
A New Approach To Measure Software Security

Wei Han, Hairong Ye, Zuohua Ding ∗

Abstract—A new method is proposed to measure
software system security. Each component can be
characterized by a composite net which combines the
features of Finite State Machine and Operation Di-
agram. A fuzzy number is introduced to this net
to represent uncertain elements that might affect
the software security, and thus we construct Security
Function for each component. The whole system Se-
curity Index is calculated based the Reliability Graph
and the Security Function for each component, where
Reliability Graph is used to reconstruct the compo-
nent relationship of the system.

Keywords: Software security, composite Petri net,

fuzzy number, security measure function

1 Introduction

To ensure software security, we need to pay attention to
at least three phrases in software development process:
1) design phrase, 2) implementation phrase, and 3) sys-
tem testing phase. A lot of work has been done in the
first phrase. The second phase is to realize the security
properties in the design. Because of the diversities of the
programming languages, in this phase, to minimize the
risk of harm is mostly depending on the experience of the
programmers, so far few works appeared in the literature.
The third phase, also the last phrase, will determine the
security quality of the software to some extent. It should
check sever aspects such as interacting with system re-
source, responding to the inputs, cooperating with other
subsystems, and surviving in the outside attack. It is a
heavy task to test the security in this phrase. Fortunately,
some tools have been developed which can statically scan
the source code to catch security vulnerabilities [9] or em-
ploy a state based approach to detect anomalies in the
program [8].

In this paper, we suggest a method to measure how se-
cure of a developed software in the third phase. This
method will provide us an index which can tell us in the
running time that which part of the system is in normal
state, warning state, critical state, and dying state. The
motivation comes from a trivial example(actually some
people use it as an example to study the security issues).

A user faces an Id Checking if he/she wants to access a

∗The authors are with the Center of Math Computing and Soft-
ware Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhe-
jiang 310018, P. R. China. E-mail: zouhuading@hotmail.com.

database. The state design may be like that in Fig. 1.
There are three states here: Logout, Login and Access.
If Id Checking is successful, the state will change from
Logout to Login; If other commands to database are cor-
rect, the state will change from Login to Access.

Logout Login Access

Figure 1: Login and access database

If Id Checking returns a wrong Id in the first time, we
might say that the user made a mistake; If Id Check-
ing returns a wrong Id again, we may say this user is so
careless; If the Id Checking keeps return wrong ID in the
third time, fourth time, etc, we have reason to say that
this user might be a potential attacker. If by accident, in
the tenth time, this user successfully passes the Id Check-
ing, then the database is accessible to this user. However,
this access is not normal. This access carries some unsafe
elements to the database. If this user continues to access
the critical part of the system, there is a risk to some
extent that this user may screw the system. we do have
the potential security issue here even through there is no
mistake in the design, nor the coding.

Instead of studying audits of the system, in this paper we
investigate software itself, since all the traces left in the
system are the refections of the interactions of the soft-
ware with the system and users. We build a model that
combines finite state machine with function calls(method
invocation) to form a Composite Petri Net. A fuzzy num-
ber is created for this net when it is running, which signals
the failure possibility of the specified component of the
system. A security function is defined based on this fuzzy
number. The whole system security index is then defined
based on this security function and the system structure.
The advantage of our method is that we can determine
the vulnerable parts of the software which is impossible
by statically checking the source code.

This paper is organized as the following. Section II de-
fines Composite Net. Section III constructs Security
Functions for composite nets. In section IV, we define
rules to translate components to composite nets. In Sec-
tion V, we define Security Index of the system and study
its properties. Section VI is to compute distribution func-

tions for composite Petri net. Section VII is the summary
and discussion of the paper.

