
Abstract—To develop an automated 3D SPECT lung 
delineation method by coupling adaptive dual exponential 
thresholding with 3D active contours. Datasets of Monte Carlo 
simulations and real subject scans with normal/low maximum 
and/or total count values were used as the basis of this study. 
After removing background noise using dual exponential 
thresholding, planar Gaussian filter and Sobel kernels are then 
used for edge enhancement, followed by final contour 
delineation via 3D active contours. Both quantitative validation 
via statistical measures and qualitative verification by 
experienced physicians were implemented to evaluate the 
method. We continue to achieve an overall congruency of 90% 
for both simulations and subject scans that are either normal 
or considered to be low in maximum and/or total count values. 
However, a slight 3-5% drop in congruency was observed, 
suggesting slight over-delineation by the proposed method. 
Although the results are still clinically very satisfactory, this 
study sets a solid foundation for further work on perfecting a 
truly 3D SPECT lung delineation method. 
 

Index Terms—SPECT lungs, 3D snakes, pulmonary 
embolism.  
 

I. INTRODUCTION 
Single Photon Emission Computed Tomography (SPECT) 

is an imaging modality favoured over CT and MRI for 
diagnosing pulmonary embolism [1] due to the method’s 
non-invasiveness, high sensitivity and specific nature [2, 3]. 
Given accurate delineation of lung contours is critical for PE 
diagnosis [4, 5], common practice is to use a fixed 
percentage of the maximum count value for thresholding 
[6-8]. This approach however is subject to the presence of 
localised high deposition of radioactive agents known as 
“hotspots”. While we have overcome this limitation with our 
new method of dynamic dual exponential thresholding [9] 
and the subsequent coupling with traditional planar active 
contours [10], we report our findings on the implementation 
of true three-dimensional (3D) active contours for SPECT 
lung delineation in this paper. 
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Since the active contour method was first proposed in 
1988 [11], and although a lot of research has been carried 
out into improving the method in terms of speed [12-15], 
stability [16-18], and convergence [19-23], most of these 
methods were applied to planar images. While variations of 
the snake algorithm have been applied to 3D scans of MRI 
[20, 24-27], CT [28, 29], and other medical imaging 
modalities [21, 30, 31], they are not truly 3D as the methods 
were applied on the planar slices before combining and 
reconstructing the outcome into 3D representations. 
Although two independent attempts were made to 
implement active contouring on true 3D images by Jung and 
Kim [32] and Ahlberg [33] respectively, the former was 
executing the algorithm on predefined 3D mesh points while 
the latter was executing the algorithm on MRI images in 
which the features were well-defined. 
 

II. DATASETS 
The same two basic datasets used in our previous studies 

were used again to evaluate the methods described in this 
article: 90 SPECT ventilation scans of admitted hospital 
subjects and 350 Monte Carlo simulations. This ensured 
data consistency and comparability of results. 

Each of the SPECT ventilation scans was acquired using 
standard protocols. After inhalation of approximately 
40MBq of 99mTc-Technegas, data was acquired using a 
dual-/triple-head gamma camera with low-energy 
high-resolution collimators fitted, and in the format of a 
128x128 projection matrix for 120 projection angles. Total 
acquisition time for the ventilation scan was approximately 
eight minutes. Finally, the scans were reconstructed using 
the OSEM block-iterative algorithm with eight subsets and 
four iterations. 3D Butterworth low-pass filtering with 
cut-off frequencies of 0.8 cycles/cm at an order of 9.0 was 
applied without attenuation correction. The resulting 
reconstructed image set contained 128 slices and was 
128x128 pixels in size. 

A base set of ten gated projections was generated using 
Monte Carlo simulation of photon emission from a phantom 
with a known volume of 61,660 voxels1 [34]. This set was 
then used to build our dataset of 350 hotspot-free, normally 
ventilated simulations where each simulation is 128x128 
pixels in size and contained 128 slices [9]. 
 

III. METHOD 

A. Pre-processing 
Dual exponential thresholding was first applied to remove 
background noise. As automated extraction of multiple 

                                                 
1 A voxel is a unit representative of a 3D pixel in an image set. 
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Fig. 1   Sample horizontal topographic representation of a subject SPECT 
scan. The dividing point identified in this case is x=62. 
 
objects is not within the scope of this report, The SPECT 
lung scan was hence divided into the left and right side 
respectively. First, create a horizontal topographic 
representation of the scan by calculating the total value of 
each pixel PiT along the x-axis via summing the rows of 
each image slice for all slices, i.e., 

 ∑∑
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where i, j, k, represent the x-, y-, z-axis, and m, n, represent 
the number of rows per image slice, and total number of 
image slices respectively. The result contains two peaks that 
represent the left and right lungs respectively, and the 
dividing point can be identified as the value with the lowest 
count, i.e., the valley point. See Fig. 1 for illustration. 
 

