
 
 

 

  
Abstract— The need for reliable identification of vessel 

contours from X-ray image sequences within a limited 
computation time is still a challenge in medical image analysis. 
In the literature, only a few vessel boundary extraction methods 
are suitable to meet automatic and real-time constraints for 
capturing and processing coronary artery cineangiograms. 
Among many approaches, vessel tracing algorithms are known 
to be fast and robust for practically detecting the vessel 
structures from live two- dimensional angiogram sequences. 
However, they often do not directly extract the boundary points 
and instead the locations of boundary points are achieved after 
identifying the correct position of centerline points. This 
boundary detection scheme seems to be less efficient in speed 
demanding clinical applications. In this paper a new algorithm 
for automatic tracing of vessel boundaries using an efficient 
estimation of local gradient vector is presented. The results 
illustrate that our method is a promising method for real-time 
vessel segmentation and linear feature extraction. 
 

Index Terms—Feature extraction, real-time systems, 
segmentation, tracing, tracking. 
 

I. INTRODUCTION 
Real-time linear feature extraction is broadly utilized as a 

fundamental underlying task in most kinds of real-time image 
processing systems. Generally, there are two schemes 
described in the literature for extracting linear structures from 
2D images: 1) segmenting a complete network of vessel 
structure; and 2) directly explore the boundaries or 
centerlines using an exploratory tracing algorithm. The first 
scheme consists of a wide range of segmentation techniques 
such as filtering and edge operator techniques [1], pixel 
classification techniques [2], mathematical morphology 
approaches [3], wave propagation techniques [4], flux 
maximizing geometric approach [5] and many others.  

In these techniques the primary goal is to identify the 
pixels located on the specific areas of the image covered by 
the structures of interest. They require extensive processing 
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of image pixels and generally rely on adaptive segmentation, 
followed by extracting boundaries, centerlines and branch 
point analysis. Even though they give accurate results, they 
require much time and computational resources to complete 
the task.  

The second approach, employed by this paper and several 
others [6]-[11], is referred to as vectorial tracing or vessel 
tracing. These methods usually avoid low level preprocessing 
steps and instead, locate a number of initial seed points by a 
spatially sparse search over the image and only process the 
pixels which are close to the feature of interest. These 
approaches often rely on automatic detection of seed points 
which are assumed to be located on the centerline of the 
vessels [8]-[11]. Since some of the detected seed points may 
correspond to noise, the tracing algorithm must verify the 
existence of the local vessel borders in the small 
neighborhood around the seed point. However, this 
verification increases the computational load and is 
unnecessary for tracing the vessel boundaries in the image. 

The method presented in this paper focuses on directly 
detecting the valid boundary points and merely tracing single 
boundaries along the direction vector perpendicular to the 
local gradient vector. It has resulted in the adaptation, after 
appropriate refinements, of the technique proposed by Can et 
al. [8] which has been developed for feature extraction from 
retinal fundus images. Our tracing algorithm is very fast and 
exhibits desirable results when applied to live X-ray image 
sequences. 

 

II. METHOD 
The following outline presents an overview of the 

processes involved in our tracing algorithm: 
1) Collecting a number of initial points (seed points) by 

exploring the image along a grid of 1 pixel-wide lines 
using one-dimensional edge detection kernel. 

2) Applying a set of verification rules and examining the 
local geometric properties of gradient vectors 
correspond to each seed point to test the validity of the 
seed point.  

3) Starting a new exploratory search initiated at each of the 
validated seed points and calculating the location of the 
next boundary point in a recursive manner. 

4) Refining the location of the next point calculated in step3 
in order to obtain smoother traces. 

Our tracing algorithm is applied to digital X-ray coronary 
angiograms. For this reason, some assumptions should be 
made before discussing the details of our algorithm. 
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Typically, different angiograms exhibit variations in 
brightness, contrast and the presence of imaging artifacts. 
Nevertheless, it is assumed that the features of interest are 
darker than the local background. It is also assumed that they 
have well-defined edges and locally continuous. The changes 
in direction along the borders are smooth and finally, the 
images are expected to be corrupted minimally by Gaussian 
noise. 
 

A. Automatic Collection of Seed Points 
Due to possible existence of discontinuities and high 

curvature in the boundaries, the tracing algorithm would need 
to be initiated at several seed points. Whenever the trace point 
reaches to background areas and low contrast edges, the 
algorithm would stop the current trace and starts a new trace 
initiated at next seed point and finally the traces are 
combined. The true seed points are located on the boundaries 
(edges) of the vessels. For this reason, the seed points are 
identified using one-dimensional edge detector kernel of the 
form [1, 2, 0, -2, -1] T along a set of horizontal and vertical 
grid lines. By sliding the 1-D kernel, the points with 
maximum absolute value of the kernel response are identified 
as the candidate points and are collected for validation in the 
next step.  
  

