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Abstract—Vector Fitting (VF) has been applied to reformu- Macromodeling
late traditional system identification techniques by introducing — —
a partial-fraction basis to avoid ill-conditioned calculation in ﬂ
broadband system identifications. Because of the reliable and Response | “"eo™™  Datapre-
versatility of VF, many extensions and applications have been Characterization processing 1w
proposed, for example, the macromodeling of linear structures 7 °

terms of data, algorithms and models. Finally, an alternative processing
P-norm approximation criterion is proposed to enhance the
macromodeling process.

Simulation

in signal/power integrity analyses. In this paper, we discuss the (_/
macromodeling framework and some main features in VF in + — M
odel post-
Spectrum Eye diagram

. . o Fig. 1. Common macromodeling flow in signal integrity analyses.
Index Terms—Signal/Power Integrity, Vector Fitting, Macro-

modeling, Tutorial, Approximation

and basic formulation of VF (Section IllI). Then we discuss
I. INTRODUCTION the applications of VF in system identification (Sections W

Vector Fitting (VF) [1] is a numerical technique for sam-anq VI). Flnallly an alternativeP-norm .app'rOX|mat|on cri-
pled response-matching system identification (macromodirion in VF is proposed for approximation enhancement
ing), which involves iterative linear least-squares sshvith a (Sect!on VII), which is verified through numerical examples
partial fraction basis. As opposed to other system ideatifa  (Section VIil).
techniques for broadband (from DC to GHz) system identi-
fication, VFE avoids ill-conditioned Calculation, and thieme 1. MACROMODELING: SYSTEM IDENTIFICATION
works in a more robust and efficient manner. Furthermore, PROBLEM IN SIGNAL/POWER INTEGRITY
its theoretically-simple and versatile framework can lgasi . . ] ] .
incooperate various constraints by introducing a variety o With the increasing operational frequency and decreasing
extensions for other areas. VF has also been used in modeffiff Of integrated circuits (ICs), high-frequency effestsch as
of different electrical systems [1], [2] and extended tdedif §!gnal delay and crosstalk,. have begome dominant faCYOFS.h
ent areas, for example, filter design [3]-[5], power networling System performance in IC design. Accurate and efficien
analysis [2], [6] and electromagnetic (EM) simulation [7]. simulation is required to capture the hlgh-freqqenpy beﬁav

The idea of VF was firstly introduced for transmissiof? SyStéms, so as to ensure consistent transmissions and rel
line transient modeling in [8]. The underlying idea of vF2bPle ground (and power) distributions in high-speed edeotr
is to replace the approximated (or initialized) poles with aSyStems [2], [31]. A .common simulation flow is shown in
improved set of poles through implicit weighting (the pol&i9- 1. The sampled structure responses can be obtained by ex
relocation technique), which thereby improves the appnaxi Citing one input port at a time and computing or measuring the
tion iteratively. VF approximates an underlying system to ESPonses at the output porReSponse Characterizatioh
new system using partial fraction basis with real or compld®y @PProximating the sampled frequency-dependent or time-
conjugate poles. A number of generalizations and exteasidifPendent system response data, a macromodel is generated t
have been proposed for better VF performance and integratl§Place the original large-order system by a smaller-ooeher
with various identification requirements [9]-[24]. VF haseln  With similar input-output relationshipMacromodeling). The
thoroughly discussed in [25], [26]. Its basic implemematis Macromodel is used to generate spectra and waveforms for
available from [27], whereas its variants have been widegu Signal integrity analysis or coupled with other circuit neod
in industrial electronic design workflows for signal intiegr Plocks (.9., logic devices) for global simulatidditfulation).
issues [28]-[30]. Peripheral pre-processing and post-proqes_smg techmigres

This paper acts as a tutorial on VF. We first give a brigtsed to rectify the macromodel characteristics and enhifiece
simulation performance.

