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Abstract—Vector Fitting (VF) has been applied to reformu-
late traditional system identification techniques by introducing
a partial-fraction basis to avoid ill-conditioned calculation in
broadband system identifications. Because of the reliable and
versatility of VF, many extensions and applications have been
proposed, for example, the macromodeling of linear structures
in signal/power integrity analyses. In this paper, we discuss the
macromodeling framework and some main features in VF in
terms of data, algorithms and models. Finally, an alternative
P -norm approximation criterion is proposed to enhance the
macromodeling process.

Index Terms—Signal/Power Integrity, Vector Fitting, Macro-
modeling, Tutorial, Approximation

I. I NTRODUCTION

Vector Fitting (VF) [1] is a numerical technique for sam-
pled response-matching system identification (macromodel-
ing), which involves iterative linear least-squares solves with a
partial fraction basis. As opposed to other system identification
techniques for broadband (from DC to GHz) system identi-
fication, VF avoids ill-conditioned calculation, and therefore
works in a more robust and efficient manner. Furthermore,
its theoretically-simple and versatile framework can easily
incooperate various constraints by introducing a variety of
extensions for other areas. VF has also been used in modeling
of different electrical systems [1], [2] and extended to differ-
ent areas, for example, filter design [3]–[5], power network
analysis [2], [6] and electromagnetic (EM) simulation [7].

The idea of VF was firstly introduced for transmission
line transient modeling in [8]. The underlying idea of VF
is to replace the approximated (or initialized) poles with an
improved set of poles through implicit weighting (the pole
relocation technique), which thereby improves the approxima-
tion iteratively. VF approximates an underlying system to a
new system using partial fraction basis with real or complex
conjugate poles. A number of generalizations and extensions
have been proposed for better VF performance and integration
with various identification requirements [9]–[24]. VF has been
thoroughly discussed in [25], [26]. Its basic implementation is
available from [27], whereas its variants have been widely used
in industrial electronic design workflows for signal integrity
issues [28]–[30].

This paper acts as a tutorial on VF. We first give a brief
introduction to the signal/power integrity issues (Section II)
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Fig. 1. Common macromodeling flow in signal integrity analyses.

and basic formulation of VF (Section III). Then we discuss
the applications of VF in system identification (Sections IV, V
and VI). Finally an alternativeP -norm approximation cri-
terion in VF is proposed for approximation enhancement
(Section VII), which is verified through numerical examples
(Section VIII).

II. M ACROMODELING: SYSTEM IDENTIFICATION

PROBLEM IN SIGNAL /POWER INTEGRITY

With the increasing operational frequency and decreasing
size of integrated circuits (ICs), high-frequency effects, such as
signal delay and crosstalk, have become dominant factors lim-
iting system performance in IC design. Accurate and efficient
simulation is required to capture the high-frequency behavior
of systems, so as to ensure consistent transmissions and reli-
able ground (and power) distributions in high-speed electronic
systems [2], [31]. A common simulation flow is shown in
Fig. 1. The sampled structure responses can be obtained by ex-
citing one input port at a time and computing or measuring the
responses at the output ports (Response Characterization).
By approximating the sampled frequency-dependent or time-
dependent system response data, a macromodel is generated to
replace the original large-order system by a smaller-orderone
with similar input-output relationship (Macromodeling). The
macromodel is used to generate spectra and waveforms for
signal integrity analysis or coupled with other circuit model
blocks (e.g., logic devices) for global simulation (Simulation).
Peripheral pre-processing and post-processing techniques are
used to rectify the macromodel characteristics and enhancethe
simulation performance.

Generally, for a single-port (one input port and one out-
put port) system, macromodeling techniques intend to fit a
linear-time invariant (LTI) system to the desired continuous-
time frequency-sampled responseH (s) at a set of calcu-
lated/sampled points at the input and output ports. The model



is usually a state-space system or a rational transfer function
with a set of basis{φn}

H (s) ≈
N (s)

D (s)
=

N∑

n=1

bnφn (s)

/
N∑

n=1

b̃nφn (s), (1)

where b̃n, bn ∈ ℜ and N is the macromodel order. The
algorithm is usually required to fit hundreds of sampled data
points for each port. Therefore, the linear-structure macro-
modeling can be classified as a large-scale broadband system
identification problem. There are many strict constraints in this
macromodeling procedure, such as accurate and physically-
consistent response approximation, low computation complex-
ity, and numerically-robust computation in the broadband,
massive-ports (massive-coupled) and large-order system mod-
eling cases.