B. Seed Point Validation 
Ideally, the tracing algorithm must start at the seed points 

which are located on the vessel boundaries. However, vessels 
only cover a small portion of the image area and, therefore, a 
large number of collected points lie on the background and 
must be discarded.   

In the mathematical point of view, the gradient vector is 
perpendicular to the surface of the level curves. This property 
can be used for discarding the seed points that have neighbors 
with different directions. Fig. 1 illustrates a small part of a 
gradient vector field calculated for a sample vessel structure. 
This figure depicts the following features of the gradient 
vectors located inside and near the boundaries of the vessel: 
1) The gradient vectors of the points that are located on the 

same boundary within a small distance have nearly equal 
directions. 

2) The gradient vector of each point and its diametrically 
opposite point located on the opposite boundary must 
have nearly opposite directions. 

In fact, the validation procedure employs these properties 
and verifies the symmetric features of the gradient vectors at 
the neighborhood of the candidate points and their 
corresponding points located on the opposite edge. For this 
purpose, two 5x5-gradient masks are used for calculating the 
x and y gradients at each seed point P(x,y). The horizontal 
and vertical gradient components ߘ௫  and ߘ௬  are given as 
follows: 

 

௫ߘ ൌ

ۉ

ۈ
ۇ

െ1 െ2 0 2 1
െ1 െ2 0 2 1
െ1 െ2 0 2 1
െ1 െ2 0 2 1
െ1 െ2 0 2 ی1

ۋ
ۊ

௬ߘ     ൌ

ۉ

ۈ
ۇ

  1   1   1   1   1
  2   2   2   2   2
  0   0   0   0   0
െ2 െ2 െ2 െ2 െ2
െ1 െ1 െ1 െ1 െ1ی

ۋ
ۊ

        (1) 

 
In addition, these estimates can be used for calculating the 

angle ߠ௣  between the gradient vector ݌ߘపሬሬሬሬሬሬԦ ൌ   ሾ݌ݕߘ ݌ݔߘሿ்  
(calculated at point ݌) and the x-axis: 

 

 
 

Fig. 1. A gradient vector field for a small part of a vessel structure.  
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In order to avoid expensive calculations for computing 

trigonometric function, a two-dimensional look-up table data 
structure is used. By observing the numerical coefficients in 
(1), for all intensity values in the image, the gradient 
components ߘ௫  and ߘ௬ would have pure integer values and 
makes them suitable for indexing the look-up table. The 
entries of the look-up table are pre-computed and rounded off 
to integer degree values. This eliminates the need for floating 
point calculations and entails small rounding errors. The 
verification process of initial seed points is described in the 
following steps:  
 
Step 1. In this step, the unidirectional property of gradient 
vectors calculated at a seed point and its neighboring points is 
verified. First, the gradient vector ݌ߘపሬሬሬሬሬሬԦ is calculated using the 
horizontal and vertical gradient masks (1) centered at seed 
point ݌௜. Next, the coordinates of the left and right 
neighboring points are identified by defining two scan lines 
ܵ௅ and ܵோ, both perpendicular to the vector ݌ߘపሬሬሬሬሬሬԦ, but in the 
reverse directions. The scan lines ܵ௅ and ܵோ are defined as set 
of points along the following direction vectors, respectively: 
 
    ܵ௅ሬሬሬԦ ൌ ሾ െߘ௬݌௜  ߘ௫݌௜ሿ                                                         (3-1)   
    ܵோሬሬሬሬԦ ൌ ሾ ߘ௬݌௜  െߘ௫݌௜ሿ                                                         (3-2)                   
 

Starting from the seed point ݌௜, the angle of the gradient 
vector is then calculated for each point on the scan lines 
within a certain distance d. If the seed point and its left and 
right neighbors are on a locally straight vessel border, the 
following condition must be satisfied: 

 
݉ ׊    א ሺܵோ ׫ ܵ௅ሻ:  maxሼหߠ௣೔ െ ௠หሽߠ  ൑  ߮                       (4) 
                                      
where m is a point on either scan lines and  ߮ is angular 
tolerance required to account for jagged edges and 
quantization effects. Ideally, an optimal value of ߮ must be 
estimated for each new frame. However, for efficiency 
reasons, a single value between 30° and 45°is chosen for ߮ 
which yields satisfactory results in experiments on several 
images. The parameter d can be used to control the strictness 
of the validation process and can be either 1 or 2 or more. 
 



