
 
 

 
 

 

  
Abstract—In this paper, we propose a species-based hybrid of 

electromagnetism-like mechanism and back-propagation 
algorithms (SEMBP) for an interval type-2 fuzzy neural system 
with asymmetric membership functions (aIT2FNS). The 
proposed SEMBP combines the advantages of EM and BP 
algorithms to obtain the faster convergence and lower 
computational complexity. In addition, SEMBP uses the 
uniform method to have the initial solution agents scatter over 
the feasible solution region evenly and the notion of species 
which can locate multiple optima to provide bigger possibility of 
finding the global optimum. The proposed aIT2FNS system uses 
type-2 asymmetric fuzzy membership functions and the TSK 
type consequence part. Finally, the chaotic system identification 
problem is presented to show the performance and effectiveness 
of the proposed aIT2FNS with SEMBP algorithm. 
 

Index Terms—uniform initialization, asymmetric, type-2 
fuzzy neural system, Takagi–Sugeno–Kang, fuzzy logic system.  
 

I. INTRODUCTION 

Recently, it has been shown that the fuzzy neural network 
(FNN) which provides the advantages of both neural network 
and fuzzy system is successfully applied to nonlinear system 
identification and control [1]. In the FNN, symmetric and 
fixed membership functions are commonly used to simplify 
the design procedure. Therefore, a large number of rules 
should be used to achieve the specified approximation 
accuracy [2]. In [3], the asymmetric fuzzy membership 
function (AFMF) has been discussed and analyzed that it can 
effectively improve approximation accuracy and reduce the 
fuzzy rules. In the meantime, type-2 fuzzy logic system 
(T2FLS) has attracted more attention in many literatures [4, 
5]. In [3], the interval type-2 fuzzy neural network with 
asymmetric membership function (IT2FNN-A) was proposed 
to improve the system performance. In this paper, we propose 
an interval type-2 fuzzy neural system with asymmetric 
membership function (aIT2FNS) which is the modification 
of IT2FNN-A [3]. 

In the training of the neural networks and fuzzy systems, 
back-propagation (BP) algorithm is widely used and is a 
powerful training technique [6]. Although BP can obtain the 
local minimum rapidly, it can not ensure finding the global 
solution. The optimization algorithms such as genetic 
algorithm, particle swarm optimization, and 
electromagnetism-like mechanism (EM) have less chance to 
get stuck in the local minimum than the gradient-based 
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algorithms [7-9]. Literature [10] proposed an improved 
electromagnetism-like mechanism algorithm with 
back-propagation technique (IEMBP). The major 
modification of IEMBP is that the neighborhood random 
local search of EM algorithm is replaced by BP and the 
competitive selection concept is adopted.  

In order to get better performance, we propose a 
species-based hybrid algorithm SEMBP where many 
modifications have been done to improve IEMBP. First, 
initial solution candidates are generated by uniform method 
to avoid the necessity of statistic analysis. Therefore, the 
solution agents scatter over the feasible solution region 
evenly. In notion of species, the population can be 
dynamically divided into subpopulations (or sub-species) 
based on similarity and locating multiple optima so that the 
bigger possibility of finding the global optimum is provided. 
Obviously, the SEMBP algorithm which combines the 
advantages of uniform method and species method improves 
the IEMBP. Thus, SEMBP has the advantages of faster 
convergence, less computation complexity and global 
optimization. In this paper, the proposed SEMBP algorithm 
is applied to train aIT2FNS. The simulation result is shown to 
illustrate the effectiveness of the aIT2FNS system with 
SEMBP algorithm. 

This paper is organized as follow. Section II introduces the 
aIT2FNS. The proposed SEMBP is described in Section III. 
In Section IV, the simulation result of the chaotic system 
identification is presented to show the performance and 
effectiveness. Finally, the conclusion is given. 
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Figure 1: Diagram of MISO interval type-2 fuzzy neural 

system with asymmetric membership function. 

II. INTERVAL TYPE-2 FUZZY NEURAL SYSTEM WITH 
ASYMMETRIC MEMBERSHIP FUNCTION 

In the section, the structure of aIT2FNS is introduced. The 
multi-input-single-output (MISO) case is considered here for 
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convenience. In general, given a system input data xi, i=1, 
2, …, n and the desired output y, the jth rule is expressed as: 

Rule j: IF x1 is jF1

~  and … and xn is njF~ , 
THEN  njnjjjj xCxCxCCY ++++= L22110 , 

where j=1, 2, …, M, Cj0, and Cji are consequent type-1 fuzzy 
sets, Yj is the output of jth rule and also a type-1 fuzzy set (a 
linear combination of type-1 fuzzy sets) and ijF~  is type-2 
antecedent fuzzy set. Herein, the antecedent part of the fuzzy 
MFs ijF~  is asymmetric interval type-2 fuzzy sets which are 
different from typical Gaussian MFs. 