2 Composite Nets

Definition 2.1 A Petri Net is a tuple PN =<
P, T, Apre, Apost, w >, where

1. P = {p1, p2, ..., pn} is a finite nonempty set of places,

2. T = {t1, t2, ..., tm} is a finite nonempty set of tran-
sitions,

3. Apre = {p → t} is a set of directed arcs which con-
nect places with transitions,
Apost = {t → p} a set of directed arcs which connect
transitions to places,

4. w : Apost → (0,∞) is a mapping to assign a weight
to each arc,

Definition 2.2 A Timed Petri Net is a tuple TPN =<
PN, d, r >, where

1. PN is a Petri net,

2. d : T → 2R+ is a mapping to assign a firing time
interval to each transition.

3. r = {r1, r2, . . . , rn} is a distribution function set with
ri defined on r(ti) and ri : d(ti) → [0, 1].

Note that the Timed Petri net is equivalent to a Petri net
if all the minimum time of the time intervals are 0 and all
the maximum times are set to ∞. For each transition t,
let I(t) and O(t) be the input and output places, respec-
tively. For each place p, let I(p) and O(p) be the input
and output transitions, respectively.

We will assign variables to Petri net and Timed Petri net
to record the action accumulation which might lead to
affect the security of the system.

Definition 2.3 A Tagged Petri Net is a 2-tuple (N, V)
where
- N is a Petri Net,
- V = (x1, x2, . . . , xn) is a variable set, each of them has
been assigned to a place Pi such that xi : Pi → [0, 1].

Definition 2.4 A Tagged Timed Petri Net is a 2-tuple
(N, V) where
- N is a Timed Petri Net,
- V = (x1, x2, . . . , xn) is a variable set, each of them is
time dependent and has been assigned to a place such that
xi : (Pi, t) → [0, 1] or simply xi(t) ∈ [0, 1].

For a transition of t in (Timed) Petri net, it is enabled
only all places in I(t) have tokens. Only enabled transi-
tions can be fired. For non-timed Petri net, we assume
that as soon as a transition gets enabled, it starts to fire.
For Timed Petri net, the transition can get fired at any
time in the time interval associated to this transitions.

Firing is based on three indivisible primitives: 1) Re-
moval of the tokens from the input places and insertion
of the tokens in the output places (two transitions which
do not share any places can be fired independently). 2)
Determination of the new mark distribution in both in-
put and output places after firing. 3) Each local variable
will update its values.

The first two operations are the same as the regular Petri
net processing. We omit the details and focus on the third
operation. There are several situations here (∧ represents
minimum and ∨ represents maximum):

1. 1 Non-timed Petri net.

a) One input place. There is no time interval at-
tached to the transition. Variable x1 is with place
P1 and variable x2 is with place P2, respectively. A
constant k is associated with the arc from transition
t to place P2. When token moves from place P1 to
place P2, the value of variable x2 is x2 = kx1. See
Fig. 2(a).
b). More input places. See Fig. 2(b). When fir-
ing, variable x3 will update its value by picking the
minimum of x1 and x2 as the following:

x3 = k ∧i xi.

2. Timed Petri net.

a) One input place. See Fig. 2(c). Assume an inter-
val [t1, t2] is attached to the transition t and a distri-
bution function r is defined on this interval. Variable
x1 is with place P1 at time α. If enabled, transition
will be fired at any time between t1 and t2. Assume
that the firing occurs at time t0 + t1 ∈ [t1, t2], then
the value of x2 in place P2 at time t = α + t0 is

x2(t) = x1(α)r(t0).

b) More input places. See Fig. 2(d). Assume that
the firing occurs at time t0 + t1 ∈ [t1, t2], then the
value of variable x3 of place P3 at time t = ∨αi + t0
is

x3(t) = ∧ixi(∨iαi)r(t0).

Since the firing rules are the same as those in ordinary
Petri nets. The resulting tagged (timed) Petri net is live,
safe, and/or reversible if and only if the original Petri net
is live, safe, and/or reversible, because all these proper-
ties are dependent upon the firing mechanisms of transi-
tions in the net. Noticing that the enabling conditions of

P1

P2
P3

x1

t

k

x2

P1 P2

P3

x1

t

k

x2

P4

x3

P1

P2
P3

x1

t[t1, t2]

x2

P1 P2

P3

x1

t[t1, t2]

x2

P4

x3

(a) (b)

(c) (d)

Figure 2: Tagged Petri net

transitions only depend on the markings of input places,
the properties of liveness, safeness, and reversibility are
unchanged while the tagged Petri net is mapped from or-
dinary Petri net or the tagged Petri net is mapped back
to the ordinary Petri net.

