorith-
mic Differentiation

A computer program that evaluates a function of n inputs
and m outputs can be viewed as a sequence of p+m scalar
assignments described as follows:

z; = ¢i({wj}j<i),

where ¢; represents an elemental function and j <
i means that z; is used in computing z;. We de-
fine intermediate variables to be those whose value de-
pends on an independent and affects a dependent vari-
able.  Assuming that in (7), z1,...,z, are the in-
dependents, @yy1,...,2Tny, are the intermediates, and
Tptptls-- s Tntprm are the dependents that are mutu-
ally independents, the sequence of assignments in (7)
yields the following non-linear system,

0= (¢i({z;}j<i)

Assuming the ¢; have continuous first derivatives, we can
differentiate the non-linear system (8). Writing Vx; =
( (91‘1' 8.%1'

Oz, " " Oy,

i=n+l,...,N =n+p+m, (7)

—z;), i=n+l,...,N. (8)

) , we obtain

0 =Voi({z;}j<i) — Vx;
= Z]’<z’ %ij —Vx;, i =n+1,...,N.

The conventional forward Automatic Differentiation con-
sists in evaluating each intermediate and dependent vari-
able z; simultaneously with its directional derivative
99

—Vx; i =n+l,...,N.

VXZ' = 6:Ej

Jij=<i
in a given direction p € IR". The conventional reverse
mode Automatic Differentiation consists in

1. performing a forward sweep to calculate the values
of variables z; until the evaluation of the function F
is complete.

2. performing a reverse sweep calculating directional
derivatives

%ij k=n+p,...,1

ka = 87‘]

Jik<j

with respect to each intermediate and independent
variable. The quantities

Vx, — al'k &rk
ko 827n+p+17“.,8.7,‘]v ’

are sometimes called adjoint vectors.
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Let us illustrate the AD technique by considering the
code fragment comprising five scalar assignments in the
equation (9).

x4 = log(x122)

Ty = TgTé -2

T = 3x4 + ;—i (9)

7 = :z:i + T — T

Iy = \/Tg — Ty
Writing

Vz,; = (3-771’ By’ 6m3> and ¢;

b= ;
8.’1’,‘j

we use standard rules of calculus to write the linearised
equations to the right of equation (10). These linearised
equations describe the forward mode of AD and equiv-
alent code would be produced by ADIFOR or TAMC en-
abling Jacobian calculation on setting Vz; = (1,0,0),
Vo =(0,1,0), and Vzz = (0,0, 1).

T4 = IOg(I1I2) Vg = (3411V.751 + (?412V.752

T5 = 2Tz — 2 Vzs = C5,2V$2 + 65,3V$3

rg = 3T4 + f Vg = cg,aVaa + cg3Ves + cg oV (10)
24 g Var = cr.5V av 2V

T7 =25 + a5 — 22 x7 = c7,5V®5 + €7,4VEy + c72VI2

2y = \/Tg — &5 Vg = cg Vg + cg5Vrs

The corresponding matrix representation of the equiva-
lent code statements given to the right of equation (10)
gives a linear system,

Mu=v (11)
to solve for the derivatives u, wherein
B |
-1
-1
M= | Ca1 Ca2 -1
Cs52 C53 -1
C6,2 C6,3 | C6,4 -1
C7,2 Cra C15 -1
L Cg5 C86 -1 |

with zero entries in the matrix omitted for clarity,

V:r1 —
VZL'Q
V.Q?g
V$4
Vm5
v.’L‘ﬁ
V:r7
V$8

S OO OO ~=OO

and v =

OO OO OO O
DD OO OO =O

The forward mode AD would be equivalent to solving
the linear system using a forward substitution. The
reverse mode AD would be equivalent to transposing
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the linear system, apply a backward substitution, and
set the adjoint vectors z; = (1,0), and g = (0,1) to
calculate (Z1,Z2,Z3) as the transposed of the Jacobian
0 (.’L‘7, Tg)/a(’l‘l ZTo, ’I‘3)

The elimination approach, see for example [17] takes a
different viewpoint and may be interpreted via either
the matrix representation or the so-called computational
graph, see [11, 23, 27] for more details. In the graph inter-
pretation viewpoint, the Jacobian 0 (z7,xg)/0(x1, %2, x3)
is determined by eliminating intermediate vertices of the
Computational graph until it becomes bipartite. In terms
of the matrix representation, vertex elimination is equiv-
alent to choosing a diagonal pivot from rows 4 to 6, in
some order. At each step we eliminate all the coefficients
under that pivot by elementary row operations. For ex-
ample by choosing row 6 as the pivot row, we add the
multiple cg ¢ of row 8 to row 6 and so produce entries
Cg2 = Cg6 X Cg2, Cg3 = Cg6 X C6,3, C84 = (g6 X C6,4
in row 8. By then choosing rows 5 and 4 as pivots we
are left with the Jacobian in the submatrix comprising of
elements c71, ¢72, €73, c3.1, Cg2, and cg 3.

There are as many row orderings as there are permuta-
tions of the intermediate rows in the extended Jacobian.
The forward ordering consists in eliminating rows 4, 5, 6
in that order. The reverse ordering will eliminate rows 6,
5, 4 respectively. In addition to the forward or reverse or-
dering, we use orderings based on heuristics from sparse
matrix technology such as the Markowitz criterion stud-
ied in [15]. The main advantage of this approach is that
it exploits the sparsity of the calculation at compilation
time and allows for minimizing the number of FLOPs to
accumulate the Jacobian.