The proposed aIT2FNS is implemented as the six-layer 
network shown in Fig. 1. We first indicate the signal 
propagation and the operation functions of the nodes in each 
layer. In the following description, )(l

iO  denotes the ith 
output of a node in the lth layer. 

 
Layer 1: Input Layer 

For the ith node of layer 1, the net input and the net output 
are represented as: 

ii xO =)1( ,                                                  (1) 
where i=1, 2, …, n, and xi represents the ith input to the ith 
node of layer 1. The nodes in this layer only transmit input 
values to the next layer directly. 
 
Layer 2: Membership Layer 

In this layer, each node performs type-2 AFMF [3], i.e., 
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where the subscript ij indicates the jth term of the ith input 
)1(

iO , where .,,1 Mj K=   
 
Layer 3: Rule Layer 

The links in this layer are used to implement the antecedent 
matching and they are equal to the work in rule layer. Using 
the product t-norm, the firing strength associated with the jth 
rule is 
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where )(~ ⋅
ijF

μ  and )(~ ⋅
ijF

μ  are the lower and upper 

membership grades of ).(~ ⋅
F

μ  Therefore, a simple 
PRODUCT operation is used. For the jth output rule node 
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where the weights )3(
ijω  are assumed to be unity.  

Layer 4: Left-most & Right-most layer 
Without loss of generality, the consequent part of 

aIT2FNS are [ ]Tl
j

l
j ωω    and [ ]Tr

j
r
j ωω   , where l

j
l
j ωω <  and 

r
j

r

j ωω < . The following vector notations ,][ 1
Tl

M
ll ωωω L=  

,][ 1
Tl

M
ll ωωω L=  Tr

M
rr ][ 1 ωωω L= , and  Tr

M
rr ][ 1 ωωω L=  are 

used for clarity. Hence, the output of layer 4 is 
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which calculates the left-most )4(
jlO  and right-most .)4(

jrO  
According to the type reduction is integrated in the adaptive 
network layer, KM algorithm is not necessary in the system 
[11].  
 
Layer 5: TSK Layer 

Due to the interval type-2 fuzzy sets are used for the 
antecedents and the interval type-1 fuzzy sets are used for the 
consequent sets of the type-2 TSK rules, Cji are interval sets, 
that is , Cji=[cji-sji cji+sji]T, where cji denotes the center (mean) 
of Cji, sji denotes the spread of Cji, i=1, 2, …, n, and j=1, 2, …, 
M. Therefore, the consequent of Rule j is: 
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and the output of layer 5 is 
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Layer 6: Output Layer 

Layer 6 is the output layer which is used to implement the 
defuzzification operation. Each node is the actual output that 
will be pumped out this system. According to the TSK layer 
introduction, only )5(

lO  and )5(
rO  should be calculated. 

Therefore, the crisp output is 
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III. SPECIES-BASED HYBRID ALGORITHM 
ELECTROMAGNETISM-LIKE MECHANISM ALGORITHM WITH 

BACK-PROPAGATION TECHNIQUE 
This section introduces the proposed SEMBP for training 

aIT2FNS system. SEMBP combines the advantages of EM 
and BP algorithms with the notion of species and uniform 
method to have high speed convergence, less computation 
complexity, and global optimization. Figure 2 summarizes 
the hybrid learning algorithm SEMBP. There are four phases 
which are “Initialization,” “Evaluation,” “Species,” and 
“IEM Operation” in SEMBP. 
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Figure 2: Description of SEMBP algorithm. 

 

Initialization Phase 
For SEMBP, each particle denotes a weighting vector  

W [ ]Trrllrrll scmmmm   , , , , , , , , ,, ,, ωωγσσσσ=   (11) 
which decides the dimension of problem D . In this paper, we 
used the good lattice point method which is one of the 
uniform methods to construct the uniform arrays [12]. If the 
randomly initialization is used, the statistical analysis is 
necessary, i.e., repetition training to get average performance 
should be done. In this paper, we adopt the uniform method 
to avoid the repetition training. Thus, we can reduce the 
computation complexity. In addition, the uniform method has 
less probability to produce the outliers which may affect the 
results deeply and avoids the particles crowding in a region. 