Definition 2.5 A Composite Net (CN) is a net that ei-
ther the places of Tagged time PN contain Tagged PN or
the places of Tagged PN contain Tagged time PN. The
net inside is called local net. The net outside is called
global net.

For example Fig. 3 is a composite net, the global net
is a Tagged TPN and the local nets are Tagged PN. The
global net has variables y1, y2 and y3. Its first state, state1
contains a local net with variable x1 and x2, state2 and
state3 also contain local nets with variables x1 and x2,
respectively.

There are two properties for composite nets:

Property 1. The local net may or may not passes its
tokens to the global net. In Fig. 3, the local net of state1
will pass its token to state2 through transition t1, while
the local net of state2 will not pass its token to state3.

Property 2. The variable of global net will always take
the most recent values from the variables in local net. For
example, In Fig. 3, state1 has a global y1 and its local
net has two variables x1 and x2. When the transition is
enabled, the value of x2 will get updated, meanwhile state
changes from state1 to state2. At this moment, t = 0, x2

will pass its value to y1 as follows:

y1(0) = x2.

state1

state2

state3
t1

t2

t3
y1

y2

y3

x1

x2

x1
x2

x1

x2

Figure 3: Composite Net

3 Security Function of Composite Net

In our discussion, we need some fuzzy concepts. A fuzzy
set A in a universe of discourse X = {x}, written A in
X, is defined as a set of pairs

A = {(µA(x), x)}
where µA : X → [0, 1] is the membership function of
A and µA(x) ∈ [0, 1] is the grade of membership (or
membership grade) of x ∈ X in A. A fuzzy number is
defined as a fuzzy set in R, the real line, which is as-
sumed(usually) normal and convex(with a convex mem-
bership function). For more details about fuzzy numbers,
we refer to [5]. Let E1 be the set contains all the fuzzy
numbers on R+.

Definition 3.1 Let Ai = {(µAi(xi), xi)} ∈ E1. If
∪xi∈Ai

xi forms an interval in R+, then the fuzzy set

T = ∪i(µAi
(xi), xi)

is called an extended fuzzy number. Let Ē1 be the set
contains all the extended fuzzy numbers on R+.

For a composite net, the extended fuzzy number T may
take values from global net variables as its membership
grade. We still use Figure 3 as the example. Assum-
ing the time intervals attached to the transitions ti are
[ai, bi], i = 1, 2, 3 and their distributions are ri. If the
token leaves state1 and takes t̃01 to get state2. Then

µT(t) = y1(0), t ∈ [0, t̃01], t̃01 + a1 ∈ [a1, b1],
y2(t̃01) = r1(t̃01)y1(0).

Similarly, we obtain that

µT(t) = y2(t̃01), t ∈ [t̃01, t̃
0
2], t̃02 + a2 ∈ [a2, b2]

y3(t̃02) = r2(t̃02)y2(t̃01)
µT(t) = y3(t̃02), t ∈ [t̃02, t̃

0
3], t̃03 + a3 ∈ [a3, b3],

y1(t̃03) = r3(t̃03)y1(t̃02).

