
A Rigorous Approach In Testing Service
Component Architectures

Na Zhang, Xiaoan Bao, Zuohua Ding ∗

Abstract—The paradigm of Service Oriented Archi-
tecture (SOA) has been gathering significant momen-
tum in both academia and industry in recent years.
SCA, which describes a model for building applica-
tions and systems using a SOA, extends and com-
plements prior approaches to implementing services.
However, it is very difficult to test if the service com-
ponents integration satisfies the requirements. In this
paper we propose a formal service component archi-
tecture model according to the specification of ser-
vice component issued as a standard in Mar. 2007.
A formulism, called Port Algebra, is developed to de-
scribe architecture. Test generation formulas are cre-
ated to generate test cases for each service compo-
nent. Based on the interactions of the components,
SYN-sequences are derived to test the integration as
a whole. Since the test generation is based on formu-
las, the test process could be in a systematical and
automatical way.

Keywords: Service component architecture, test case

generation, SYN-sequence.

1 Introduction

The paradigm of Service Oriented Architecture (SOA)
has been gathering significant momentum in both
academia and industry in recent years. Web services
technology provides a uniform framework to increase
cross-language and cross-platform interoperability for
distributed computing and resource sharing over the In-
ternet. Furthermore, this paradigm of Web services opens
a new cost-effective way of engineering software to quickly
develop and deploy Web applications by dynamically in-
tegrating other independently published Web services as
components to conduct new business transactions.

The essential feature of integration of services component
model, among other aspects, poses new challenges to soft-
ware quality. In a traditional software system, all of its
components and their relationships are pre-decided be-
fore the software runs. Therefore, each component can
be thoroughly tested, and the interactions among the
components can be fully examined, before the system
starts to execute. Service oriented architecture extends

∗The authors are with the Center of Math Computing and Soft-
ware Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhe-
jiang 310018, P. R. China. E-mail: zouhuading@hotmail.com.

this paradigm by providing a more flexible approach to
dynamically assemble distributed service components in
an Internet-scale setting. However, how to test the in-
tegration of the service components remains a challenge.
In fact, the flexibility of services-oriented computing is
not without penalty since the value added by this new
paradigm can be largely defeated if the selected service
components do not thoroughly fulfill the requirements
(i.e., functionally or non-functionally).

Thus we propose an approach to test service component
and the composition based on the formal architecture
model. Testing based on the architecture model can give
us at least two benefits: 1) we can check if the system
design satisfies the requirements, 2) by refining the test
cases to the concrete test cases at code level[6] or by map-
ping the behavior traces to the action sequences, we can
check the specification conformance.

Recently, several approaches have been proposed on ar-
chitecture based testing. For examples, in [1], the SA
dynamics was modeled by Labeled Transition System
(LTS). In [7], the author developed a system abstraction
with CSP in terms of testing. We know that LTS serves
as the semantic model for languages such as CCS[5] and
CSP[3]. Thus, roughly speaking, these two methods are
LTS related. To handle the state space explosion prob-
lem generated from transition systems, [7] used hiding
operator to provide a mechanism for removing particu-
lar events from the process’ interface and making them
internal and [1] derived a LTS abstraction from LTS.

We first create the test generation formulas for each com-
ponent. Thereafter, based on the test cases of compo-
nents, we create rules to generate SYN-sequences to test
the whole architecture to see if the designed architec-
ture satisfies requirements. Each SYN-sequence can cover
some or all components.

The paper is organized as follows. In Section 2, we de-
velop port algebra to describe component based software
architecture. Section 3 builds formulas to generate test
cases for components. Section 4 derives SYN-sequence
to test whole architecture. The last section, Section 5, is
the conclusion of this paper.

2 Service Component Architecture

Service component architecture (SCA) aims to encom-
pass a wide range of technologies for service components
and for the access methods which are used to connect
them. One basic artifact of SCA is the service compo-
nent, which is the unit of construction for SCA. Com-
ponents are also the basic elements of business function
in an SCA assembly, which are combined into complete
business solutions by SCA composites.

2.1 Service Component

A service component corresponds to a service and it can
be described by operation activities which represent well
defined business functions. Component interactions are
through data flowing from one activity to another. Ser-
vice components are configured instances of implemen-
tations. Components provide and consume services via
ports as shown in Fig.1.