The good lattice point method of uniform method provides 
a series of uniform arrays for different n and q. UN(qn) 
denotes the uniform array and transforms into the initial 
particles. There are N rows in UN(qn) and each row represents 
a particle in Rn. In the Initialization Phase, based on UN(qn), N 
particles can be generated as follows: 
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where xi is the particles, xuk and xlk are the corresponding 
upper bound and lower bound, uik is the element of UN(qn), 
i=1, 2, …, N, and k=1, 2, …, n. 
 

Evaluation Phase 

This phase is used to calculate the fitness values of entire 
particles and compare the fitness values. We retain the 
particles which have better MSE among the particles of 
generation g and g+1. This process can guarantee the better 
performance. Another task in this phase is to remove the 
redundant particles which have similar fitness and locate in 
Particles Combination. It can improve the efficiency of 
SEMBP by removing the redundant particles. Since the 
similar particles may converge to the similar location, we 
remain the best particle among the similar particles. As a 
matter of fact, the redundant particles do not contribute 
further to the improvement of convergence. The conditions 
of particles combination are 

th
i

ji
sji x

xx
rxx μ<

−
×<

)(MSE
)(MSE)(MSE

   and   1.0) ,(dis (13) 

where dis(xi, xj) is the distance between xi and xj, rs is the 
species radius, μth is the threshold and xi is the particle, i≠j. 
 

Species Phase 
The notion of species aims to identify multiple species via 

population and then determines a neighborhood best for each 
species. The dominating particle in each species is regarded 
as a neighborhood best called species seed. The species seed 
is always the fittest individual in the same species. All 
particles that fall within a distance from the species seed are 
classified as the same species. The definition of species 
depends on rs, which denotes the radius that measured by 
distance from the center of a species to its boundary. 
Therefore, if rs is small, many isolated species would be 
created in each generation. The small isolated particles 
species tend to prematurely converge to local minimum. If 
there are not sufficient numbers of particles in each species, 
the species will stop evolution. However, if rs is large, it is 
possible to cover the entire variable range. In other words, the 
notion of species has no effect.  

Subsequently, the particles in the population are sorted in 
decreasing order of fitness in MSE Ranking. As a matter of 
fact, the first particle in the ranking is the best-performing 
one and is denoted the species seed. The other particles in the 
population are checked in turn from best to worse and the 
particles whose distance between first species seed are 
smaller than rs are categorized into the first species. If the 
particles do not fall within the radius of the first species seed, 
we select the particle which has minimum MSE to become a 
new species seed and the remaining particles are checked one 
by one that whether particles belong to the new species or not. 
Repeat the above steps until all particles are categorized. In 
this way, the species seeds and the number of species are 
generated in Species Phase. 

Figure 3 provides an example to illustrate the working of 
this phase. In the example, the algorithm locates three species 
and the particles S1, S2, and S3 are the species seeds. Note that 
there is overlap between first species and third species. Hence, 
the prior identified species which center is S1 dominates the 
overlap which belongs to third species. In other words, the 
particle Q should belong to the species led by S1.  
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Figure 3: Example of how to determine the species in one- 

dimensioned problem. 
 
IEM Operation Phase 

There are three steps in the IEM operation phase: “Local 
Search of Best Particle by BP”, “Total Force Calculation,” 
and “Movement.” In order to improve the random process, 
we choose the step length λ in Movement as one to accelerate 
the speed of convergence. After Species Determination, each 
sub-species proceeds Total Force Calculation and Movement 
which are the same as IEMBP’s. Nevertheless, in contrast to 
the complete population, the subpopulations have less 
computation complexity in determining the electromagnetic 
charge of each particle. In complete population, we should 
compute Ps×(Ps-1)×…×1 times of charges in Total Force 
Calculation. But in the subpopulations, we only compute 
∑ ××−×

S
ss pp 1)1( L  times, where S  is the number of 

species and sp  is the number of particles in subpopulations. 
And the best particle of sub-species processes local search by 
BP. In Local Search of Best Particle by BP, the gradient 
descent method is adopted to derive local search procedure of 
SEMBP for the aIT2FNS system. For clarification, we 
consider the single-output system and define the error cost 
function as 