Generally, we have

µT(t) = y1(

kX
i=0

(t̃i1 + ti2 + ti3)),

t ∈ [
kX

i=0

(t̃i1 + ti2 + ti3),
kX

i=0

(t̃i1 + ti2 + ti3) + t̃i+1
1],

t̃i+1
1 + a1 ∈ [a1, b1],

y2(
kX

i=0

(t̃i1 + ti2 + ti3) + t̃i+1
1)

= r1(t̃i+1
1)y1(

kX
i=0

(t̃i1 + ti2 + ti3));

µT(t) = y2(

kX
i=0

(t̃i1 + ti2 + ti3) + t̃i+1
1),

t ∈ [

kX
i=0

(t̃i1 + ti2 + ti3) + t̃i+1
1 ,

kX
i=0

(t̃i1 + ti2 + ti3) + t̃i+1
1 + t̃i+1

2],

t̃i+1
2 + a2 ∈ [a2, b2],

y3(

kX
i=0

(t̃i1 + ti2 + ti3) + t̃i+1
1 + t̃i+1

2)

= r2(t̃i+1
2)y2(

kX
i=0

(t̃i1 + ti2 + ti3) + t̃i+1
1);

µT(t) = y3(

kX
i=0

(t̃i1 + ti2 + ti3) + t̃i+1
1 + t̃i+1

2),

t ∈ [

kX
i=0

(t̃i1 + ti2 + ti3) + t̃i+1
1 + t̃i+1

2 ,

k+1X
i=0

(t̃i1 + ti2 + ti3)], t̃i+1
3 + a3 ∈ [a3, b3],

y1(

k+1X
i=0

(t̃i1 + ti2 + ti3))

= r3(t̃i+1
3)y3(

kX
i=0

(t̃i1 + ti2 + ti3) + t̃i+1
1 + t̃i+1

2);

k = 0, 1, 2,

Definition 3.2 For a given composite net CN, if the ex-
tended fuzzy number T takes values from its global net
variables as its membership grade, then x : x(t) = µT(t)
is called the Security Function of CN.

Let T be an extended fuzzy number with membership
function µT(t) ∈ [0, 1], t ∈ [0,∞). Assume that this fuzzy
number represents a fuzzy data on reliability of a com-
posite net at time t. Therefore, at t = 0,

µT(t) = 1, for t = 0.

Thus we can write a ”law of possibility of failure” as

Π(t) = 1− µT(t).

Here the possibility law Π(t) gives the possibility of fail-
ure occurring at time t. One should note that T is not
necessarily a unimodal fuzzy number, that is, µT(t) may
have a flat at the top for µT(t) = 1. Now consider θ as
the time to failure; that is, the time when a composite
net has failed. At this time Π(t = θ) = 1 and, since µT

is not necessarily unimodal, θ may be over an interval
[θ1, θ2].

4 From Component To Composite Net

This section we will determine the state variable,or Sur-
vival Function, for each component. There are two con-
cepts involved in this discussion: Finite State Machine
and Operation diagram. The Finite State Machine rep-
resents the state-dependent aspects of the use case. The
Operation diagram is to picture the active-passive rela-
tionship among function calls(method invocations) [4].

4.1 Finite State Machine

A state represents a recognizable situation that exists
over an interval of time. Whereas an event occurs at
a point in time, a Finite State Machine is in a given
state over some interval of time. The arrival of an event
at the Finite State Machine usually causes a transition
from one state to another. Alternatively, an event can
have a null effect, in which case the Finite State Machine
remains in the same state. A component can be modeled
by means of a Finite State Machine.

A Finite State Machine can be well characterized by a
timed Petri Net based on the defined rules. We assign a
time interval to the transition to indicate the time that
needed for state changing and a distribution function cor-
responds to this time. For the resulted Timed Petri net,
a variable is attached to each place representing state
change. This variable will take values from 0 to 1.

4.2 Operation Diagram

If an event happens, at least a function will be called
or a method be invoked. As long as a sequence func-
tions(methods) have been called(invoked), data changes
from one point to another point. Without exception,
all these data are either the inputs or the outputs of
functions(methods). Generally speaking, the parame-
ters are the inputs and the return values are the out-
put. By analyzing the source code, all these information
can be pictured in a diagram, called Operation Diagram,
on which the function(method) behaves like a bridge be-
tween input and output. We need to introduce two new
concepts for Operation Diagram: Selection and Aggre-
gation. Selection is used when an input serves different
functions(methods) and aggregation is used when more
than one inputs serve one functions(methods)at the same
time. If we speak in programming language, the Selection
is the statements such as if. . . else, switch, etc.