4 Algorithmic Differentiation Tools

Recent works on Automatic Differentiation has focused
on producing tools to differentiate high level languages
such as FORTRAN, C, or MATLAB. There are at least
two methods for implementing an AD tool:

e operator overloading in which the basic arithmetic
operators and intrinsic functions are overloaded to
allow for the propagation of derivatives. The user
must change the types of all active variables by hand
as there is no automated analysis of the source code.

e source transformation in which the original source
code is augmented by new statements, which com-
pute derivative values resulting in a new transformed
source code. This uses compiler technology and al-
lows for sophisticated analyses in order to optimize
the derivative code.

Let us now list some of the available tools that are found
be reliable and efficient, see www.autodiff.org for fur-
ther information.
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4.1 AD for Fortran 77

To differentiate a Fortran 77 program, the following AD
tools are available:

e ADIFOR implements an overall forward mode in
which statements are augmented using the reverse
mode. It is said to be overall forward but statement
level reverse [3]. This enables directional derivative
calculations with the help of a seed matrix. Recently,
the AD reverse mode has been implemented in the
version 3 of ADIFOR.

e ODYSSEE implements algorithms for directional
derivative calculations (Jacobian-vector and vector-
Jacobian products) using the AD forward mode and
reverse mode.

e TAMC implements algorithms allowing for direc-
tional derivative or Jacobian calculations using for-
ward/reverse modes of AD. In contrast to ODYSSEE’s
reverse, which stores all modified variables, TAMC’s
reverse recomputes required values of the modified
variables.

e TAPENADE, the ODYSSEE’s successor allows for
calculating directional derivatives using AD for-
ward/reverse modes and Jacobians using the for-
ward mode. TAPENADE’s reverse mode uses a stor-
age strategy, which stores only the set of required
variables in a conservative way.

ADIFOR, ODYSSEE, TAMC and TAPENADE use the source
transformation approach.

4.2 AD for Fortran 95

Some AD tools allow to differentiate Fortran 95 codes
(e.g., TAF, ADO1) or some limited extensions of Fortran
77 to Fortran 95 (e.g., TAPENADE).

e TAF, the TAMC’s successor provides efficient algo-
rithms calculating directional derivatives, Jacobians,
and Hessians. The TAF reverse mode uses a recom-
putation strategy but it allows the user to use direc-
tives (including storage directives) based on his or
her knowledge of the original code in order to en-
hance the efficiency of the derivative code.

e ADO1 provides ways to calculate derivatives of any
order in forward mode and up to second derivatives
in reverse mode.

TAF is a source transformation tool whereas ADO1 uses
operator overloading. An ongoing project [21] aims at
integrating AD as part of the NAG F95 compiler.

IMECS 2010



Proceedings of the International MultiConference of Engineers and Computer Scientists 2010 Vol II,

IMECS 2010, March 17 - 19, 2010, Hong Kong

4.3 AD for C/C++

Most of the available AD tools for C/C++ used the oper-
ator overloading approach. ADOL-C and FADBAD++
use operator overloading and allow to calculate first and
higher derivatives. ADIC uses the source transforma-

tion approach and enables differentiating codes written
in ANSI C, see [4].

4.4 AD for MATLAB

ADMAT uses the object oriented features of MATLAB
to implement forward and reverse mode by operator over-
loading. MAD exploits MATLARB'’s high level operations
to efficiently implement the AD forward mode. ADI-
MAT employs a mixed source transformation/operator
overloading framework implementing AD algorithms.

5 Application to a 2-D Parabolised
Navier-Stokes Solver

A finite-volume Parabolised Navier Stokes space-marched
flow-solver is studied in [10]. The flux Jacobian was calcu-
lated using hand-coded approximation, one-sided finite-
differencing, and the AD tools ELTAD and TAmc. Fig-
ure 1 gives performance details in terms of convergence
rate and runtimes. FExcept from the approximate lin-
earization, quadratic convergence was observed and the
use of ELTAD generated code improved the overall per-
formance. This improvement is due to the fact that the
ELIAD generated code was slightly faster than that of
Tamc. We can make the following two observations.
First, we can see that accurate derivatives can improve
the convergence rate of a Newton-type solver. Second,
faster derivative can improve overall performance of the
solver.

Approx
——FD
07 TAME
—&— ELIAD

Absolute Error

i 0.005 0.01 0015 0.0z 0.025 0.03

Elapsed Run Time (s)

Figure 1: CPU time and convergence rate for the Flow
Solver
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6 Conclusions

Algorithmic Differentiation is a tool which is likely to be
integrated in the next generation of computer software
systems because of its growing implication in scientific
computation. Its application to Newton solvers is one
of the many applications such as data assimilation [13],
weather forecasting [31], CFD [9, 10, 30], parameter iden-
tification [3, 4], sensitivity analysis [1, 26], and Engineer-
ing [28]. These applications show that AD is gaining
in popularity. By presenting the use of AD in Newton
solvers, we hope to provide some insights on what AD is
capable of, facilitate the discovery of AD by pointing out
most of currently available material, and reach out engi-
neers and practioners in the wider area of computational
science.
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