Generally, for a single-port (one input port and one out-
tCorresponding Author. put port) system, macromodeling techniques intend to fit a
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introduction to the signal/power integrity issues (Settlt

ISBN: 978-988-18210-4-1 IMECS 2010
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)



Proceedings of the International MultiConference of Engineers and Computer Scientists 2010 Vol II,
IMECS 2010, March 17 - 19, 2010, Hong Kong

is usually a state-space system or a rational transferitumct [1l. FORMULATION OF VECTORFITTING (VF)

with a set of basig¢, } In VF, given a set of pole$a,, }, (1) is approximated using
a summation of partial fraction basis and a unity basis with

IO EN b, their model parameterf:,, } andd
H(S) ~ D (S) = ;bn¢n (3) P bnqbn (S), (1) p ajn} N )
~ N - N (s) Cn
where b,,,b, € R and N is the macromodel order. The H(s) ~ D(s) (;l S+an> +d. (5)

algorithm is usually required to fit hundreds of sampled data _ o _ o _
points for each port. Therefore, the linear-structure macrBy including the weighting function (s), (5) is linearized

modeling can be classified as a large-scale broadband sys?%ﬁﬂ an iterative separable denominator calculation, fgme
. e 2 : o or the tth iteration,
identification problem. There are many strict constraintthis

macromodeling procedure, such as accurate and physically-/ X, ® ® N0
consistent response approximation, low computation cerapl Zzl s+a® tdo Zzl s+a® +1) H(s) (6)
ity, and numerically-robust computation in the broadband, —— = ’
massive-ports (massive-coupled) and large-order systet m oH) (s) o (s)
eling cases. which falls into the framework of SK iteration (4) [9], [10].

In the L, sense, the optimal model of a system can be In numerical implementation, provided all poles are real an
obtained through minimizing the following objective fuimt N, frequency-sampled data points are given, an expression
from (6) is formed for each frequency-sampled painti =

.||V (s)
min — H(s) 2 1,2,...,N
e ’ A b 7
However, this is a numerically-sensitive non-linear peobl =0 )
with no prior information about the exact pole and zero locavhere b; = H (s;), x =
tions of the system under identification. The response is usu (0 ... (O g0 ~®& . © and
. . , € N 71 IN |
ally approximated using Prony’s method [32] for a coarse so- 1 1 —H(s,) —H(s))

lution or other identification frameworks, such as contimto i = | 3o 7 1ol s+al? stal
time domain Sanathanan-Koerner (SK) iteration [33] orequiX aré solved through stacking the row (7) at the sampled
alent discrete-time domain counterpart [34], for a finer s®ints to form an overdetermined linear equations problem,

:?;(;:or']ﬁ: objective function of the SK iteration in thth [ AT AT ... A%S }Tx _ [ b by - by, ]T(é)
min N (s) — D (s) (s) (3) where it can be solved through normal equations or a QR
D=1 (s) D=1 (s) 2 decomposition. The zeros of?) (s) (i.e., the new set of poles
By arranging the weighting functionoc® (s) = {a£f+1>}) can be calculated as the eigenvalues of the matrix
DW (s) /DY (s), the model parameters can be determined .
using a least-squares solving aﬁt) " 1 7?;
t t
N® (s) DW (s) D® (s) ~ U= = - 1 72_ . (9)
D (5) DED (5] DED (5 7 IF0 g ]
ay LI

(o) (s) a®(s)

If a monomial power series basis function is used in (4) fdf the poles are unstable (i.€R ({agfﬂ)}) > 0), the poles

broadband macromodeling, i.ep, (s) = s™, the traditional are flipped against the imaginary axis to the open left half
SK iteration approach will suffer from an ill-conditionedplane for pole stabilization
Vandermonde matrix calculation [9]. Therefore, Vectotifg (t+1) .
(VF) is proposed as a robust and simple broadband macromod- n

eling technique, which has been widely applied in practice. This is equivalent to cascading an allpass filtefs) to alter
this paper, the discussion of VF is divided into three sestio the phase response

= —attY, (10)

n

1) Data sectionX (s)): Input data choices (Section IV-A), s+ a
pre-processing of data (Section IV-B) and model (Sec- As) = ——. (11)
tion IV-C);

