
 

 

 

Abstract—Till now, protozoan parasites cause many 

diseases, for examples, malaria, EHEC infection, shigellosis 

and amoebiasis etc. The kinds and growing stages of pro-

tozoan parasites would lead to different treatments. The 

most significant characteristic of different growing stages is 

the number of nucleuses, but partial nucleuses of a cell may 

be more unclear than the others causing the missing in 

nucleus detection. This paper presents a novel multiple 

nucleus detection schemes which are composed from the 

adaptive protozoan parasite erasure, gamma equalization, 

Fuzzy C-means clustering algorithm, modified connected 

component detection method, and circle mask scoring me-

thod. For each cell, the proposed scheme first detects the 

most significant nucleus, and then performs gamma equa-

lization iteratively to extract a correct nucleus. In each ite-

ration, only the remained region would be considered. Ite-

rations are terminated when all parameters of gamma 

equalization are considered. The adaptive protozoan para-

site erasure method is used to erase the boundary of a 

protozoan parasite by dynamic size mask. The modified 

connected component detection method labels each con-

nected component more accurately than the traditional 

method. The iterative gamma equalization performs gamma 

equalization iteratively by different parameters to enhance 

the boundaries of nucleuses with different edge intensities. 

The circular mask scoring method can help estimate the 

circular degree of objects. The experiment shows that the 

proposed scheme can detect the nucleuses with indistinct 

boundaries effectively. 

 

Index Terms — Nucleus detection, FCM, boundary era-

sure, connected component. 

 

I. INTRODUCTION 

Most protozoans are constructed with only one cell 

(unicellular organisms) and they belong to eukaryotes. In 

the natural world, protozoans are classified into about 

65,000 species and most protozoans exist in ocean, soil, 

water or rotten things, etc., without depending on any 

other organisms. Others belong to protozoan parasites 

and contain about 10,000 species.  
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They exist in the inside or outside of other organisms 

and about 40 species of them are found as human para-

sites [10].Most protozoan parasites exist on lumens, body 

fluid, tissues or cells of human and can be classified into 

pathogenic and nonpathogenic protozoan parasites [11]. 

The common intestinal infectious parasitic diseases 

include cholera, typhoid fever, Enterohemorrhagic 

Escherichia coli infection (EHEC) [7], shigellosis and 

amebic dysentery (or intestinal amebiasis) etc [5]. The 

cholera is caused by Vibrio cholerae serogroup O1 which 

can be divided into two types, cholera classical and E1 

Tor; the typhoid fever is caused by Salmonella typhi and 

Salmonella paratyphi; the EHEC infection is caused by 

Escherichia coli; the shigellosis is caused by Shigella dy-

senteriae, Shigella flexneri, Shigella boydii and Shigella 

sonnei [8]; the amebic dysentery is caused by the Enta-

moeba histolytica [9], and it has two types, trophozoite 

and cyst in its life history [5, 9]. The medical imaging 

techniques are widely applied to assist doctors and pa-

thologists to diagnose diseases. Nowadays, the general 

medical imaging techniques include: computerized to-

mography (CT) [21], magnetic resonance imaging (MRI) 

[22], ultrasound imaging [23] and electron microscopic 

imaging etc [24]. Also, the electron microscopic imaging 

techniques are used to observe protozoan parasites, blood 

cells, tumor cells and so on. 

In recent years, digital medical image processing 

techniques and systems are gradually applied to assist 

doctors and pathologists to diagnose and analyze more 

efficiently and accurately by computers. The cell seg-

mentation is a popular research topic of medical images 

processing. It is performed before the cell recognition to 

extract the sharps and regions of cells from a cell image 

which contains background or other objects. Hence, it is 

very important and affects the performance of a whole cell 

image recognition procedure. The most common cell 

segmentation research issues include red and white blood 

cells, tumor cells and other tissue cells of human. Most 

cell segmentation techniques are classified into tex-

ture-based and edge-based segmentation. The edge-based 

methods are set to detect the edges of cells by edge 

processing and analysis techniques. The common tech-

niques include Sobel edge detection [15], Canny edge 

detection [13] and gradient vector flow for snake 

(GVF-snake) [14] etc. Edge-based methods are usually 

affected by noise and contrast more easily than tex-

ture-based methods. Texture-based methods classify 

texture features between target objects and others regions 

to obtain the cell regions in a cell image by classification 
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algorithms. Common texture-based classification me-