In the L2 sense, the optimal model of a system can be
obtained through minimizing the following objective function

min

∥∥∥∥
N (s)

D (s)
− H (s)

∥∥∥∥
2

. (2)

However, this is a numerically-sensitive non-linear problem
with no prior information about the exact pole and zero loca-
tions of the system under identification. The response is usu-
ally approximated using Prony’s method [32] for a coarse so-
lution or other identification frameworks, such as continuous-
time domain Sanathanan-Koerner (SK) iteration [33] or equiv-
alent discrete-time domain counterpart [34], for a finer so-
lution. The objective function of the SK iteration in thetth
iteration is

min

∥∥∥∥
N (t) (s)

D(t−1) (s)
−

D(t) (s)

D(t−1) (s)
H (s)

∥∥∥∥
2

. (3)

By arranging the weighting function σ(t) (s) :=
D(t) (s)

/
D(t−1) (s), the model parameters can be determined

using a least-squares solving

N (t) (s)

D(t) (s)

D(t) (s)

D(t−1) (s)︸ ︷︷ ︸
(σH)(t)(s)

−
D(t) (s)

D(t−1) (s)︸ ︷︷ ︸
σ(t)(s)

H (s) ≈ 0
. (4)

If a monomial power series basis function is used in (4) for
broadband macromodeling, i.e.,φn (s) = sn, the traditional
SK iteration approach will suffer from an ill-conditioned
Vandermonde matrix calculation [9]. Therefore, Vector Fitting
(VF) is proposed as a robust and simple broadband macromod-
eling technique, which has been widely applied in practice.In
this paper, the discussion of VF is divided into three sections:

1) Data section (H (s)): Input data choices (Section IV-A),
pre-processing of data (Section IV-B) and model (Sec-
tion IV-C);

2) Algorithms section (H (s) → N (s)/D (s)): Identifica-
tion criterion and framework (Section V-A) and numer-
ical implementation (Section V-B);

3) Models section (N (s)/D (s)): Post-processing for
model physical consistency (Section VI-A) and simu-
lation (Section VI-B).

III. F ORMULATION OF VECTORFITTING (VF)

In VF, given a set of poles{αn}, (1) is approximated using
a summation of partial fraction basis and a unity basis with
their model parameters{cn} andd,

H (s) ≈
N (s)

D (s)
=

(
N∑

n=1

cn

s + αn

)
+ d. (5)

By including the weighting functionσ (s), (5) is linearized
into an iterative separable denominator calculation, namely,
for the tth iteration,
(

N∑

n=1

c
(t)
n

s + α
(t)
n

)
+ d

(t)

︸ ︷︷ ︸
σH(t)(s)

≈

((
N∑

n=1

γ
(t)
n

s + α
(t)
n

)
+ 1

)

︸ ︷︷ ︸
σ(t)(s)

H (s)
, (6)

which falls into the framework of SK iteration (4) [9], [10].
In numerical implementation, provided all poles are real and

Ns frequency-sampled data points are given, an expression
from (6) is formed for each frequency-sampled pointsi, i =
1, 2, . . . , Ns,

Aix = bi, (7)

where bi = H (si), x =[
c
(t)
1 · · · c

(t)
N d(t) γ

(t)
1 · · · γ

(t)
N

]
, and

Ai =
[

1

s+α
(t)
1

· · · 1

s+α
(t)
n

1 −H(si)

s+α
(t)
1

· · · −H(si)

s+α
(t)
n

]
.

x are solved through stacking the row (7) at theNs sampled
points to form an overdetermined linear equations problem,
[

A
T
1 A

T
2 · · · A

T
Ns

]T
x =

[
b1 b2 · · · bNs

]T
,

(8)

where it can be solved through normal equations or a QR
decomposition. The zeros ofσ(t) (s) (i.e., the new set of poles{

α
(t+1)
n

}
) can be calculated as the eigenvalues of the matrix

Ψ =




α
(t)
1

α
(t)
2

.. .