∑=
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where )()()(ˆ)()( )6( kOkykykyke dd −=−= , g is the index of 
generations, )(ˆ ky  and )(kyd  are the aIT2FNS’s output and 
desired output for discrete time k, respectively. By using the 
gradient descent method, the parameters updated law is 
described as 
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where η is the learning rate. [ ]TC , , , , ωγ WWWW =  are the 
adjustable parameters, where C is the parameters of TSK 
layer, ωW  is the consequent weights, W  is the parameters 
of lower MFs, W  is upper MFs parameters and γ  is the 
column vectors, i.e., 

[ ]TscC = ,                                                    (16) 

[ ]Trlrl ωωωωω =W ,                            (17) 

[ ]Trlrl mm σσ=W  ,                             (18) 

[ ]Trlrl mm σσ=W .                               (19) 

The update laws are similar to the results of [3]. For details, 
please refer to literature [3]. 
 

IV. SIMULATION RESULTS 
We apply the aIT2FNS with SEMBP for chaotic system 

identification. Consider the chaotic system describes in [1] 
0.1)2()1()( 2 +−⋅+−⋅−= kyQkyPky ddd       (20) 

where P=1.4 and Q=0.3. For training the aIT2FNS system, we 
use the series-parallel learning scheme here. Herein, the inputs 
of the aIT2FNS are two input nodes for feeding the 
appropriate past values of yd(k-1) and yd(k-2), and the output of 
the aIT2FNS )(ˆ ky  is the predicted result of system. The 
series-parallel training scheme is adopted as shown in Fig. 4. 
The approximated error is defined as follows 

)(ˆ)()( kykyke d −≡ .                                    (21) 
The following mean-square-error (MSE) is adopted to be the 
performance index  
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where T is the number of training pattern.  
In this simulation, we use the good lattice point method to 

construct the uniform array. We use the initial array 
)61( 60

61U  to generate the initial parameters of aIT2FNS 
between [-1.5 1.5]. The learning rate of BP is selected to 0.1 
and the threshold thμ  is selected to be 0.1. The initial 
condition is [yd(1), yd(0)]T=[0.4, 0.4]T. Parameters of SEMBP 
algorithm and aIT2FNS are chosen as in the following.  

- Rule number (R): 2 
- Network structure (layer 1~ layer 6): (2-4-2-4-2-1)  
- Parameters number of aIT2FNS (D): 60 
- Population size (Ps): 61 
- Maximum generation (G): 20 
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Figure 4: Series-parallel identification scheme. 

 
The simulation results are described in Fig. 5 and Fig. 6. 

Figure 5(a) shows the phase plane of this chaotic system, 
whereas Figure 5(b) shows the identification result of 
aIT2FNS system. It can be observed that the SEMBP 
algorithm adjusts the parameters of aIT2FNS to predict 
system output accurately, and the aIT2FNS is similar to 
chaotic system. After training (20 generations), the MSE of 
aIT2FNS is 4.729×10-6, which is better than the best results 
of other algorithms (as shown in Fig. 6). The MSE of BP 
which has fast convergence is 4.435×10-5, but it achieves the 



 
 

 
 

 

local minima. Obviously, the aIT2FNS system with SEMBP 
has better performance of accuracy, convergence and global 
optimum than the other algorithms. The final MFs are shown 
in Fig. 7(a)-(b).  The constructed fuzzy rules are 

1R  : IF 1x  is 11

~F  and 2x  is 21

~F  THEN 
[ ] [ ] [ ] ,334.0  332.0702.1  0.299463.1  465.1 211 xxY −++−=  

where [ ]235.1   256.0−=ω  and [ ]223.1  0.190-=ω . 
2R  : IF 1x  is 12

~F  and 2x  is 22

~F  THEN 
[ ] [ ] [ ] ,224.2  776.0404.0  783.1947.0  236.0 212 xxY +−+=  

where [ ]454.0  987.0−=ω  and [ ]454.0  931.0−=ω . 
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(a)                                            (b) 

Figure 5: Phase plane plot of the example: (a) the chaotic 
system, (b) identification result of aIT2FNS. 

 
Table 1 shows the comparison results of MSE in 20 

training generations and the learning process is repeated for 
20 runs. We can find that SEM takes 1665.1 second and EM 
takes 1306.1 second. It is obvious that SEM algorithm has 
better result than EM algorithm. Hence, we can know that 
using the species method has higher accuracy. In contrast 
with SEM and EM, SEMBP only takes 535.6 second which 
reduces the complexity of the calculation and promotes the 
simulated time efficiency. Although GA and PSO have 
similar computational complexity to SEMBP, but SEMBP 
has the better result. Referring to the Table 1, the MSE of 
SEMBP: 4.729×10-6 is smaller than those average MSEs of 
SEM: 1.381×10-3; EM: 1.917×10-3; PSO: 7.291×10-4; GA: 
8.420×10-4 and BP: 4.435×10-5.  