In order to use Petri net to simulate the data changes,
we define some basic rules to translate an Operation Dia-
gram to a Petri net. There are three cases here: (a) One
input to one function: this function will attached to the
transition; (b) One input to more than one function: Se-
lection operation is needed to attached for the transition;
(c) More than one input to one function: An Aggregation
operation is needed for this transition.

For the resulted Petri net, we will assign a variable to each
place. All these variables will take crisp positive numbers
as their values. Some pre-defined positive values are also
attached to the arcs from transition to places based on
our needs.

Now for each component we have two kinds of Petri net:
The tagged timed Petri net from Finite State Machine
and the tagged Petri net from Operation Diagram. It is
naturally to combine these two together to form a com-
posite net, with tagged Petri net as local net and tagged
timed Petri net as global net. Thus, we may use compo-
nent and composite net alternatively.

5 Security Index of The System

We assume that all communication between components
are through message passing. The communication type
can be classified as Synchronous and Asynchronous. Syn-
chronous message passing means that the sending oper-
ation needs to wait until an acknowledgment is received.
Asynchronous message means that the sending operation
can proceed without waiting for the message to arrive
at its destination. In both cases, the receiving side is
blocked. Thus, the relationship of components can be
classified as sequential and parallel corresponding to
Synchronous and Asynchronous, respectively. See Fig. 4.

(a)

(b)

C1 C2

C1

C2

Figure 4: Component relationship type: (a) Sequential,
(b) Parallel.

Let {αlower, αup, α
i
lower, α

i
up, i = 1, 2, . . . , n} be a set of

positive numbers. Consider a system ξ composed of n
components: e1, e2, . . . , en, where component ei is asso-
ciated with a survival function xi such that at time t,
xi(t) ∈ [0, 1]. If xi(t) > αi

up, then we say that component
ei is in secure state at time t. If xi(t) < αi

lower, then ei

in un-secure state at time t.

Now we define the secure state of two components. If
they are sequential, then we define their secure state at
time t as (x⊗ y)(t):

(x⊗ y)(t) = x(t)y(t).

If they are parallel, then we define their secure state at
time t as (x⊕ y)(t):

(x⊕ y)(t) = 1− (1− x(t))(1− y(t)).

Thus the secure state of the whole system is a function of
x1, x2, . . . , xn. Let this function be γ, then for t ∈ [0,∞):

γ(x1, x2, . . . , xn)(t) = γ(x1(t), x2(t), . . . , xn(t)).

This γ is called Security Index of the system with n com-
ponents.

Theorem 5.1 γ(x1(t), x2(t), . . . , xn(t) ∈ [0, 1], t ∈
[0,∞)

For the given number αlower, αup, at time t, if γ(x)(t) >
αup, then the system is in secure state; If γ(x)(t) <
αlower, then the system is in un-secure state.

Sometimes we use positive integers to label the priority
of the communication between components. The smaller
the number, the higher the priority. Based on the com-
ponent relationship, we can translate the component di-
agram to a new graph, called Reliability Graph. Based
on this graph, we can calculate the survival index of the
system.

For example, if a system consists of 3 components: e1, e2

and e3. Component e2 communicates with e3 by both
synchronous and asynchronous messages. These two
components together then communicate with e1 by syn-
chronous message. Fig. 5(a) describes all these realtions
of this system. We use number 1 to label the priority
of the communication between component e2 and e3 and
use number 2 to label the priority of the communication
between component e1 and e2. Fig. 5(b) is the Reliability
Graph of this system.

If the security functions for e1, e2 and e3 are x1, x2 and
x3, respectively, then from Fig. 5(b) the security index of
the system is

γ(x1, x2, x3) = x1 ⊗ ((x2 ⊗ x3)⊕ (x2 ⊕ x3))
= x1(1− (1− x2x3))

(1− (1− (1− x2)(1− x3)))
= x1x2x3 − x1x2x

2
3 − x1x

2
2x3 + x1x

2
2x

2
3.