α
(t)
N



−




1
1
...
1







γ
(t)
1

γ
(t)
2
...

γ
(t)
N




T

. (9)

If the poles are unstable (i.e.,ℜ
({

α
(t+1)
n

})
> 0), the poles

are flipped against the imaginary axis to the open left half
plane for pole stabilization

α(t+1)
n := −α(t+1)

n . (10)

This is equivalent to cascading an allpass filterA (s) to alter
the phase response

A (s) =
s + α

s − α
. (11)

The computation is repeated until convergence is achieved,
say, σ (s) ≈ 1 and

∥∥∥N(t)(s)
D(t)(s)

− H (s)
∥∥∥ ≈ 0, at the NT th

iterations. Eq. (6) is then reduced to

N∑

n=1

c
(NT )
n

s + α
(NT )
n

+ d(NT ) ≈ H (s) , (12)



and the residues
{

c
(NT )
n

}
andd{NT } can be calculated simi-

larly as in (8). In summary, VF replaces the monomial power
series basis by a partial fraction basis, which significantly
improves the numerical condition in calculation of (8). The
detailed VF formulation is shown in [1], [9], [10]. Pseudocodes
are given to summarize the framework of VF:

Algorithm 1 Pseudocodes of Vector Fitting (VF)

1: Find H (z), and assign
{

α
(0)
n

}
;

2: repeat
3: Calculate

{
γ

(t)
n

}
by solving (8) with

{
α

(t)
n

}
;

4: Calculate
{

α
(t+1)
n

}
by solving (9) and stabilize the

unstable poles through (10);
5: until

{
α

(t)
n

}
converges afterNT iterations

6: Calculate
{

c
(NT )
n

}
and d(NT ) through (12) with{

α
(NT )
n

}
;

IV. DATA

Data describe the system response, and are obtained from
measurements (e.g., vector network analyzer (VNA)) or EM
simulators (e.g., Nexxim [30]). Since data content can affect
the properties and quality of the macromodel, different con-
siderations and techniques have been proposed to ensure the
input data are maximally informative for identification.

A. Input data choices

Continuous-time frequency-sampled dataH (s) are used for
macromodeling in VF [1], as the frequency-sampled responses
capture the high-frequency behaviors of the system. Exam-
ples of frequency-sampled data are scattering parameters (S-
parameters) for RF objects and admittance parameters (Y -
parameters) for interconnects. Alternative data choices,such
as frequency response derivativeH ′ (s) [15], phase response
∠H (s) [16] and magnitude response|H (s)| [17], are used
for different identification purposes. In practices, frequency-
domain macromodeling involves complicated measurements.
Truncated time-sampled data (input and output responseX [n]
and Y [n]) are often used, therefore (discrete) time-domain
VF have been proposed [13], [14]. Approximation using
combination of several classes of data (hybrid-domain ap-
proximation) provides extra system information for a more
accurate approximation. It has been applied to digital IIR filter
approximation [4] and works well in macromodeling process.

B. Pre-processing of data

The system response should correctly describe the system.
However, some problems, such as data burst, defects, missing
and noise-disturbance, may happen during data collection.
Some information may get lost and difficulties and failures
in approximation may arise. Therefore, data pre-processing is
required to ensure the data are meaningful (e.g., passive and

causal, as explained in Section VI-A) to generate a correct
macromodel. For example, causality and passivity verifica-
tion of input data and delay extraction using (generalized)
Hilbert transform [35] are developed. Furthermore, causality-
constrained data interpolation is developed to generate con-
sistent DC and low-frequency data, which is necessary for
simulation but usually not provided in the frequency-sampled
data [35].