The computation is repeated until convergence is achieved,

2) Algorithms section N D . ldentifica- ¢
) Alo H(s) = IV ()/D (5)) say,o(s) ~ 1 and LN()(S) fH(S)H ~ 0, at the Nrth

tion criterion and framework (Section V-A) and numer D@ (s)

ical implementation (Section V-B); iterations. Eq. (6) is then reduced to
3) Models section ¥ (s)/D (s)): Post-processing for N (N7
model physical consistency (Section VI-A) and simu- Z % +dNT) ~ H (s), (12)
lation (Section VI-B). 1S+ an "’
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and the residuesc¥™) L andd{Nr} can be calculated simi- causal, as explained in Section VI-A) to generate a correct

larly as in (8). In summary, VF replaces the monomial powgnacromodel. For example, causality and passivity verifica-
series basis by a partial fraction basis, which signifigantfion of input data and delay extraction using (generalized)
improves the numerical condition in calculation of (8). Thé&lilbert transform [35] are developed. Furthermore, cadtysal

detailed VF formulation is shown in [1], [9], [10]. Pseuddes constrained data interpolation is developed to generate co

are given to summarize the framework of VF: sistent DC and low-frequency data, which is necessary for
simulation but usually not provided in the frequency-sasdpl
data [35].
Algorithm 1 Pseudocodes of Vector Fitting (VF) In addition, a large data set or broadband responses usu-
1 Find H (z), and assigr{a%o)}; ally hav_e a Iarge_ va_riance an_d may_resu_lt in iII-cqnditioned
calculation. Pre-filtering techniques, in this scenarian de
2: repeat L . )
®) _ _ ). used to change the distribution of noise and bias, so as
s Calculate{% } by solving (8) W'th{o‘" } to give a better fitting of important frequency range and a
4:  Calculate a§f+1) by solving (9) and stabilize the numerically favorable calculation with a small computatb
unstable poles through (10); cost. An appropriate adaptive or deterministic data select
5. until {aglt)} converges afteNV; iterations process an(_i response weighting can also be applied forex bett
approximation.

o]

. Calculate {C;NT)} and dV7) through (12) with

{a%NT)}; C. Pre-processing of model

A priori configuration of macromodels should be chosen
based on the knowledge of the algorithms (SK iteration)
and data for a convenient approximation. For example, an

IV. DATA a priori model order selection helps generate a minimum size

Data describe the system response, and are obtained froacromodel for efficient simulations with accuracy control
measurements (e.g., vector network analyzer (VNA)) or ENMhe model order can be selected by applying experimental
simulators (e.g., Nexxim [30]). Since data content cancaffeobservation of the frequency response in frequency-sample
the properties and quality of the macromodel, different-codata [18], or the Hankel Singular Value (HSV) in (discrete)
siderations and techniques have been proposed to ensuretithe-sampled data [14].
input data are maximally informative for identification.

V. ALGORITHMS

A. Input data choices Given a set of input data, an algorithm is used to determine
Continuous-time frequency-sampled daids) are used for the model parameters. A good algorithm should have an ap-
macromodeling in VF [1], as the frequency-sampled respong@opriate identification criterion and should be easy atisd
capture the high-frequency behaviors of the system. Exafa¥ numerical implementation. We first discuss the algetadai
ples of frequency-sampled data are scattering paramefers ifiinimization criteria, then the numerical implementation
parameters) for RF objects and admittance paramedérs @ numerically favorable model parameters calculation.
parameters) for interconnects. Alternative data choisash
as frequency response derivati#€ (s) [15], phase response p |gentification criterion and framework
ZH (s) [16] and magnitude responsél (s)| [17], are used
for different identification purposes. In practices, fregay-
domain macromodeling involves complicated measureme

Truncated time-sampled data (input and output respahBé q o £ th . ) )
and Y [n]) are often used, therefore (discrete) time-domaffi<act description of the true system. SK iteration with/an
orm prediction error is usually used since it is applicable

VF have been proposed [13], [14]. Approximation usin it del h o | e
combination of several classes of data (hybrid-domain agiiereént response models. Other criterion extensionsa
eveloped recently for specific applications.

proximation) provides extra system information for a mor ) ) )
Massive-port macromodeling VF handles multi-port

accurate approximation. It has been applied to digital IiRrfi ) ) i 3
approximation [4] and works well in macromodeling procesgnacromodelmg by stqcklng the system equation matnce; of
responses of all ports into a single column of over-detegchin
) equation for solutions. However, numerical difficulties- ex
B. Pre-processing of data ist in modeling the systems with a large number of ports
The system response should correctly describe the systéeg., package parasitic networks and electromagnetizeaw
However, some problems, such as data burst, defects, gissiircuits). To model a system with an arbitrary number of gort
and noise-disturbance, may happen during data collecti@reformation of the VF framework is proposed to approximate
Some information may get lost and difficulties and failurethe eigenpairs rather than the matrix elements [20]. Itgy&e
in approximation may arise. Therefore, data pre-procgsisin more accurate approximation for systems with a large ratio

required to ensure the data are meaningful (e.g., passive éetween the largest and smallest eigenvalues.