For the consideration of evaluations, Figure 8 shows the 
comparison results with different algorithms in the best MSE 
versus the evaluations. It can be seen that SEMBP does 
achieve better performance of MSE at the same evaluations. 
Thus, we can conclude that the SEMBP has the ability of 
high speed convergence, reduces the computational 
complexity and obtains global optimization. 

The simulation results with different networks are shown 
in Table 2. In this simulation, we make the dimension D as 
large as possible under the constraint expecting that the larger 
rule number will result in better performance. If we choose 5 
rule numbers (70 parameters) in IT2FNN, there are 10 peak 
values of upper MFs are not adjusted, and the remaining 60 
parameters just satisfy the uniform array )61( 60

61U . For the 
others which have less 60 parameters, we generate new 
uniform arrays by using different q. As we can see from 
Table 2, the network which has asymmetric type-2 MF is 
better than the others under the same rules. Due to the 
diversity of TSK, the aIT2FNS has more chance to get 
optimal solution. Obviously, the aIT2FNS with the TSK 
fuzzy rule and asymmetric MF has better performance than 
the other networks. 
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Figure 6: Simulation results:  MSE in 20 generations. 
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Figure 7: The final membership functions: (a) MFs for x1 
after training, (b) MFs for x2 after training. 
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Figure 8: Comparison results in best MSE versus evaluations. 
 

V. CONCLUSION 
In this paper, we have proposed a novel hybrid learning 

algorithm SEMBP for training the aIT2FNS system. The 
corresponding SEMBP learning algorithm has been derived 
and used to train aIT2FNS for minimizing the training error. 
SEMBP combines EM with BP with the notion of species and 
uniform initialization to obtain higher convergent speed, less 
computational complexity, and global optimization. The 
aIT2FNS system, the consequent of the fuzzy rules is a linear 
combination of input variables, has the properties- fuzzy 
inference system, universal approximation and parameters 
convergence, etc. The asymmetric fuzzy MFs can improve 
the approximation accuracy and modeling capability. In 
addition, the uniform initialization is adopted to let the 
solution agents scatter over the feasible solution region 
evenly. Furthermore, the notion of species which can locate 
multiple optima provides bigger possibility of finding the 



 
 

 
 

 

global optimum. From the simulation results, we can observe 
that the proposed aIT2FNS with SEMBP algorithm has the 
ability of global optimization. And the simulation results also 
show that the aIT2FNS achieves better performance than the 
FNN, IT2FNN and IT2FNN-A systems. Performance 
comparisons with different categories of SEM, EM, PSO, 
GA and BP algorithms verify the effectiveness and efficiency 
of SEMBP. The example of chaotic system identification is 
proposed to show that SEMBP have the ability of global 
optimization and faster convergence. 
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Table 1: Comparison results of average performance in MSE and computational complexity with uniform initialization for by 
using different algorithms (G=20, D=60, Ps =61). 

Algorithm SEMBP SEM EM PSO GA BP 

Average Time 535.6 1665.1 1306.1 544.4 539.0 36.4 

Average MSE 4.729×10-6 1.381×10-3 1.917×10-3 7.291×10-4 8.420×10-4 4.435×10-5 

Best MSE  2.435×10-4 4.442×10-4 9.136×10-5 1.816×10-5  

Worst MSE  3.939×10-3 3.056×10-3 3.913×10-3 4.002×10-3  

 
Table 2: Comparison results in parameter number, computational complexity and MSE with uniform initialization and SEMBP 

by using different network and rule number (G=20). 

Network 
Network 
Structure 

Rule
No. 

Parameter
No. 

Time MSE 

aIT2FNS 2-4-2-4-2-
1

2 60 535.6 4.729×10-6 

IT2FNN- 2-4-2-1 2 44 573.1 1.604×10-4 

IT2FNN 
2-4-2-1 2 28 481.0 1.652×10-2 

2-10-5-1 5 70 760.2 1.870×10-4 

FNN 
2-4-2-1 2 10 203.5 3.308×10-2 

2-24-12-1 12 60 434.7 1.062×10-4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 




