
 
 

 

  
Abstract—Object recognition has become one of the most 

active research topics in computer vision in recent years. The 
set of features extracted from the training image is critical for 
good object recognition performance. The Scale Invariant 
Feature Transform (SIFT) was proposed by David Lowe in 
1999; the SIFT features are local and effective for object 
recognition. In this paper we conducted a survey of recent 
related work on the SIFT descriptor, analyzed the evaluation 
criteria for object recognition, and analyzed the performance of 
the SIFT descriptor and extended SIFT descriptors based on 
common properties and evaluation criterion. The paper 
documents improvement strategies and trends of the SIFT 
descriptor and proposed extensions. 
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I. INTRODUCTION 
 Object recognition is the task of finding a given object in 

an image or video sequence. This task represents a significant 
challenge for computer vision systems. In general, the 
processing of object recognition has the following stages: 
feature extraction and feature matching. In computer vision, 
the Scale-Invariant Feature Transform (SIFT) is an algorithm 
to identify and characterize local features in images. It allows 
for correct object identification with low probability of 
mismatch and is easy to match against a large database of 
local features. The representation of the image features has a 
direct impact on the performance of an object recognition 
system. Thus, the characterization and evaluation of SIFT’s 
performance is important to advance the research on object 
recognition.  

In this paper we survey the recent work done to develop, 
improve, and evaluate SIFT features. Included in the 
discussion are an overview of the SIFT descriptor 
 

Manuscript received December 28, 2009. This work was supported in part 
by the Key Laboratory construction projects in Yunnan Province, China and 
the Key Discipline Construction Project in Yunnan Normal University.  

Yuehua Tao is a Professor of  the College of Computer Science and 
Information Technology, Yunnan Normal University, Kunming  650092,  
China (corresponding author, phone: 86-871-5515320; fax: 
86-871-5516278; e-mail: tyuehua@ 21cn.com). 

Marjorie Skubic is a Professor of Electrical and Computer Engineering, 
University of Missouri, Columbia, MO 65201, USA (e-mail: 
skubicm@missouri.edu). 

Tony Han is an Assistant Professor of Electrical and Computer 
Engineering, University of Missouri, Columbia, MO 65201, USA (e-mail: 
Hantx@missouri.edu). 

Youming Xia is with the College of Computer Science and Information 
Technology, Yunnan Normal University, Kunming  650092,  China (e-mail: 
xyouming@21cn.com) 

Xiaoxiao Chi is with the School of Engineering, Deakin University, 
Melbourne, 3125, Australia (e-mail: xchi@deakin.edu.au) 

computation (Section II), the development and improvement 
of SIFT descriptors (Section III), the performance evaluation 
criterion of SIFT descriptors (Section IV), and conclusions 
about trends for SIFT descriptors in object recognition 
(Section V). 
 

II.  OVERVIEW OF THE SIFT DESCRIPTOR  
The SIFT algorithm is a local feature extraction 

algorithm, which finds extrema points in scale space, and 
extracts a position, scale, rotation invariant feature vector for 
each extrema point. The SIFT descriptor was proposed by 
David Lowe in 1999 [1], further developed in 2004 [2], and 
has been the topic of additional improvements in recent 
years. In order to increase SIFT’s power and enhance the 
efficiency of object recognition, extensions of the SIFT 
descriptor have been proposed by researchers. The 
improvement techniques have included different histograms 
and different region shapes than used for the standard SIFT, 
and the use of dimensionality reduction methods to reduce 
the dimension of the standard SIFT descriptor. 

The SIFT algorithm finds extrema points in scale space, 
and extracts position, scale, rotation invariant feature vectors. 
The major stages of computation of SIFT descriptors are 
divided into four major stages [2]: (1) scale-space extrema 
detection (i.e., identifying keypoints); (2) keypoint 
localization; (3) orientation assignment; and (4) keypoint 
descriptor computation. These stages are used to produce the 
set of image features. The sections below provide details for 
these stages. 