thods include k-means clustering [1], support vector 

machine (SVM) [17], watersheds algorithm 

[16], fuzzy c-means clustering [18] and artificial neural 

network (ANN) [19, 20] etc. The cell segmentation re-

searches for protozoan parasite are few. Some cell seg-

mentation researches for cancer cells and white blood 

cells are described as follows. 

N. Gao et al. [6] proposed a multispectral imaging 

technique for white blood cell segmentation. They ob-

tained multiple marrow microscopic images with different 

bands of wavelengths for the same sample. The signal 

intensities for different wavelengths of each pixel are the 

features used to perform classification by support vector 

machine (SVM). The major classes include nucleus, 

erythrocytes, cytoplasm and background in their pro-

posed scheme. In order to reduce the number of feature 

data in classification, the authors used two data reducing 

techniques and ignore background in their classification 

procedure. They found that only the signal intensities of 

background pixels are more than 200 when the wave-

length is 530 nm. In addition, they use sequential minimal 

optimization (SMO) technique to reduce the number of 

features according to empirical risk. Their experiment 

represented that their segmentation correct rate is about 

94% for certain classes of white blood cells. 

Jiang et al. [12] proposed a cell segmentation 

scheme to segment white blood cells according to the 

information extracted from feature space. They transform 

a cell image into a histogram that contains feature in-

formation. First, the Gaussian filter is applied iteratively 

with larger variance to reduce the number of local mini-

mums and obtain two valley points in the histogram. 

These two points are used to track the related gray levels 

in the original histogram by the fingerprint technique. The 

related two gray levels are used to cluster all pixels of the 

original image into three classes. The darkest class con-

tains the nucleus of white blood cell pixels. After ob-

taining the nucleus regions, the cytoplasm regions are 

extracted by using Gaussian filter with a variance of 0.75 

and a watershed clustering algorithm without considering 

the nucleus regions. 

Wu et al. [25] presented an adaptive thresholding 

scheme to approximate and segment microscopic cell 

images. A parametric image was obtained by iterative 

minimizing its mean squared error with the original image 

and was used to perform thresholding scheme to extract 

cell regions. But, some cell priori-knowledge such as 

background, cell shape and size, are needed for the mi-

nimizing procedure. 

Mat-Isa et al. [26] proposed a region growing fea-

ture extraction (RGFE) algorithm to extract four features 

from a region of interest (ROI) in a cervical cancer cell 

image for cell segmentation. These features are the size, 

gray level of nucleus, cytoplasm. However, the ROI and 

the threshold value must be manually selected by the users 

of the application system, which reduces the automatic 

ability.  

Now, we focus on the protozoan parasite identifi-

cation process. The first step of intestinal infectious pa-

rasitic disease diagnosis is usually to obtain fecal or tissue 

section samples, then pathologists use electron micro-

scope to find protozoan parasites and to diagnose the 

species of the protozoan parasites by their biomorphic, 

such as, cell tissue distribution, nucleus numbers and 

smoothness of cell wall. Nowadays, most above works 

are still performed manually. But to manually diagnose 

the species of protozoan parasites exist some difficulties 

and problems. The species of protozoan parasites are 

many and protozoan parasites are tiny. In addition, the 

protozoan parasites have different forms according to 

their maturity. Hence it is difficult that the pathologists 

accurately and quickly diagnose the species of the pro-

tozoan parasite according to their hairline features, and it 

would make mistakes easily. 