 
 

 

Step 2. To ensure that a seed point which is validated in the 
previous step is located on a boundary of a linear feature, a 
corresponding opposite point on the opposite boundary must 
be explored. By assuming the existence of two nearly parallel 
vessel boundaries, it is expected that the angle of the gradient 
vectors calculated at a seed point and its corresponding 
opposite point is differ by180 േ  ߮. This condition is verified 
by employing another scan line along the opposite direction 
of the gradient vector ݌ߘపሬሬሬሬሬሬሬԦ. Let ܵைሬሬሬሬԦ denote the direction of the 
opposite scan line and ݍ௜ be a point on ܵைሬሬሬሬԦ within maximum 
expected vessel width M. The search for corresponding 
opposite point is started at point ݌௜ and terminated if: 
 

  ቚ180° െ ห ߠ௣೔ െ ߠ௤೔หቚ ൏ ߮                                            (5)    
௜ݍ     ൌ 1,2, … ,  ܯ

 
with this formulation the algorithm returns the first matched 
point as the corresponding opposite point ݍ௜. Otherwise, this 
step would fail and another seed point would be verified 
anew.  This prevents the problem of misidentification where 
some vessels run close to each other. 
 
Step 3. If the opposite point is properly selected in the 
previous step, the gradient vectors calculated at the opposite 
point and its neighbors must satisfy the conditions explained 
in step1.In fact, the verification of unidirectionality of 
gradient vectors is repeated for the opposite point ݍ௜ as 
described in step1. 
 
Step 4. The previous steps can effectively verify that a given 
candidate seed point lies on a vessel border. However, to 
avoid false detections and erroneous tracing, the seed points 
verified in the previous steps must be validated based on their 
local contrast values. In this step, a seed point is considered as 
a valid seed point if the local contrast at the seed point is less 
than or equal to an adaptive contrast threshold ௖ܶ which is 
calculated as follows: 
 
       ௖ܶ ൌ ௖ߤ െ ሺ߬ .  ߪఓሻ                                                                     (6) 
 
where ߤ௖  is the mean contrast value of the seed points 
validated through steps 1-3 and ߪఓ is the standard deviation 
calculated based on ߤ௖. Parameter τ is a scaling factor whose 
value lies between 0 and 1 and can be used to control the 
sensitivity of the validation algorithm to noise and contrast 
variations. The value of the local contrast at a given point ݌ is 
denoted by ܥ௉ and is estimated by: 
 
௉ܥ        ൌ |݌ݔߘ|  ൅ ห݌ݕߘห                                                       (7) 
 
where ߘ௫݌ and ߘ௬݌ are the responses of x and y gradient 
masks centered at point ݌.  

The above steps are checked in the order in which they are 
defined and a given seed point is discarded if it fails in any 
one of the steps. For each validated seed point, the tracing 
algorithm is initiated twice, once in direction ܵ௅ሬሬሬԦ and once 
along ܵோሬሬሬሬሬԦ. 
 

C. Edge based tracing 
In this step, the tracing algorithm explores the boundary 

points using a direction vector perpendicular to ݌ߘపሬሬሬሬሬሬԦ. Starting 

 
 

Fig. 2. Gradient vectors, scan lines, and angular tolerance for 
validating the seed point pi  located on a vessel boundary. 

 
from validated seed point pi, and the orientation of its 
corresponding gradient vector ݌ߘపሬሬሬሬሬሬԦ , the location of the next 
boundary point  ݌௜ାଵ is estimated by an extrapolation-update 
equation of the form: 

 
෤௜ାଵ݌ ൌ ௜݌ ൅ పሬሬሬሬሬሬԦ݌ߘ ߙ ٣                                                          (8)  
    

where ߙ  is a step size and ݌ߘపሬሬሬሬሬሬԦ ٣  is a direction vector 
perpendicular to  ݌ߘపሬሬሬሬሬሬԦ. After estimating the location of the 
next point, Bresenham algorithm [12] is used to connect ݌௜ 
and ݌௜ାଵ .The above equation produces inaccurate traces 
especially when it is applied to images with low contrast or 
noisy images. It may be guided toward the inner part of the 
large vessels or background pixels. This problem can be 
overcome by adding an edge localization step to the tracing 
algorithm which is described in the next section. 
 