In addition, a large data set or broadband responses usu-
ally have a large variance and may result in ill-conditioned
calculation. Pre-filtering techniques, in this scenario, can be
used to change the distribution of noise and bias, so as
to give a better fitting of important frequency range and a
numerically favorable calculation with a small computational
cost. An appropriate adaptive or deterministic data selection
process and response weighting can also be applied for a better
approximation.

C. Pre-processing of model

A priori configuration of macromodels should be chosen
based on the knowledge of the algorithms (SK iteration)
and data for a convenient approximation. For example, an
a priori model order selection helps generate a minimum size
macromodel for efficient simulations with accuracy control.
The model order can be selected by applying experimental
observation of the frequency response in frequency-sampled
data [18], or the Hankel Singular Value (HSV) in (discrete)
time-sampled data [14].

V. A LGORITHMS

Given a set of input data, an algorithm is used to determine
the model parameters. A good algorithm should have an ap-
propriate identification criterion and should be easy and robust
for numerical implementation. We first discuss the algebraical
minimization criteria, then the numerical implementationfor
a numerically favorable model parameters calculation.

A. Identification criterion and framework

The selection of the approximation criteria is important for
model approximation. The model should be reliable, obtained
within a reasonable computation time, and should admit an
exact description of the true system. SK iteration with anL2-
norm prediction error is usually used since it is applicableto
different response models. Other criterion extensions arealso
developed recently for specific applications.

Massive-port macromodeling: VF handles multi-port
macromodeling by stacking the system equation matrices of
responses of all ports into a single column of over-determined
equation for solutions. However, numerical difficulties ex-
ist in modeling the systems with a large number of ports
(e.g., package parasitic networks and electromagnetic-aware
circuits). To model a system with an arbitrary number of ports,
a reformation of the VF framework is proposed to approximate
the eigenpairs rather than the matrix elements [20]. It gives a
more accurate approximation for systems with a large ratio
between the largest and smallest eigenvalues.



Parametric macromodeling: Variabilities in geometry and
material properties are generated during the manufacturing
process, and become a critical factor in nano-scale high-
frequency circuit simulation and design. In order to accurately
predict the behavior and reduce the computation time of
repeated simulations, a parametric macromodel is used to
describe the variational structures

H (s, g) ≈

∑Ns

n=0

(∑P

p=1 bnpϕp (g)
)

φn (s)

∑Ns

n=0

(∑P

p=1 b̃npϕp (g)
)

φn (s)
, (13)

where φn (s) is the frequency-dependent basis andϕp (g)
is the variability-dependent basis with a single variational
parameterg and P samples in the variability domain. The
variational structures can be described by a macromodel with
a polynomial basis or rational function basis [23], [24], [26].

B. Numerical Implementation

Due to the nature of iterative calculation, its implemen-
tation is usually numerically sensitive. Although VF solves
the ill-conditioned calculation by a partial-fraction basis,
other problems, such as inappropriate initial guess and noise-
contaminated responses, damage the algorithm convergence.
Some improvements have been proposed to alleviate these
problems.

Initial poles and applied basis: The algorithm gives a set
of model parameters (bn and b̃n in (1)) according to the given
set of basis (φ (s)), the sampled data and the initial poles. The
selected basis affects the conditioning of the system equation
matrix in (8) and the accuracy of the solution.

One approach to address this problem is to select an
appropriate set of initial poles. The initial poles can be
obtained by a simple calculation (e.g., Prony method [32]),
or intuitively assigned as a set of weakly-damped initial poles
(α1,2 = a ± j0.01a) [1]. Another approach is to select a
robust basis for calculation, which minimizes the numerical
disturbance due to the inappropriate set of poles. Orthonormal
basisφor n (s) [11] and discrete-time domain (z-domain) basis
φz n (z) [3] have been proposed based on this idea, namely,

φor n (s) = κn

√
2ℜ (αn)




n−1∏

j=1

s − α∗
j

s + αj


 1

s + αn

, (14)

φz n (z) =
1

z−1 + αn

, (15)

where κn is the normalization coefficient and∗ denotes
complex conjugate. Orthonormal basis, from a mathematical
perspective reduces the condition number of the system equa-
tion matrix, while the discrete-time basis calculation maps the
left Laplace plane to a unit circle plane, and thus improves the
numerical condition from a signal-processing perspective. Fur-
thermore, discrete-time domain orthonormal basis is proposed
recently for further robustness improvement [12]. Other basis
generalizations are also available for different requirements,
e.g., modeling the responses with repeated poles [11] and time-
sampled data [13], [14].