The protozoan parasite microscopic image 

processing exists some difficulties: (1) The illuminations, 

colors, noises and size of microscopic images are de-

pendent on experiment devices and environments. (2) The 

contents of protozoan parasite microscopic images are 

complex when they are obtained from fecal or tissue sec-

tion samples, especially feces contain many other un-

known things. (3) The protozoan parasites have different 

forms according to their maturity. (4) The number of 

nucleuses is unfixed and the boundary contrast of nuc-

leuses is variable.  

In this paper, a novel protozoan parasite nucleus 

detection scheme is proposed to hurdle the above diffi-

culties and to accurately detect the region of each pro-

tozoan parasite in color microscopic images. The pro-

posed scheme is presented in Section 2. The proposed 

scheme including several images processing techniques 

are used to detect and segment all nucleuses of a proto-

zoan parasite for protozoan parasites recognition. In the 

experiment, a protozoan parasite image which includes 

four nucleuses (one is nuclear) was used to test the per-

formance of the proposed scheme. The experimental re-

sults show that the proposed scheme can detect all nuc-

leuses even with different edge intensities. The experi-

mental results are shown in Section 3. Finally, conclusions 

are given in Section 4. 

II.  FEATURE EXTRACTION SCHEME 

This paper proposes an effective scheme to segment 

protozoan parasites and their nucleuses from microscopic 

images. The proposed scheme is divided into two major 

stages: The first stage is to segment a whole protozoan 

parasite. The protozoan parasite microscopic images are 

photographed from human samples, hence the back-

ground of each image exists many unknown impurities to 

increase difficulties of the extraction of protozoan para-

sites. The second stage is to detect all nucleuses of each 

extracted protozoan parasite. At this stage several diffi-

culties must be overcome. The first difficulty is that the 

number of nucleuses is various. The proposed scheme 

must to exert itself to detect all nucleuses but to ignore the 

cytoplasm in each protozoan parasite. The second diffi-

culty is that the boundaries of some nucleuses are blurred 

or incomplete. This condition could affect the sizes, 



 

 

shapes and positions of nucleuses and hinder detecting 

nucleuses correctly. 

First, the protozoan parasite segmentation is applied 

by our previous proposed protozoan parasite segmenta-

tion scheme. The scheme first transforms color micro-

scopic images into gray-level ones. The gamma equaliza-

tion is a novel non-linear based equalization scheme for 

equalizing color space of images. This method can be 

used to normalize the gray-level distribution of images. In 

order to erase noises and enhance the boundaries of 

protozoan parasites, two filtering schemes which are the 

median-mean filter and the two-class edge enhancement 

algorithm are used. Then, a two-means algorithm which is 

the well-known k-mean algorithm when k=2 is used to 

cluster the pixels of each image into two major clusters, 

the protozoan parasite and background. Some clustered 

pixels still are clustered into incorrect cluster. The largest 

connected object is considered as the protozoan parasite. 

Thus, we seek the largest connected object only for the 

pixels which are belonged to the cluster of protozoan 

parasite. Then a morphological closing operation is used 

to obtain a more complete protozoan parasite region. All 

pixels of the raw image which do not exist in the domain 

of protozoan parasite region are marked as background 

pixels. This segmentation scheme can gain 96.64% cor-

rect rate for 112 experimental protozoan parasite micro-

scopic images and is reused in this paper for protozoan 

parasite segmentation. The details of gamma equalization 

and two-means algorithms are described in the following 

sub-sections. 

Second, an iterative-based nucleus detection scheme 

is proposed to detect multiple nucleuses for each proto-

zoan parasite. This nucleus detection scheme contains 

several stages with different methods which are: adaptive 

boundary erasure, iterative gamma equalization, 

two-means, modified connected component detection and 

circular mask scoring methods. This scheme is performed 

iteratively and first detects a most significant nucleus in a 

protozoan parasite. Then the height and the width of this 

nucleus can be measured and used as the conditions for 

further detecting other nucleuses in the following iterative 

procedure. 

The details of each method are described in following 

sub-sections, respectively. 