 

A. Scale-Space Extrema Detection 
The first stage of calculation is to search over all scales 

and image locations. The difference-of-Gaussian function is 
used to detect stable keypoint locations in scale space. This 
stage attempts to find those locations and scales that are 
identifiable from different views of the same object. This can 
be efficiently achieved by using a scale space function. 
Furthermore, it has been shown under reasonable 
assumptions that it must be based on a Gaussian function. 
The scale space of a two-dimensional image is defined by 
equation (1) as shown below:       

( , , ) ( , , ) ( , ) (1)L x y G x y I x yσ σ= ∗  

where * is the convolution operator, G(x, y, σ) is a 
variable-scale Gaussian, and I(x, y) is the input image.  The 
parameter σ is the scale of the keypoint and is also the 
standard deviation of the Gaussian function, equation (2). 
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The difference of Gaussians function, D(x, y, σ), is used to 
detect stable keypoint locations in scale space;  D(x, y, σ) is 
computed by using the difference between two images, one 
with scale k times the other. Then, D(x, y, σ) is given by 
equation (3).  
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To detect the local maxima and minima of D(x, y, σ), each 
point is compared with its 8 neighbors at the same scale, and 
its 9 neighbors up and down one scale. If this value is the 
minimum or maximum of all these points then this point is an 
extrema. The extrema is used as a SIFT keypoint.  

 

B.  Keypoint Localization  

In order to enhance the stability of the follow-up image 
feature matching and increase the algorithm’s anti-noise 
ability, we need to remove the low-contrast and unstable 
keypoints. This stage attempts to eliminate these unstable 
keypoints from the final list of keypoints by finding those 
that have low contrast or are poorly localized on an edge. 
This may be achieved by calculating the Laplacian value for 
each keypoint found in stage one. The location of extremum, 
z, is given by equation (4).  
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C.   Orientation Assignment  
This step aims to assign a consistent orientation to the 

keypoints based on local image properties. The keypoint 
descriptor can then be represented relative to this orientation, 
achieving invariance to rotation. The gradient magnitude, m, 
and orientation, µ,  of  (x, y) are given in equations (5) and (6) 
below. 

2 2( , ) ( ( 1, ) ( 1, )) ( ( , 1) ( , 1)) (5)m x y L x y L x y L x y L x y= + − − + + − −

 
1( , ) tan (( ( , 1) ( , 1)) /( ( 1, ) ( 1, ))) (6)x y L x y L x y L x y L x yμ −= + − − + − −

   
 

D.  The Keypoint Descriptor  
The local image gradients are measured at the selected 

scale in the region around each keypoint. These are 
transformed into a representation that allows for significant 
levels of local shape distortion and change in illumination. 

The local gradient data, used above, is also used to create 
keypoint descriptors. The gradient information is rotated to 
line up with the orientation of the keypoint and then weighted 
by a Gaussian with a variance of 1.5 * the keypoint scale. 
These data are then used to create a set of histograms over a 
window centered on the keypoint.  

Keypoint descriptors typically use a set of 16 histograms, 
aligned in a 4×4 grid, each with 8 orientation bins, one for 
each of the main compass directions and one for each of the 

mid-points of these directions. This process results in a 
feature vector containing 128 elements.  

 

III.   DEVELOPMENT AND IMPROVEMENT OF THE SIFT 
DESCRIPTOR  

In order to increase SIFT’s power, two main directions 
have been proposed to provide improvement in object 
recognition. The first uses grayscale images (as in the 
original SIFT algorithm) and computes SIFT descriptors with 
different histograms or different region shapes, or aims to 
reduce the dimensionality. The second uses images in color 
space (such as HSV or RGB).  

To increase illumination invariance and discriminative 
power, color descriptors have been proposed by a number of 
researchers [3][4][5][6][7][8]. Koen et al. studied the 
invariance properties and the distinctiveness of color 
descriptors in a structured way [9].  

PCA-SIFT [10] and GLOH [11] are variants of SIFT that 
operate with grayscale images. Yan and Sukthankar [10] 
applied Principal Components Analysis (PCA) to the 
normalized gradient patch. Mikolajczyk and Schmid 
proposed the Gradient location-orientation histogram 
(GLOH) [11] which is designed to increase the robustness 
and distinctiveness of the keypoint descriptor; this extension 
changes the location grid and uses PCA to reduce the size.  