Properties

Component

Ports

Implementation

- Java
- BPEL

...
- Composite

Figure 1: SCA component diagram

Port represents the addressable interfaces of the imple-
mentation and the requirement that the implementation
has on a service provided by other components. Actu-
ally, each service offers the business functionality through
ports. Each port has a Property which is defined as a
message structure containing three members: port type,
partner link and input/output. Once the port type and
partner link have been assigned values, the property is
configured. The configured property will i) influence the
port by the port type and ii) lock the target service by
the link. In other words, the properties of ports enable
the configuration of an implementation.

In SCA, if a port provides a service, then it is called ser-
vice port; If a port requires a service, then it is called
reference port. We attempt to use port activities to de-
scribe component behavior. Motivated by the work of
Böhm and Jacopini [2]: any sequential programs can be
structured with sequences, branches and loops, we de-
fine some operations for ports. Assume that port p is in
the form p.m, where m is the associated message. The
operators for ports are listed as follows:

1. ; Sequential Operator. To arrange the order of port
acting. For example, expression p1.m1 ; p2.m2 means
port p1 acts before p2.

2. |cond Choice Operator. Indicating choice relation.
Expression p1.m|cond.mp2.m means if cond.m = true,
execute ports p1, otherwise execute p2. If cond = ∅,
then p1 and p2 may have same chance to act;

3. []cond Loop Operator. Indicating that the port(s)
inside of loop will be used continuously if cond =
true, otherwise the loop will be broken. A special
case is cond = n, where n could be a finite number
or infinity. Expression [p.m]cond.m means p will be
called continuously if cond.m = true.

The above condition checking notation cond.m is actually
to check if the input/output of m satisfies the condition.
To make all the notations simpler, as CSP, we may take
message m away from the operations and just use the ab-
straction form: p1; p2, p1|condp2, [p]cond, and the resulted
ports are called: sequence, choice and loop, respectively.

Definition 2.1 A sequential port is a combination of all
kinds ports separated by ;.

Definition 2.2 A conceptual component is a set of finite
sequential ports. Particularly, one sequential port is a
conceptual component.

Definition 2.3 If all ports of a conceptual component
are configured, then we say this component is configured.

Definition 2.4 A configured component is an implemen-
tation of its conceptual component.

In practice, a configured component is an instance of con-
ceptual component. One conceptual component can have
a set of instances, each instance correspondence to an im-
plementation manner, for example J2EE or C++.

2.2 Operations For Components

The SCA Assembly Model consists of a series of artifacts
which define the configuration of an SCA domain in terms
of composites which contain assemblies of service com-
ponents and the connections and related artifacts which
describe how they are linked together. SCA wires within
a composite connect source component ports to target
component ports(Fig. 2).

We consider that the wiring between two components are
through message passing, where message passing are clas-
sified as Synchronous and Asynchronous. Synchronous
message passing means that the sending port needs to

Composite X

Component A Component

B

Promote PromoteWire

Implementation

Implementation
Composite A

Composite B

Figure 2: SCA composite diagram

wait until an acknowledgment is received. For example,
a service port is called by-value by a client which is run-
ning in an operating system process different from that
of the service itself (or clients running on different ma-
chines from the service). Asynchronous message passing
means that the sending operation can proceed without
waiting for the message to arrive at its destination. For
example, a service port is called by-reference by clients
that are running in the same process as the component
that implements the service.

Thus the service port can be further classified as
synchronous-service port and asynchronous-service port,
reference port can be further classified as synchronous
-reference port and asynchronous-reference port.

The wire is the link for the message passing between ser-
vice port and reference port. If the message passing is
from service port to service port or from reference port
to reference port, then the link is called promote. Two
types of wires and two types of promotes are defined for
ports to build component links.

Two types of wires:

Wire I: from synchronous-service port to synchronous-
reference port;
Wire II: from asynchronous-service port to asynchronous-
reference port.

Two types of promotes:

Promote I: from (synchronous / asynchronous)-reference
port to (synchronous / asynchronous)-reference port;
Promote II: from (synchronous / asynchronous)-service
port to (synchronous / asynchronous)-service port.

The following notations are needed to support the above
linkings. Let p1 and p2 be two ports,

1. •m . p1•mp2 means service port p1 sends message m
to reference port p2 and needs response back. p1•m

means service port p1 sends message m out and does
not need response back.

2. ◦m . p1◦mp2 means that reference port p1 gets input
message m from service port p2 without providing
response and p1 ◦m (p2) means that reference port p1

gets input message m from service p2 and provides
response.

3. ↓m. p1 ↓m p2 means reference port p1 passes mes-
sage m to reference port p2, and we say that p2 is
promoted by p1.