 

A. Adaptive Boundary Erasure 

 

 The segmentation can effectively eliminate the 

background of a protozoan parasite image, but the un-

necessary boundary pixels of the protozoan parasite are 

still preserved. This paper proposes an adaptive boundary 

erasure method as the pre-process of nucleus detection to 

eliminate the boundary region by an adaptive mask with 

various sizes. The size of a mask is determined by esti-

mating the width of the boundary. In order to measure the 

width of the boundary, the propose method transforms 

the gray values into gradients G by using Sobel operator 

shown in Eq. (1) and defines m sample points on the most 

external boundary of protozoan parasite evenly. Each 

scan is performed on each sample point to find a local 

maximum of gradient from outside to inside in an interval 

δ. Each scan can obtain a boundary width iw  from cal-

culating the distance of the local maximum and back-

ground. The boundary width for the protozoan parasite is 

considered as the mean of the boundary widths of all scans. 

Then, the size of adaptive mask s is obtained by Eq. (2). 

The boundary elimination is performed to mark boundary 

pixels as background pixels by an adaptive mask. This 

method scans all pixels except marked background pixels 

and checks neighboring pixels of each corresponding 

pixel by an adaptive mask, when existing one or more 

neighboring pixels are background pixels, the corres-

ponding pixel also is marked as background pixel. All 

background pixels are ignored in the latter image 

processing. 
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B.  Iterative Gamma Equalization 

   

In most cases, nucleuses and cytoplasm have dif-

ferent brightness in protozoan parasite images, and con-

tours of nucleus regions usually are the most significant 

parts. But microscope images of our image database are 

obtained from different experiment conditions or envi-

ronments.  Hence each microscope image has different 

distributions of illuminations. Image equalization is a lu-

minance transform method to equalize the illuminations of 

an image to distribute over whole gray-levels. Hence this 

method can be used to normalize the illuminations of our 

microscope images. The traditional equalization method 

[2, 3] is performed by Eq. (3), where IGray (i, j) is the 

gray-level image, IEq (i, j) is the image which performed 

equalization, IMax and IMin are the maximum and 

minimum of the pixel values of IGray (i, j). The traditional 

equalization method has a major problem that the illu-

mination contradistinction and distribution are changed 

linearly and are restricted by the few pixels located near by 

maximal and minimal pixel values of an image. Hence this 

method is not enough to enhance the contradistinction of 

nucleuses and cytoplasm when only using the traditional 

equalization method. 
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  Gamma equalization is proposed to overcome the 



 

 

previous problem. In most natural images, the gray values 

of only few pixels are near 0 or 255. But these pixels 

could restrict the degree of image equalization. In order to 

avoid this restriction, the gamma equalization defines a 

threshold t used to decide how many pixels of an image 

should be ignored when they are near 0 or 255 in a 

gray-level histogram. For example, when t = 12, the 1/12 

pixels nearest 0 and 1/12 pixels nearest 255 are ignored in 

gamma equalization and their pixel values all are set to 0 

and 255, respectively. Figure 2 shows the actually per-

formed and ignored ranges of the gamma equalization. 

The low-bound and up-bound are the smallest and largest 

gray values of the equalization range in a gray-level his-

togram. 

 

 
Fig. 1: A description of equalization range in the gamma 

equalization. 

 

 The gamma equalization reduces the effect when few 

pixels are near extreme values. This 

method equalized all pixels which are located in the actual 

equalization range of the histogram nonlinearly using 

another parameter γ . The major equation of gamma 

equalization is shown in Eq. (4). 
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Where i is the i-th gray level, L is the low-bound, R is the 

actual equalization range and GE (i) is the result of the 

i-th gray level obtained from gamma equalization. 

Larger t and smaller γ would cause the processed 

image become darker with a less contrast that γ is smaller 

than 1. When different t and γ are used in gamma equa-

lization, different enhancement effects are brought to the 

pixel values in different gray level nonlinearly. In this 

paper, the proposed scheme performs an iterative pro-

cedure with different values of the parameters t and γ in 

gamma equalization to enhance nucleus with different 

brightness and sharpness. In each iteration, a nucleus is 

detected and is removed from the image in next iteration 

in order to further enhance the more unclear nucleuses. 