The selection of the approximation criteria is important fo
rﬁrgodel approximation. The model should be reliable, obthine
within a reasonable computation time, and should admit an
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Parametric macromodeling Variabilities in geometry and  Macromodeling with noisy signals Experiences show that
material properties are generated during the manufagturithe convergence is severely impaired in noise-contaminate

process, and become a critical factor in nano-scale hiqﬂgnals_ and biased in the low-frequency region. This is beea
frequency circuit simulation and design. In order to actal e unity basis of (s) in () impairs the LS normalization
quency : 9 D ac®lA of equation solving.” To address this problem, a variable
predict the behavior and reduce the computation time ghity basis §,) normalization (16) with an additional relaxed
repeated simulations, a parametric macromodel is usednantriviality condition (17) is adopted for a relaxed least

describe the variational structures squares normalization (Relaxed VF) [10], [19],

N, (P AN t Sk
H (s,g) ~ Z:;_o (Zi_l,linp(pp (9)) on (S), (13) <Zl s+ ag,,t)> " dSL) ~ ((; S —Z ag)) ! ,YO> e )
Y00 (S0 B (9)) 60 (5) - —

(cH)®)(s) o) (s)
where ¢, (s) is the frequency-dependent basis apgl(g) (16)
is the variability-dependent basis with a single variadion
parameterg and P samples in the variability domain. The Ne (N
variational structures can be described by a macromodal wit R <kzl (nz:l (ynn (k) + 70)) =Ns+1. an

a polynomial basis or rational function basis [23], [24]6]2 ]
Eq. (17) imposes that the sum of the samples approaches to a

) ) nonzero value. This improves the normalization of the fiens
B. Numerical Implementation function coefficients and the linearization of the iterat8K
Due to the nature of iterative calculation, its implemeniteration without affecting the convergence.
tation is usually numerically sensitive. Although VF salve Massive-port macromodeling VF suffers from compu-
the ill-conditioned calculation by a partial-fraction kms tational inefficiency when macromodeling massive-port- sys
other problems, such as inappropriate initial guess ansenoitems due to the unnecessary calculationcofin (8) during
contaminated responses, damage the algorithm convergeitegative pole calculation (Step 3). Based on the observa-
Some improvements have been proposed to alleviate théise of shared common poles in the macromodel, a QR
problems. decomposition is applied to extract the calculation Bf
Initial poles and applied basis The algorithm gives a set of each port response and formulate a compacted calcula-
of model parameters${ andb,, in (1)) according to the given tion [21]. The computational complexity is then reducedriro
set of basis (s)), the sampled data and the initial poles. Th® ((P;;, Pout + 1)*n% N, Py, Pout) 0 O (n? NPy Poyy) for a
selected basis affects the conditioning of the system @quatsystem with P;,, input ports andP,,; output ports, without

matrix in (8) and the accuracy of the solution. any lost of accuracy.
One approach to address this problem is to select an
appropriate set of initial poles. The initial poles can be VI. M ODELS

obtlaln(.aq by a s_|mple calculation (e.g., Prony mgthgd [32]). The macromodel (model) describes the Input-Output (I/O)
or intuitively a§S|gned as a set of weakly-damp ed initidepo characteristics of the approximated system, for analysi a
(@12 = a £ j0.01a) [1]. Another approach is to select a., 04 simulation with other circuit models. The model

r(_)bust basis for calculgtlon, Wh'_Ch minimizes the numérlcghould be accurate, physically consistent and of low coxaple
disturbance due to the inappropriate set of poles. Orthmabr ity for simulation. Necessary post-processing technicaies

basisp,._» (s) [11] and discrete-time domain-{domain) basis dopted t t simulati
¢-_n (2) [3] have been proposed based on this idea, namel?, opted fo ensure a correct simutation.