To obtain a complementary representation and local 
appearance of normalized patches, Svetlana Lazebnik et al. 
have developed an additional rotation-invariant descriptor 
that generalizes Lowe’s SIFT, called RIFT (Rotation 
Invariant  Feature Transform) descriptors [12]. RIFT is a 
rotation-invariant generalization of SIFT.  

Other improvements have been proposed to speed up the 
SIFT computation. Grabner et al. proposed a considerably 
faster approximation of the well-known SIFT method in 
2006 [13], named FA SIFT; it can speed-up the SIFT 
computation by at least a factor of eight compared to the 
binaries provided by Lowe. Se et al. implemented SIFT on a 
Field Programmable Gate Array (FPGA) and improved its 
speed by an order of magnitude [14]. 
 

IV. PERFORMANCE EVALUATION OF SIFT DESCRIPTORS FOR 
OBJECT RECOGNITION  

The performance of an object recognition system depends 
mainly on two compositions: a suitable representation of the 
image and a powerful image matching and recognition 
algorithm. In the following sections, we discuss evaluation 
criterion for object recognition and common properties of 
local descriptors. On this basis, we conduct an in-depth 
analysis and discussion of the common properties and 
recognition performance evaluation methods of the SIFT 
descriptor and extended SIFT descriptors. 

 

A. Common Properties of SIFT Descriptors 
    Based on a review of recent literature, we propose the 
following properties as being important for a good local 
feature: (1) Must be highly distinctive, robust to changes on 
viewing conditions as well as to errors of the detector; a good 
feature should allow for correct object identification with low 
probability of mismatch; (2) Should be easy to extract; (3) 



 
 

 

Invariance; a good local feature should be tolerant to image 
noise, changes in illumination, uniform scaling, rotation, and 
minor changes in viewing direction; (4) Should be easy to 
match against a potentially large database of local features. 

SIFT descriptors have the following properties.  SIFT 
features are local features and are mostly invariant to image 
translation, rotation, scale reduction and amplification, 
brightness changes, occlusion and noise, and are stable to 
visual changes and affine transformation to a certain extent. 
SIFT features have high distinctiveness and abundant 
information, and provide fast and exact matching in a large 
feature database. The computation of SIFT features is 
relatively fast and optimized; thus, the SIFT matching 
algorithm may meet the need for real-time operation. 
Extensibility is strong and may combine conveniently with 
other feature vectors. In addition, the dimensionality of the 
descriptor is also very important, because it heavily 
influences the complexity of the matching process (at 
runtime) and the memory requirements for storing the 
descriptors. 

 
 

B. Performance Evaluation Criterion for Object 
Recognition  

When performing experiments over multiple object 
classes, the average precision of the individual classes can be 
aggregated. This aggregation is called the mean average 
precision (MAP). MAP is calculated by taking the mean of 
the average precisions. Note that MAP depends on the 
dataset used;  scores of different datasets are not easily 
comparable. 

The performance is also measured by the repeatability 
rate, that is, the percentage of points simultaneously present 
in two images. In recent years, recall and precision [10][17], 
average precision [9], repeatability rate [14], and the ROC 
curve [11][13][15][16] have become popular evaluation 
metrics for object recognition. 

Recall and precision are based on the number of correct 
and false matches between two images. Recall is the number 
of correctly matched regions with respect to the number of 
corresponding regions between two images of the same 
scene.  Recall is defined as in equation (7). 

(7)number of correct positiverecall
total number of positives

=  

Precision is defined according to equation (8). 

(8)number of correct positivesprecision
number of correct positives number of false positives

=
+

 

The metric 1-precision is defined as in equation (9). 

1 (9)
( )

number of false positivesprecision
total number of matches correct or false

− =  

Under normal circumstances, the metrics of recall, 
precision and 1-precision can be used for object recognition 
system evaluation.  