 

C. Fuzzy C-Means(FCM) Algorithm with Spatial 

Constraint  

  

 The purpose of this paper is to accurately extract the 

nucleuses from digital protozoan parasite microscopic 

images with complex cytoplasm background. When the 

images are processed by the above digital image process 

techniques, all protozoan parasite images are uniformly 

transformed into the equalized gray-level space, the con-

trast between nucleuses and cytoplasm are enhanced. This 

paper shows segmentation method which is based on a 

clustering algorithm called fuzzy c-means algorithm. 

   A modification of the fuzzy c-means (FCM) algo-

rithm is used to initialize the level set segmentation re-

finement process. FCM minimizes the sum of similarity 

measures objective function J (U, V) given by 
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Where X = {x1, x2, … xN} denotes the set of data 

(pixel feature vectors), V = {v1, v2, ..., vC} represents 

the prototypes, known as the clusters centers, U = [uij ] 

is the partition matrix which satisfies the condi-

tion, 1
C

iji
u   ∀j, and m is a fuzzifier which indicates 

the fuzziness of membership for each point. The FCM 

algorithm is an iterative process for minimizing the 

membership distance between each point and the proto-

types. However, the objective function Eq. (5) does not 

explicitly include any spatial information. Incorporating 

spatial information provides more robustness and effi-

ciency to the fuzzy c-means algorithm by adding a second 

term to the FCM objective function, 
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Where    is a set of neighbors. The parameter  is a 

weight that controls the influence of the second term. The 

objective function (6) has two components. The first 

component is the same as FCM; the second is a penalty 

term. This component reaches a minimum when the 

membership value of neighbors in a particular cluster is 

large. The optimization of (6) with respect to U is solved 

by using Lagrange multipliers and the membership func-

tion update equation is, 
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The neighboring membership values (upk) influence uij 

to follow the neighborhood behavior. For instance if a 

given point has a high membership value to a particular 

cluster and its spatial neighbors have a small membership 

values to this cluster, the penalty term plays the role to 

force the point to belong to the same cluster as its 

neighbors. The weight   controls the importance of the 

regularization term. The prototype update equation is the 

same as standard FCM. The spatial constraint FCM 

(SCFCM) algorithm consists in the same steps as the 

original fuzzy c-means algorithm. 

 

D.  Modified Connected Component Detection. 

 

Although the nucleuses and their boundaries are 

usually darker than the cytoplasm in a protozoan parasite, 

but some pixels of the cytoplasm also are darker and 

classified into darker class. This paper considers each 

independent black region (pixel values are 0) as a possible 

nucleus object, and the actual nucleuses are usually larger 

(4) 

(6) 

(7) 

(5) 



 

 

than the black regions belonged to the cytoplasm. How-

ever, the number of nucleuses of protozoan parasites is 

not known. In order to accurately extract all nucleuses, 

the largest black region is extracted to be the first nucleus 

and the standard for detecting other nucleuses. During 

each iteration, the largest connected component is de-

tected to be a candidate nucleus. 

The connected component detection checks each 

group connected black pixels to construct an independent 

component and mark a unique index. A binary component 

labeling method [4] is used to find all connected com-

ponents in the binary image obtained from two-means. 

Each pixel is scanned from bottom-up to left-right to refer 

its left and below indexed neighboring pixel to determine 

its index. The referred neighboring pixels and scanning 

directions are shown as Figure 4(a), where the black and 

white grids are the corresponding pixel and it’s referred 

pixels. The indexing procedure is performed only when 

the corresponding pixel is belonged darker class, and its 

index is determined by follow three conditions: (a) If the 

left and below neighbor both are black pixels, the cor-

responding pixel is marked as the smallest index of the 

two neighbors. (b) If only left or below neighbor is black, 

the corresponding pixel is marked as the index of the left 

or below neighbor. (c) If both the left and below neighbor 

are not black pixels, the corresponding pixel is marked a 

new index (larger than the current largest index). The 

number of pixels for each connected component is ac-

cumulated as its size during the indexing procedure. 