2

1

1

e1 e2
e3

e1

e2
e3

e2

e3

(a)

(b)

Figure 5: Example of a system: (a) System components,
(b)Reliability Graph

6 Computing The Distribution Func-
tions For Composite Petri net

In our composite Petri net, we need to compute the dis-
tribution functions for the transitions of the global net
in the composite Petri net. These transitions are respon-
sible to pass or receive messages between components.
Thus for each transition, the distribution function is de-
fined as the probability that this transition will be fail-
ure. To describe the failure behavior of the transition,
we will employ enhanced non-homogeneous Poisson Pro-
cess(ENHPP) model [3]. Each transition of the global
net will be associated with a failure intensity function,
which can be determined via the coverage testing and
fault density analysis [6].

The ENHPP model is based on the following expression
for its failure intensity function:

λ(t) =
dm(t)

dt
= a

dc(t)
dt

= ac′(t)

where m(t) is the expected number of faults detected by
time t, c(t) is called coverage function and a is defined as
the total number of faults which are expected to be de-
tected given infinite testing time and complete test cov-
erage, i.e., when limt→∞c(t) = 1.

To determine the faults for the reliability of each transi-
tion, we have used a method like that proposed by De-
lamaro et. a1 [1] for integration testing. The difference
is that their method is used for the interfaces of func-
tion calls, reference to a value returned from a function,
and reference to global variables shared by two or more
functions, while ours is used for the interface of message
passing. To obtain test suite, we developed a method
called Condition Calculation in [2].

7 Summary and Discussion

A new method has been proposed to measure the security
of software system. Our composite net has some similar-

ities with Bigraph developed by Milner [7]. Bigraph is
a graph whose nodes may be nested, representing local-
ity, independently of the edges connecting them. It has
been shown that Bigraph can represent dynamic theories
for the π-calculus, mobile ambients and Petri nets in a
way that is faithful to each of those models of discrete
behaviour. In the future we may use Bigraph to model
the mobil system and then study the security measure.

Acknowledgments

This work is partially supported by NSF of China
under No.90818013, and Zhejiang NSF under Grant
No.Z1090357.

References

[1] M. Delamaro, J. Maldonado, and A. P. Mathur, In-
tegration testing using interface mutations, In Pro-
ceedings of the Seventh International Symposium on
Software Reliability Engzneering, New York, pp.112-
121, October 30-November 2, 1996.

[2] Z. Ding, K. Zhang and Jueliang Hu, A rigorous ap-
proach towards test case generation, Information Sci-
ences, vol. 178, pp.4057-4079, 2008.

[3] S. S. Gokhale, T. Philip, P. N. Marinos, and K. S.
Trivedi, Unification of finite failure non-homogeneous
poisson process model through test coverage, Proc.
Intl. Symposium on Software Reliability Engineering
(ISSRE’96), October 1996, pp.289-299, NY.

[4] H. Gomaa, Designing Concurrent, Distributed, and
Real-Time Applications With UML, Addison-Wesly,
2000.

[5] A. Kaufmann and M. M. Gupta, Fuzzy mathemat-
ical models in engineering and management science,
North-Holland, 1988.

[6] M. Lipow, Number of faults per line of code, IEEE
Transactions on Software Engineering, vol.8, no.4,
pp.437-439, 1982.

[7] R. Milner, Bigraphs for Petri nets, in: Proceedings
of the Advanced course in Petri nets (Eichstaett’03),
LNCS 3098, 2004.

[8] C. C. Michael and A. Ghosh, Simple, State-Based
Approaches to Program-Based Anomaly Detection,
ACM Transactions on Information and system Secu-
rity, vol.5, no.3, pp.203-237, August 2002.

[9] J. Viega, J.T. Bloch, T. Kohno, and G. Mcgraw,
Token-Based Scanning of Source Code for Security
Problems, ACM Transactions on Information and
system Security, vol.5, no.3, pp.238-261, August 2002.