Macromodeling with noisy signals: Experiences show that
the convergence is severely impaired in noise-contaminated
signals and biased in the low-frequency region. This is because
the unity basis ofσ (s) in (6) impairs the LS normalization
of equation solving. To address this problem, a variable
unity basis (γ0) normalization (16) with an additional relaxed
nontriviality condition (17) is adopted for a relaxed least-
squares normalization (Relaxed VF) [10], [19],
(

N∑

n=1

c
(t)
n

s + α
(t)
n

)
+ d

(t)
n

︸ ︷︷ ︸
(σH)(t)(s)

≈

((
N∑

n=1

γ
(t)
n

s + α
(t)
n

)
+ γ0

)

︸ ︷︷ ︸
σ(t)(s)

H (s)
,

(16)

ℜ

(
Ns∑

k=1

(
N∑

n=1

(γnφn (sk)) + γ0

))
= Ns + 1. (17)

Eq. (17) imposes that the sum of the samples approaches to a
nonzero value. This improves the normalization of the transfer
function coefficients and the linearization of the iterative SK
iteration without affecting the convergence.

Massive-port macromodeling: VF suffers from compu-
tational inefficiency when macromodeling massive-port sys-
tems due to the unnecessary calculation ofcn in (8) during
iterative pole calculation (Step 3). Based on the observa-
tion of shared common poles in the macromodel, a QR
decomposition is applied to extract the calculation ofγn

of each port response and formulate a compacted calcula-
tion [21]. The computational complexity is then reduced from
O
(
(PinPout + 1)2n2NsPinPout

)
to O

(
n2NsPinPout

)
for a

system withPin input ports andPout output ports, without
any lost of accuracy.

VI. M ODELS

The macromodel (model) describes the Input-Output (I/O)
characteristics of the approximated system, for analysis and
coupled simulation with other circuit models. The model
should be accurate, physically consistent and of low complex-
ity for simulation. Necessary post-processing techniquesare
adopted to ensure a correct simulation.

A. Post-processing for a physically consistent model

The macromodel should be physically consistent, i.e., real-
valued, stable, passive and causal [36].

Real-valued: Real-valued macromodels do not generate
complex-valued responses for real-valued input data. However,
the original VF may generate complex-valued macromodels
if the complex poles are not restricted to conjugate pairs.
Some modifications in (7)-(9) are required to construct a
real-valued macromodel, as explained in [1]. Complex-valued
computations of (8) are separated into its real and imaginary
parts to avoid numerical errors, at the expense of an increased
problem size.

Stable: Stable macromodels do not generate response be-
yond limits for any input signal. An unstable pole can be
stabilized through a non-linear pole flipping in (11). The
flipping, however, does not affect the norm criterion in (3)
and the algorithm convergence.
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Fig. 2. Equivalent circuit realization of aPin-input-ports andPout-output-
ports system (i = Cx + Dv and dx

dt
= Ax + Bv), formed by the sampled

admittance data.

Passive: Passive macromodels do not generate energy, yet
VF may generate slightly non-passive macromodels due to
numerical errors. Therefore, passivity enforcement through
perturbation of model parameters is required to passify the
model, and a detailed study is shown in [37].