4. ↑m. p1 ↑m p2 means service port p1 passes message
m to service port p2, and we say that p2 is promoted
by p1.

When one port is wired or prompted with another port,
their port type and partner linker should match. For the
convenience, the notation m is sometimes omitted. The
follows are two examples of the usage of the wires.

Let Comp1 and Comp2 be two conceptual components:

Comp1 : p11; p12; . . . ; p1i; . . .

Comp2 : p21; p22; . . . ; p2j ; . . .

Assume that port p1i sends message m to port p2j with-
out requiring response, then we get a composite of Comp1

and Comp2 as:

p11; p12; . . . ; p1i−1; p1i•m; p1i+1; . . .

p21; p22; . . . ; p2j−1; p2j◦m; p2j+1; . . .

Assume that port p1i sends message m to port p2j requir-
ing response back, then we get a composite of Comp1 and
Comp2 as:

p11; p12; . . . ; p1i−1; p1i •m p2j ; p1i+1; . . .

p21; p22; . . . ; p2j−1; p2j ◦m (p1i); p2j+1; . . .

We call the above port notations Port Algebra. The syn-
tax of a component can be represented as

comp ::= p | p1; p2 | p1|condp2 | [p]cond

| p1 • p2 | p1 ◦ p2 | p1 ↑ p2 | p1 ↓ p2.

2.3 Framework of Integration

The above discussion focuses on that one component is
linked with another component through one pair of ports.
This discussion can be extended to the situation that one
component is linked with many components. Let Comp
be the conceptual model of a component that has all its

ports linked. To represent the links between Comp and
other components, every port of Comp is attached by
wire notation (•m, ◦m) or promote notation (↑m, ↓m).

Let C1 and C2 be two components. We use ⊕ and ⊗ to
denote wire and promote operations between these two
components, respectively. Then we have the following re-
sults. The proofs can be easily implied from component’s
sequential representation and thus omitted.

Theorem 2.5 (associativity of ⊕) Let C1, C2 and C3 be
three components, then

(C1 ⊕ C2)⊕ C3 = C1 ⊕ (C2 ⊕ C3).

Theorem 2.6 (associativity of ⊗) Let C1, C2 and C3 be
three components, then

(C1 ⊗ C2)⊗ C3 = C1 ⊗ (C2 ⊗ C3).

Corollary 2.7 Let Comp1, Comp1, . . . , Compn be finite
components, then the composite of these components are
still components.

Definition 2.8 Let C be the set of all components.
A =< C,⊕,⊗ > is called an architecture.

We have the following properties about the architectures.

Properties:

(1) Closeness: The compositions of component to com-
ponent, component to architecture, architecture to
architecture are still architectures.

(2) Hierarchy: An architecture can be decomposed to
more architectures.

(3) Expansibility: A new component can be added to
an architecture.

To save space, we omit the operational semantics of port
activities.

3 Test Generation Formulas For Compo-
nents

Usually, we regard test data generation as the process to
partition input space to domains, and thus a test case
is a sequence of input messages and an output message
with some domains. Hence, in simulation, given the or-
dered input with some domains, the component will re-
turn some output. Since we do not know the inside state
change and the exact information attached to a port in
the middle of the process, for a port p, we use I(p) to

represent its input information, and O(p) to represent its
output information. I and O are thus defined as the asso-
ciated messages of p. When the process migrates from one
port to another port, all the information will be passed
from one port to another port. If the process reaches an
Asynchronous Service port, then the O information of
this port will contain all the required input information
for the output at this port, in other words, we obtain a
test case.

To calculate the O information, we need some defines.
Symbols ∧ and ∨ mean AND and OR. To save notations,
from now on, the condition notation cond also represents
a set in which all elements must satisfy this condition and
symbol ”;” is also used to separate inputs. We also define

I(p1; p2) = I(p1),
I(p1|condp2) = I(p1) or I(p2),
I([p1...]cond) = I(p1),
I(p1◦) = I(p1) ∧ I(o),
I(p1•) = I(p1),
I(p1 • p2) = I(p1) ∧ I(p2),
I(p1 ↑ p2) = I(p1),
I(p1 ↓ p2) = I(p1).

For a port p, its O information is usually associated with
its state, i.e, O(p)∧p, which means that p reaches the exit
state p and has an out information O(p). Thus, for each
port p, following the semantics of the program language
in the last section, we may define its O information as
the result of the state change initiated by its input infor-
mation:

O(p) = I(p) ∧ p.