This indexing method has a drawback that this method is 

only performed well for indexing completed rectangular 

components and may mark more than one index for an 

actual connected component with different shape. Most 

nucleuses of protozoan parasites are oval and the 

two-means may make it include some white holds. Figure 

2(a) shows an example of the largest independent com-

ponent obtained by above method for an original proto-

zoan parasite and it is apparent that the detected com-

ponent is not the whole region of the protozoan parasite. 

In order to improve this drawback, our previous research 

presents a modified indexing method to obtain the largest 

complete component. This method adds three scanning 

models with different scanning orders and referred pixels 

to find largest connected components, and they are shown 

in Figure 4(b)-(d). In this modified approach, 4 largest 

connected components are obtained from different scan-

ning models (see Figure 5(b)-(d)) and they are combined 

by OR operations to be the final object. This modified 

approach can improve the previous problem, but 4 scans 

and 3 OR operations must be performed and cause in-

creasing computing time. This paper proposes a novel 

solution to reduce computing time. First, only one scan-

ning model is used to identify all connected components, 

and then another scanning is performed to check indexes 

of each black pixel and its black neighbors, when existing 

different indexes, all pixels with the larger index are re-

marked as the smaller index. This modified approach can 

improve the traditional problem and save more computing 

time (only scanning twice for each image). 

 

 
Fig. 2: The scanning directions and referred neighbors of 

different scanning models: (a)left-right and bottom-up; (b) 

right-left and bottom-up; (c) left-right and top-down; and 

(d)right-left and top-down. 

 

E.  Circular Mask 

  

  Generally speaking, the size of the nucleuses is sim-

ilar in a protozoan parasite, and the shape of most nuc-

leuses is approximately circular. In the first iteration, a 

most observable nucleus is obtained from the largest 

connected component detection, and its width Sw and 

height Sh be looked as the standard for detecting other 

nucleus in the same protozoan parasite. However, the 

sharpness and brightness of nucleuses are slightly differ-

ent to cause the size of the nucleuses different when they 

are obtained in different iteration. A tolerance difference 

value s  is defined to tolerate the size difference be-

tween the first nucleus and the following candidate nuc-

leuses. Additionally, most nucleuses are approximately 

circular, hence, the shape of candidate nucleuses  is also 

considered to determine whether they are actual nuc-

leuses. Another tolerance difference value 
R

  is defined 

to tolerate the proportion of the width and height. The 

perfect proportion is 1 when the object is circular and the 

tolerance range is 1±
R

 . However, the width and height 

of each object is measured by finding the smallest and 

fittest rectangle which can contain whole object. Hence, 

each object which fits the size condition is still not sure 

that its shape is circular. In order to further measure the 

shape of each object, this paper proposes a circular mask 

scoring method to measure the similarity of the shape of 

each object and a circle by a circular mask. The radius of 

the circular mask can be obtained by the average of width 

and height, and the circular mask can be divided into two 

regions to be an outer and an inner circle. The range of 

outer circle is determined by a parameter Or  ( 0<r < Or ) 

and the radius of inner circle is  r − Or . The scoring 

method accumulates the number of object pixels (pixel 

value = 0) in outer and inner circle ( OS  and IS  

) then calculates the circular score CS to be the degree of 

circularity for each object by Eq.(8). This method defines 

a threshold CST  to determine whether the circularity of 

the object is enough or not. Note that only objects fitting a 

preset size are processed to determine they 

are nucleus or not. 
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where OC and IC   are the total number of pixels in the 

outer and inner circle. 

 
Fig. 3: The largest independent component from different 

scanning models in indexing method: (a) the original 

scanning model; (b) right-left and bottom-up; (c) left-right 

and up-bottom; and (d) right-left and up-bottom. 