Average precision is a single-valued measure that is 
proportional to the area under a precision-recall curve. This 
value is the average of the precision over all test runs judged 

relevant. Let
1 2{ , , , }k

kl l lρ = be the ranked list of items 

from test set A. At any given rank k , let | |kR ρ∩ be the 
number of relevant shots in the top k  of  ρ , where R  is the 
set of relevant shots and | |X is the size of set X . Average 
precision, A P , is then defined according to equation (10). 
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with the indicator function  ( ) 1kΨ =  if 
kl R∈  and 0 

otherwise, and | |A  is the size of the answer set, e.g. the 
number of items present in the ranking points simultaneously 
present in two images. The higher the repeatability rate 
between two images, the more keypoints that can potentially 
be matched and the better the matching. In [2], Lowe used 
repeatability to assess performance of the SIFT descriptor.  

The Receiver Operating Characteristics (ROC) curve 
is a plot of the true positive rate vs. the false positive rate 
[15]. These curves also show ROC equal error rates (false 
positives = true positives) where 

 (11)number of correct positivestrue positive rate
total number of positives in data set

=  

(1 2 )n u m b er o f fa lse p o s itiv esfa lse p o s itive ra te
to ta l n u m b er o f n eg a tives in d a ta se t

=
 

     
 

C. Performance Evaluation of SIFT Descriptors and   
Extended SIFT Descriptors  

There is prior work in conducting performance 
evaluation for the SIFT descriptor and extended SIFT 
descriptors in object recognition. Koen et al.  evaluated color 
descriptors for object and scene recognition [9].  Yan et al. 
[10] proposed a PCA-SIFT descriptor similar to the SIFT 
descriptor and used recall and 1−precision graphs for their 
evaluation experiments by varying the threshold for each 
algorithm. Their experiments showed that the PCA-based 
local descriptors are more distinctive, more robust to image 
deformations, and more compact than the standard SIFT 
representation. 

Mikolajczyk and Schmid [11] presented a comparative 
study for several local descriptors. Their evaluation criterion 
was recall-precision, based on the number of correct matches 
and the number of false matches obtained for an image pair. 
The results of their experiments are shown in Table I. 
 

Table I. Results of experiments in [11] 

 



 
 

 

 
Table II is a summary of common properties for the 

grayscale SIFT descriptor and extended grayscale SIFT 
descriptors.  Based on the literature [3][4][5][9], we 
summarized common properties for the color SIFT descriptor 
(Table III). 
 
Table II.  Properties of the grayscale SIFT descriptor and 
extended grayscale SIFT descriptors 
 
descriptor  rotation  illumination  viewpoint  distinctiveness   dimensionality  
                scale         invariance    invariance   robustness      

invariance                        
SIFT            yes             yes             yes             good                high(128)         
PCA-SIFT   yes             yes             yes             good                 low (20)            
GLOH         yes             yes             yes          enhancement       high(128)          
SIFT-FPGA yes            yes              yes            good                  high(128) 
RIFT           yes             yes              yes            good                  low(32) 
FA SIFT      yes             yes             yes             good                 high(128)       
 
Table III. Properties of color SIFT descriptors 
 
Descriptor     scale          shift             invariant to             dimensionality 

invariant    invariant    light color changes   
HSV-SIFT       yes              yes                partial                    3×128 
HueSIFT          yes             yes                 no                          3×128 
OpponentSIFT yes             yes                 no                          3×128 
W-SIF              yes             yes                 no                          3×128 
rgSIFT             yes             yes                 no                          3×128 
Transformed    yes             yes                 yes                         3×128 
 color SIFT                       
 

V. CONCLUSIONS 
The Scale Invariant Feature Transform (SIFT) features 

are local and based on the appearance of the object at 
particular interest points. They are invariant to image scale 
and rotation. They are also robust to changes in illumination, 
noise, and minor changes in viewpoint. The SIFT descriptor 
has a wide range of applications and is especially effective 
for object recognition. 

In order to increase SIFT’s power, proposed 
improvement techniques use different histograms and 
different region shapes compared to the standard SIFT 
descriptor. To increase illumination invariance and 
discriminative power, color descriptors have been proposed. 
Also, dimensionality reduction methods have been used to 
reduce the complexity of the standard SIFT descriptor. 
Recall-precision, average precision, repeatability rate, and 
the ROC curve have become popular evaluation metrics in 
the literature for object recognition. 
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