Based on this definition and the semantics, we can infer
the following formulas for ports.

Proposition 3.1 Sequence. O(p1; p2) = O(p2).

Proposition 3.2 Choice. O(p1|condp2) = (cond1 ∧
O(p1)) ∨ (¬cond ∧O(p2)).

Proposition 3.3 Loop. O([p1; ...; p2]cond) = (cond ∧
O(p2);¬cond) ∨ (I(p1) ∧¬ cond).

Corollary 3.4 If cond=n, then

O([p1; . . . ; p2]n)
= O([p1; . . . ; p2]1); . . . ;O([p1; . . . ; p2]n)
= O(p1[1]); . . . ;O(p2[1]); . . . ;O(p1[n]); . . . O(p2[n])),

where [p1; . . . ; p2]i is the ith execution of p1; . . . ; p2 and
p[i] is the ith execution of p.

Proposition 3.5 Output. O(p•) = O(•).

Proposition 3.6 Input. O(p◦) = I(p);O(◦).

Proposition 3.7 Linking in synchronization. O(p1 •
p2) = I(p1);O(p2).

Comparing Propositions 3.6 and Proposition 3.7, we find
that for a port requiring response back, this port actually
needs an input. Thus, we only need to consider two types
of ports: reference port that needs input, i.e., p◦ and
service port that sends output, i.e., p•.
Since O(◦) and O(•) can be further computed as O(◦) =
O(◦m) = m and O(•) = O(•m) = m, the O information
at each asynchronous service port would be a sequence
of input messages and an output message separated by
”;”, or a sequence of input ”conditioned messages” and
an output message separated by ”;”, where ”conditioned
message” is m ∧ cond. For example, if p1 is a reference
port associated with message m1 and p2 is a service port
associated with message m2, then

O(p1◦m1 ; p2•m2) = O(p2◦m2)
= I(p2);m2

= O(p1);m2

= I(p1);O(om1);m2

= I(p1);m1;m2.

Since each message corresponds to a port, a sequence of
messages corresponds to a sequence of ports. In gen-
eral, if a sequence of messages is, say, m1 ∧ cond1;m2 ∧
cond2; . . . ;mn, then the corresponding sequence of ports
is p1.m1∧cond1 ; p2.m2∧cond2 ; . . . ; pn.mn

, where mn is an
output message associated with pn and all other mi’s are
input messages associated with other pi’s.

Hence, a test case can also be expressed by a sequence of
reference ports, synchronous service ports and an asyn-
chronous service port separated by ”;”. We may define
our test coverage criteria: all test cases must cover each
port at least once. Since a component is composed of
reference ports and service ports, we may visualize that
the component is the overlap of the test cases.

For a component C, we use T (C) to denote the set of all
test cases.

4 Forming Test Cases For Architectures

Service oriented architecture is composed of components
that interact to each other through message passing, in
other words, the behavior of one component will be af-
fected by the message from other components. Thus,
to make a test run, we may need test data from more

than one component. In the execution, these data wind
through control flow and interact to form events. Thus an
event sequence can be used to guide the execution. Since
we already have test cases for components, we will use
the interactions among components to corporate these
test cases to build event sequences.

Now, let C1, C2 and C3 be three components. Assume
their test sets are T (C1), T (C2) and T (C3), respectively.
Let t1 ∈ T (C1) be the test case corresponding to an out-
put. t1 needs input x from C2 at the input point p11.
Let t2 ∈ T (C2) be the test case that passes the output
x to t1. Assume again that t2 needs input y from C3 at
the input point p21 and let t3 be the test case of C3 that
passes the output y to t2. Then these test cases can be
expressed as:

t1 : . . . ; p11◦x; . . . ; p12•d,

t2 : . . . ; p21◦y; . . . ; p22•x,

t3 : . . . ; p31 •y .

Based on Proposition 3.6 and 3.7, we may combine these
test cases by substituting the required input by the O
information from its partner. We use ∗? to represent this
combination operation, where the question mark will be
replaced by the input message. For example,

t1 ∗x̄ t2

= (. . . ; p11◦x; . . . ; p12•d) ∗x (. . . ; p21◦y; . . . ; p22•x)
= . . . ; p11 ◦ (. . . ; p21◦y; . . . ; p22•x); . . . ; p12•d

We use T (C1) ∗ T (C2) to denote all these combinations.
Thus we can combine t1, t2 and t3 together to form a new
test case t: t ∈ T (C1) ∗ T (C2) ∗ T (C3),

t

= t1 ∗x (t2 ∗y t3)
= (. . . ; p11◦x; . . . ; p12•d) ∗x

((. . . ; p21◦y; . . . ; p22•x) ∗y (. . . ; p31•y))
= (. . . ; p11◦x; . . . ; p12•d) ∗x

((. . . ; p21 ◦ (. . . ; p31•y); . . . ; p22•x)
= . . . ; p11 ◦ ((. . . ; p21 ◦ (. . . ; p31•y); . . . ; p22•x);

. . . ; p12 •d .