 

III.  EXPERIMENTAL RESULTS 

        In our experiment, a protozoan parasite image is first 

used to show the result of each stage of the proposed 

scheme. This experiment shows an example image in 

Figure 4(a) and the segmented image obtained from the 

previous protozoan nucleus image segmentation scheme 

is shown in Figure 4(b).  

 
Fig. 4: (a) The original image; (b) the segmented image; (c) 

the result obtained from adaptive boundary erasure using 

21 × 21pixel masks. 

 

In Figure 4(b), the boundary region of the protozoan 

parasite is still preserved and similar as the boundaries of 

nucleuses. This paper uses the adaptive boundary erasure 

to remove most boundary pixels of the protozoan parasite. 

The size adaptive mask is obtained automatically and is 

21× 21 for Figure 4(b). The erasure result is shown as 

Figure 4(c), and most boundary pixels are removed. In the 

following processing, only the preservative protozoan 

parasite region is considered in each image.  

In order to enhance the boundary of each nucleus 

with different edge intensities, the iterative gamma equa-

lization is performed iteratively with different parameters 

t and γ. Some results of gamma equalization with different 

parameters are shown in Figure 5, and it can be found that 

the boundaries with larger edge intensities can be pre-

served with larger parameter t; hence the parameter t is 

changed by a decreasing order in each iteration (the order 

in this experiment is from 35 to 1).  

 
Fig. 5: The results of gamma equalization with different 

parameters t and γ. 

 

In each iteration, a largest connected component is 

detected but it is not sure a validated nucleus before 

checking by the width, the height, the proportion of width 

and height and the circular mask scoring procedure. In 

circular mask scoring procedure, the radius r of circular 

mask is set as the average of the width and height of the 

first extracted nucleus. The most important parameter Or   

can affect the score. In order to compare the difference of 

different Or , an experiment is performed to show the 

score for each pixel in the equalized example image using 

different Or . The results are shown in Figure 6 and all 

score are normalized into 0 to255 and shown as gray-level 

images. It can be found by Figure 6 that the score is dis-

persive with too large or small Or , when the Or  is set 

around 10-5% of r can obtain the more concentrative 

score around the center of each nucleus. 

 
Fig. 6: The score images of the circular masks with dif-

ferent Or . 

 In our experiment, the Or  is set to 10% of r, and an 

object is determined to be a nucleus when its score is 

larger than 75. Note that, in order to further enhance the 

boundaries with less contrast, the extracted nucleus which 

obtained from each iteration is not considered in next 

iteration. The detection result of the example image is 

shown in Figure 7. This result shows that the proposed 

scheme can detect all nucleuses of the example image 

even the bottom unclear nucleus is also detected correctly 



 

 

and that the iterative gamma equalization can be used to 

enhance dynamically the edge with different edge inten-

sities in an image. 

 
Fig. 7: The final detection result, the red rectangles are the 

regions of detected nucleuses and the white region is the 

first detected nucleus. 

 

IV. CONCLUSION 

This paper presents a novel multiple nucleus detec-

tion schemes which include the protozoan parasite era-

sure, gamma equalization, and fuzzy C-means clustering 

algorithm; modified connected component detection 

method and circle mask scoring method. The proposed 

adaptive protozoan parasite erasure method can erase the 

boundary of a protozoan parasite by a mask. The mask 

size can be estimate by measuring the width of boundary 

automatically. Hence it can erase boundary by a precise 

and adaptive way. This paper modified the traditional 

connected component detection method to solve a 

drawback which labels an actual connected component 

with different indexes and can gain a better performance 

than our previous method, because it saves one image 

scan and four OR operations for each pixel. The iterative 

gamma equalization can perform gamma equalization 

iteratively by different parameters to enhance the boun-

dary of nucleuses with different edge intensities. The 

circular mask scoring method can help estimate the cir-

cular degree of objects. The experiment shows that the 

proposed scheme can detect the nucleuses with indistinct 

boundaries effectively. 
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