n—1

(bor_n (8) = Rnp 2R (an) H

5 — o 1 A. Post-processing for a physically consistent model
(14) The macromodel should be physically consistent, i.e.; real

)
S§+ S+ apy,

=t valued, stable, passive and causal [36].
1 Real-valued Real-valued macromodels do not generate
Gon (2) = ———, (15) complex-valued responses for real-valued input data. Kewe
- 27+ ay

the original VF may generate complex-valued macromodels
where k,, is the normalization coefficient and denotes if the complex poles are not restricted to conjugate pairs.
complex conjugate. Orthonormal basis, from a mathematicdme modifications in (7)-(9) are required to construct a
perspective reduces the condition number of the system eqreal-valued macromodel, as explained in [1]. Complex-edlu
tion matrix, while the discrete-time basis calculation m#pe computations of (8) are separated into its real and imaginar
left Laplace plane to a unit circle plane, and thus improbes tparts to avoid numerical errors, at the expense of an ineteas
numerical condition from a signal-processing perspeciug- problem size.

thermore, discrete-time domain orthonormal basis is ppego  Stable Stable macromodels do not generate response be-
recently for further robustness improvement [12]. Othesida yond limits for any input signal. An unstable pole can be
generalizations are also available for different requanats, stabilized through a non-linear pole flipping in (11). The
e.g., modeling the responses with repeated poles [11] ared ti flipping, however, does not affect the norm criterion in (3)
sampled data [13], [14]. and the algorithm convergence.
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+

Magnitude (dB)
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+ + 10°
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Fig. 2. Equivalent circuit realization of &;,,-input-ports andP,.-output- 107 ‘ ‘ ‘ ‘ ‘ ‘
ports systemi(= Cx + Dv and ‘é—’t‘ = Ax + Bv), formed by the sampled 1 2 3 4 5 6 7 8
Frequency (Hz) x10°

admittance data.

) ) Fig. 3. Magnitude responses of the power distribution netwga) approx-
Passive Passive macromodels do not generate energy, yeétion usingLo norm, and (b) approximation using;, s (Loo) norm.

VF may generate slightly non-passive macromodels due to
numerical errors. Therefore, passivity enforcement thhou
perturbation of model parameters is required to passify t B B T
model, and a detailed study is shown in [37]. ~ o e 1 e
Causat Causal macromodels do not generate output sigr
according to the future input. However, modeling electhyea
long structures (i.e., responses with a signal delay) usinc
purely rational macromodel may suffers from inapplicabl

(@) (b)

Condition Number

fitting and often generates a non-causal model. A reforradlat : R s T
VF is developed [22]. With théD obtained time delay$r,}, No- of teration No. of teration
the response can be fitted via Fig. 4. (a) Condition number of the system equation matrix ) §8d (b)

N D _sT Lo error of the approximation using original VF (6), relaxed VE6) and
> n=0 Z](\zj=1£’nd¢’n (s)e " (18) weighted VF.
ano bnd¢n (5)

B. Post-processing for simulation macromodel for a linear-phase (time-delayed) respoiise,
The approximant macromodel is used to generate the fegproximation gives a more accurate macromodel for a noisy

guency response, time-domain reflectometry (TDR) waveesponse, and; approximation is favorable for system iden-

forms, time-domain transmissometry (TDT) waveforms antification with an impulsive-noise-contaminated signal.

eye diagrams for channel analysis, or coupled with other

models for overall simulation. Therefore, the models stidnd VI

fully integrated with simulation tools for efficient analgsThe

macromodel can be described by a pole-residue form in MatlabThe VF is coded in Matlab m-script files and run in the

Simulink or Verilog-A description for high-level simulati. Matlab 7.5 on a 1GB-RAM 3.4GHz PC. The example arises

The macromodel can also be described as an equivalenttciré{@m a power distribution network of an IC power plane [2],

in a SPICE netlist for co-simulation with other (non-linparwhose admittance responses range from DC to 9GHz. The

macromodels [38]. A standard equivalent circuit in Fig. & caPort response is fitted using relaxed VF [19] with a 35th-