D. Edge localization 
In order to obtain more accurate tracing results, the edge 

localization step explores the strongest edge point near the 
estimated point ݌෤௜ାଵ.The purpose of this step is to adjust the 
location of the next boundary point ݌௜ାଵ by examining its 
neighboring points along ݌ߘపሬሬሬሬሬሬԦ and െ݌ߘపሬሬሬሬሬሬሬሬሬሬԦ. Starting from the 
estimated point ݌෤௜ାଵ, two scan lines are established along ݌ߘపሬሬሬሬሬሬԦ 
and െ݌ߘపሬሬሬሬሬሬሬሬሬሬԦ each within a small length r: 

 
ݎ     ൌ 2 ൅ ڿሺtan ߮ሻ .  (9)                                                          ۀߙ
 
where the constant value 2 is needed to calculate the kernel 
response at first two points of each scan line. 

The points on the scan lines are connected sequentially to 
form a sequence of gray-level values. The precise location of 
the next point ݌௜ାଵ is then determined by exploring a point 
with maximum absolute response value of the 1-D edge 
kernel ሾ1, 2, 0, െ2, െ1ሿ் over the sequence. This correction 
process improves the accuracy of the tracing algorithm in 
terms of estimating the true location of the boundary points. 

 

E. Stopping conditions 
The tracing algorithms stops tracing if one or more of the 

following conditions are satisfied: 1) the new point lies 
outside the image field; 2) a previously detected boundary 
intersects the current one and 3) the sum of absolute values of 
the gradient components calculated at point ݌௜ାଵ is below the 
sensitivity threshold ௖ܶ (described in step 4 of the seed point 
validation algorithm). The value of this threshold can be 



 
 

 

adjusted by parameter ߬ in (6). Low values of this threshold 
make the tracing algorithm more sensitive to small contrast 
variations around the vessel boundaries and results in more 
background traces. High values of the threshold result in 
early stopping and create premature traces especially in low 
contrast frames.  

 

III. RESULTS AND DISCUSSION 
We applied our algorithm to five digital X-ray angiograms 

acquired with a GE-Innova 2100IQ system. Figures 3(b), 3(d) 
and 3(f) show example results of using our algorithm for 
extracting the boundaries of the vessels in figures 3(a), 3(c) 
and 3(e). The image has spatial resolution of 512*512 and 
8-bit quantization and the parameters were set to the 
following values: (1) number of grid lines N=12 (2) 
neighborhood size Ns=30; (3) maximum expected vessel 
width M=25; (4) angular tolerance ߮=30°; (5) verification 
distance d=3; (6) contrast sensitivity control parameter 
߬=0.50. 

To show the effectiveness of our method, we compared the 
running time of our seed point selection and validation 
algorithms with the same steps in a kernel based method 
proposed by Can et al. [8]. Table I shows the running time 
comparison on different number of predefined seed points. 
The computer used is a 2.4Ghz CPU Intel Pentium 4 running 
Windows XP.  
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Fig. 3. Examples of vessel boundary detection. (a), (c) and (e) input 
images. (b), (d) and (f) results of applying our algorithm. 

 
Table I. Running times of the seed point selection and validation 
steps in Can et al. and our algorithm. 
 

No. of  
Seed 
points  

Running Times (ms) 

Can et al. Our 
algorithm 

100 393 124 
200 740 230 
300 1257 389 
400 1673 514 
500 1995 607 

 
The output results illustrate that the method is able to 

differentiate vessel structures from background and 
non-vessel objects. Furthermore, to a large extent, the 
algorithm is able to detect the vessel boundaries and 
terminate rapidly for the false detections.  However, some 
undetected vessel branches and background traces exist. This 
is mainly due to low signal to noise ratio and contrast 
variations in the image. The running time results show that 
our new seed point validation algorithm is about 3 times 
faster than kernel based algorithms. Its prominency comes 
from avoiding exhaustive vessel direction estimation using 
2-D differentiator kernels and angular quantization error 
associated with previous methods [8]-[11]. 

IV. CONCLUSIONS AND FUTURE WORKS 
In this paper, a new vessel tracing algorithm for detecting 

the feature boundaries of the vessels in live angiogram 
sequences is presented. Without any preprocessing steps, the 
algorithm merely processes a minimal fraction of pixels 
which are located on the vessel boundaries and directly traces 
the boundary points using an efficient gradient-based update 
equation. Clearly, the results show that vessel boundary 
segmentation can be obtained without requiring exhaustive 
directional searches initiated at each centreline point. 
Furthermore, centerline representation can be achieved by 
exploiting the precise location of the extracted left and right 
boundary points. The comparison results illustrate that the 
method is very fast compared with other methods in the 
literature. Our future plan is to improve the accuracy of our 
algorithm concerning its ability in preventing false traces and 
detecting more vessel segments. We also plan to develop a 
more robust stopping criterion, possibly by incorporating 
local history of the current trace and signal-to-noise ratio 
analysis. 
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