Causal: Causal macromodels do not generate output signal
according to the future input. However, modeling electrically-
long structures (i.e., responses with a signal delay) usinga
purely rational macromodel may suffers from inapplicable
fitting and often generates a non-causal model. A reformulated
VF is developed [22]. With theD obtained time delays{τd},
the response can be fitted via

H (s) ≈

∑N

n=0

∑D

d=1 bndφn (s) e−sτd

∑N

n=0 b̃ndφn (s)
. (18)

B. Post-processing for simulation

The approximant macromodel is used to generate the fre-
quency response, time-domain reflectometry (TDR) wave-
forms, time-domain transmissometry (TDT) waveforms and
eye diagrams for channel analysis, or coupled with other
models for overall simulation. Therefore, the models should be
fully integrated with simulation tools for efficient analysis. The
macromodel can be described by a pole-residue form in Matlab
Simulink or Verilog-A description for high-level simulation.
The macromodel can also be described as an equivalent circuit
in a SPICE netlist for co-simulation with other (non-linear)
macromodels [38]. A standard equivalent circuit in Fig. 2 can
be generated using differential-equation realization.

VII. P -NORM APPROXIMATION IN VF

To satisfy different macromodeling requirements and give
a more realistic description of the system, the approximation
framework (3) is extended to aP -norm (Lp) approximation.
The minimization framework (3) is generalized to

min

∥∥∥∥
N (t) (s)

D(t−1) (s)
−

D(t) (s)

D(t−1) (s)
H (s)

∥∥∥∥
p

, (19)

for which the over-determined equations can be efficiently
solved by convex programming. The approximation frame-
work can be generalized to a user-defined norm (e.g., region-
dependent norm) approximation or (norm-)constrained approx-
imation to meet different macromodeling requirements. Forex-
ample,L∞ (Chebyshev norm) approximation gives a smaller
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Fig. 3. Magnitude responses of the power distribution network: (a) approx-
imation usingL2 norm, and (b) approximation usingLinf (L∞) norm.
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Fig. 4. (a) Condition number of the system equation matrix in (8), and (b)
L2 error of the approximation using original VF (6), relaxed VF (16) and
weighted VF.

macromodel for a linear-phase (time-delayed) response,L2

approximation gives a more accurate macromodel for a noisy
response, andL1 approximation is favorable for system iden-
tification with an impulsive-noise-contaminated signal.

VIII. N UMERICAL EXAMPLES

The VF is coded in Matlab m-script files and run in the
Matlab 7.5 on a 1GB-RAM 3.4GHz PC. The example arises
from a power distribution network of an IC power plane [2],
whose admittance responses range from DC to 9GHz. The
port response is fitted using relaxed VF [19] with a 35th-
order macromodel with 10 iterations (18.28 seconds) and a
set of linear-spaced initial poles, which gives 0.0064L2 and
0.0022L∞ error in fitting. Fig. 3 plots the magnitude-domain
responses of the converged approximant. Fig. 4 shows the
condition number of the system equation matrix (8) and theL2

error during iterations. In general, VF converges quickly (≤ 10
iterations), especially for minimum-phase (passive) response.
For further analysis of generalizations of VF, we repeat the
example using VF without relaxed constraint and relaxed VF
with a inverse-magnitude weighting. The quantitative compar-
ison is shown in Fig. 4. It shows that the weighting does
not contribute much to the numerical condition, but it affects
the convergence. The relaxation may affect the numerical
condition of the calculation, but it also significantly improves
the accuracy of the approximation. At last, we repeat the
example under an SNR of -35dB. In this case, relaxed VF



converges with 0.0193L2 and 0.0014L∞ error. This shows
the relaxed VF is robust to the noisy response approximation.

The responses are also fitted usingL∞ norm approximation
with the same configuration and clean signal, which gives an
approximation with 0.0165L2 error and 0.0016L∞ error. The
magnitude-domain response of the converged approximation
in Fig. 3 shows thatL∞-norm approximation renders a more
accurate low-frequency (near DC) approximation which is
important for simulation, andP -norm approximation can be
used as an alternative approximation criterion.

IX. CONCLUSIONS

By applying a partial fraction basis, Vector Fitting (VF) has
demonstrated its numerical robustness in broadband system
identification. The good performance and versatile extensibil-
ity of VF render it an attractive tool for signal/power integrity
analyses. In this paper, different issues related to VF havebeen
discussed for obtaining a good macromodel for simulation.
Furthermore, aP -norm approximation criterion is proposed to
provide an alternative measure to meet different requirements.
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