H(s)~

N UMERICAL EXAMPLES

be generated using differentia]-equa’[ion realization. order macromodel with 10 iterations (1828 SecondS) and a
set of linear-spaced initial poles, which gives 0.0064and
VIl.  P-NORM APPROXIMATION IN VF 0.0022L, error in fitting. Fig. 3 plots the magnitude-domain

To satisfy different macromodeling requirements and givésponses of the converged approximant. Fig. 4 shows the
a more realistic description of the system, the approxiomati condition number of the system equation matrix (8) andlthe
framework (3) is extended to B-norm (L,) approximation. error during iterations. In general, VF converges quicklyl0
The minimization framework (3) is generalized to iterations), especially for minimum-phase (passive) oesp.

NO (s) DO (s) For further _analysis _of generalizations of _VF, we repeat the

Do~ HeD (s)|| (19) example using VF without relaxed constraint and relaxed VF
D (s) D (s) P with a inverse-magnitude weighting. The quantitative camp
for which the over-determined equations can be efficientlgon is shown in Fig. 4. It shows that the weighting does
solved by convex programming. The approximation frameot contribute much to the numerical condition, but it atfec
work can be generalized to a user-defined norm (e.g., regithe convergence. The relaxation may affect the numerical
dependent norm) approximation or (norm-)constrained@ppr condition of the calculation, but it also significantly ingpes
imation to meet different macromodeling requirements.@xer the accuracy of the approximation. At last, we repeat the
ample, L., (Chebyshev norm) approximation gives a smallexample under an SNR of -35dB. In this case, relaxed VF

min
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converges with 0.0192,; and 0.0014L, error. This shows [13] S. Grivet-Talocia, “Package macromodeling via time-domegctor
the relaxed VF is robust to the noisy response approximation fiting. 1EEE Microwave Guided Wave Letiol. 13, no. 11, pp. 472~
.The responses are 3-'59 fitted using form appro_x|mapon [14] C. U. Lei and N. Wong, “Efficient linear macromodeling viscrete-
with the same configuration and clean signal, which gives an time time-domain vector fitting,” irProc. Intl. Conf. on VLSI Design
approximation with 0.016%., error and 0.001@ .. error. The Jan. 2008, pp. 469-474. . _
pp itude-d . 2 f th "é . Flﬂ T. Dhaene and D. Deschrijver, “Generalised vectorniitalgorithm
magnltu e-domain response of t € converge approximation o, macromodelling of passive electronic componentE Electronics
in Fig. 3 shows that..,-norm approximation renders a more Letters vol. 41, no. 6, pp. 299-300, Mar. 2005.
accurate low-frequency (near DC) approximation which i€l
important for simulation, and’>-norm approximation can be

L. De Tommasi, D. Deschrijver, and T. Dhaene, “Transfemction
identification from phase response datAEU International Journal of
used as an alternative approximation criterion.

Electronics and Communication010, Accepted for future publication.
W. Hendrickx, D. Deschrijver, L. Knockaert, and T. Dinge “Mag-
nitude vector fitting to interval data,Mathematics and Computers in
Simulation vol. 80, no. 3, pp. 572-580, Nov. 2009.
N. Stevens, D. Deschrijver, and T. Dhaene, “Fast autmmetder
. . . . L estimation of rational macromodels for signal integrity asiy in
By applying a partial fraction basis, Vector Fitting (VF)sha Proc. IEEE Workshop on Signal Propagation on Interconneay
demonstrated its numerical robustness in broadband syst[elzg? éooé, Ptp- 89—92-“I e oole relocat ot vect
: e : . . Gustavsen, “Improving the pole relocating propertief vector
!dent|f|cat|on. Th_e good performance an_d versatile e_zxt_eIHS| fitting” IEEE Trans. Power Deliveryvol. 21. no. 3, pp. 1587-1592,
ity of VF render it an attractive tool for signal/power intiy

July 2006.
analyses. In this paper, different issues related to VF haea

(17]

IX. CONCLUSIONS [18]

[20] B. Gustavsen and C. Heitz, “Modal vector fitting: A toolrfgenerating

discussed for obtaining a good macromodel for simulation.
Furthermore, &-norm approximation criterion is proposed tq21]
provide an alternative measure to meet different requirdsne

(22]
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