Since no other inputs are needed, we can complete the
test based on these three components.

If we consider the above port activities as events, we may
extract event sequences from the combined test cases. In
this example, we have events:

e1 = p11.x,

e2 = p12.d,

e3 = p21.y,

e4 = p22.x,

e5 = p31.y

Let e1 ∗ e2 denote the interaction (synchronization) be-
tween events e1 and e2. Then the above test case has
another from:

{
E1 = {. . . ; e1; . . . ; e2},
E2 = {. . . ; e3; . . . ; e4},
E3 = {. . . ; e5},
(e1 ∗ e4, e3 ∗ e5)}

},

where E1, E2 and E3 are totally ordered sets. A name,
SYN-sequences, is given to such kind of event sequences.

Definition 4.1 [4] The SYN-sequence Q exercised
by a concurrent execution is defined as a tuple
(Q1, Q2, . . . , Qn;φ), where Qi is the totally ordered se-
quence of sending and receiving events that occurred on a
thread(process) or a synchronization object and φ is the
set of synchronization pairs exercised in the execution.

From the above discussion, for each t1 ∈ T (C1), we can
build a SYN-sequence, moreover, the input data is also
obtained. From now on, when we say SYN-sequence,
we always mean that the sequence has input data at-
tached. Thus T (C1) has a set of SYN-sequences QC1 .
Generally, if a service architecture has n components
C1, C2, . . . , Cn, then we will have n set of SYN-sequences
QC1 , QC2 , . . . QCn

. Since each Ci has finite test cases,
each QCi

will have finite SYN-sequences. Among all QCi
,

some SYN-sequence may be overlaped.

One should notice that in the definition, φ may contain
pairs such as (e1 ∗ e2) and (e1 ∗ e3). This means that the
input event e1 may have 2 partners at the same time, in
other words, e2 and e3 have the same chance to pass data
to e1. φ may also contain the pairs such as (e1 ∗ e) and
(e2 ∗ e). This means that e1 and e2 all require e as the
partner and they have same chance to contact e.

5 Conclusion

This paper presented a formal method to test SCA based
design. A formulism, called Port Algebra, was developed
to describe architecture. We construct a service compo-
nent model according to the specification of service com-
ponent issued as a standard in Mar. 2007. Our descrip-
tion was scalable since it did not require extra operators
to build hierarchy structure. The architecture description
was test based since it could be visualized as the overlap
of all test cases. Since the test generation was based on
formulas, the test process could be in a systematical and
automatical way. Gas Station example was employed to
demonstrate our point to some level. Our method can
be used to test if the designed architecture satisfies re-
quirements. Comparing with the existing methods, our

method can avoid state explosion problem since the ar-
chitecture model is not state based and all inside state
information is omitted.

Acknowledgments

This work is partially supported by NSF of China
under No.90818013, and Zhejiang NSF under Grant
No.Z1090357.

References

[1] A.Bertolino P. Inverardi and H. Muccini, Formal
methods in testing software architectures, SFM’03,
Lectures Notes in Computer Science 2804, pp.122-
147, 2003.

[2] C. Böhm and G. Jacopini, ”Flow diagram, turing ma-
chines and languages with only two formation rules”,
Communications of ACM, vol.9, no. 5, pp.366-371,
1966.

[3] C.A.R. Hoare, Communicating Sequential Processes.
Prentice Hall, 1985.

[4] Y. Lei and R. H. Carver, Reachability Testing of Con-
current Programs, IEEE Transactions on Software
Engineering, vol. 32, no. 6, pp.382-403, June 2006.

[5] R. Milner, Communication and concurrency, Prentice
Hall, 1989.

[6] H. Muccini, A. Bertolino and P. Inverardi, Using Soft-
ware Architecture for Code Testing, IEEE Transac-
tions on Software Engineering, vol. 30, no. 3, pp.160-
171, 2004.

[7] S. Schneider, Abstraction and Testing, FM’99, LNCS
1708, pp. 738-757, 1999.