B. 3D ROI 
Once the lungs are isolated, the initial 3D region of 

interest (ROI) is established by first identifying the 
dimension of the 3D box B that encloses the lung. As 
dynamic thresholding has been applied, the boundaries of B 
can be easily identified as the maximum and minimum 
coordinates with non-zero pixel values for each axis, i.e., 
 Bzzyyxx ∈212121 ,,,,,  (2.1) 
 0,,,,,

212121
>zzyyxx pppppp  (2.2) 

 21 xx > , 21 yy >  and 21 zz >  (2.3) 
Based on the dimensions identified above and a priori 
knowledge of the shape of the lung, the initial 3D ROI is 
best established as a set of discrete ellipsoidal points 

ellipseR  expressed using spherical coordinates such that 

( )φπ /...0=∀i  and ( )θπ /2...1=∀j , the Cartesian 
coordinates of each point ellipseRp∈  are calculated as: 

 ( )( ) ( )( )θπφπ /2cos/sin ××= jiax  (3.1) 
 ( )( ) ( )( )θπφπ /2sin/sin ××= jiby  (3.2) 
 ( )( )φπ /cos ×= icz  (3.3) 
where a and b are the equatorial radii along the x- and y-axis 
respectively, and c is the polar radius along the z-axis. They 
are calculated as: 
 ( ) 2/21 xxa −=  (3.4) 
 ( ) 2/21 yyb −=  (3.5) 
 ( ) 2/21 zzc −=  (3.6) 
φ  is the colatitude or zenith which controls the number of 
x-y planes, and θ  is the longitude in π2  or azimuth 
which controls the number of points in each x-y plane such 

that πφ ≤≤0 and πθ 20 ≤≤ . 
Clearly the selection of φ  and θ  values are critical: 

too few points do not produce a meaningful contour while 
too many result in excessive computation. We have 
developed an optimal approach to calculate the two optimal 
values optφ  and optθ . First, let Φ  and Θ  be the sets of 
pre-defined zenith and azimuth values respectively such 
that: 

 Ζ∈Φ∈∀
φ
πφ ,  (4.1) 

 Ζ∈Θ∈∀
θ
πθ 2,  (4.2) 

Next, exhaustively calculate the distances 1d  and 2d  
for every combination of φ  and θ  such that: 
 101 ppd −=  (4.3) 
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optφ  and optθ  are obtained when 21 dd −  is minimal. 
Without further processing, the current set of ellipsoidal 

contour points has the limitation that as ( )θπ /×i  
approaches 2/π , the distance between adjacent points with 
the same ( )φπ /×i  but different ( )θπ /2×j  grows 
unacceptably. Furthermore, the resulting 3D mesh is not 
suitable for subsequent 3D active contouring. To counter 
this, we have developed the following technique to produce 
a 3D mesh consisting of the following set of points: 
 ellipsesnakesnake RRR ⊇:  (5.1) 
in which the triangular strips are permutated in a 
Freudenthal triangulation-like fashion. Using equations (3.1) 
to (3.6) and optφ  and optθ , for Rpp ∈21 ,  let 
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d as: 
 21 ppd −=  (5.2) 

Next, for all subsequent points ( )
( )φπ

θπ
/...0

1/2...1
=
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jm pp  and 

ik
jln pp =
+== 1  calculate the distance using (5.2) and where it 

is d2≥ , insert additional points such that the resulting 
distances between the new points are less than or equal to 
d . That is, given ( ) 1/ += φπδ  corresponds to the number 
of x-y planes, the number of points per x-y plane iλ  can be 
  

 
Fig. 2   (a) front view and (b) back view of a sample 3D ROI mesh with 

πφ
6
1

=  and πθ 2
6
1

= . Solid red dots are the initial ellipsoidal contour 

points and the blue hollow dots are the added contour points. 



calculated as follows: 
 ( )1...0 −=∀ δi , 110 == −δλλ  and 5≥δ : 
if δ  is odd: 
 ( ) ( )2/)1(...1:/2 −=∀×= δθλλ iii  (5.3) 
 ( ) ( )( ) ( )( ) ( )2...2/1:1/2 −+=∀−−×= δδδθλλ iii  (5.4) 
if δ  is even: 
 ( ) ( )2/)2(...1:/2 −=∀×= δθλλ iii  (5.5) 
 ( ) ( )( ) ( ) ( )2...2/:1/2 −=∀−−×= δδδθλλ iii  (5.6) 
A minimum of five x-y planes is chosen as anything lower 
does not produce a 3D mesh fit for our purpose. See Fig. 2 
for illustration. 
 

C. 3D Snake 
The basic snake equation is as follows: 

 ( ) ( ) ( )( )∫ ++= dsEsEsEs imgcurvcont γβαε      (6) 

where contE , curvE  and imgE  represent the energy for 
the continuity, smoothness and edge attraction of the active 
contours respectively, while the three parameters α , β  
and γ  control the sensitivity of each corresponding 
property. In the discrete case where the contour is replaced 
by a chain of N  snake points 1p , 2p , …, Np , the 
equation becomes: 
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where the three energy terms are: 
 ( )21−−−= ii
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and d  equals the average distance between the pairs 
( )1, −ii pp  and I∇  is the spatial gradient of the intensity 
image I , computed at each point. 

A 333 ××  cubic window centred at each snake point is 
defined within which the energy functions are locally 
minimised. Furthermore, instead of having only the two pre- 
or post-neighbouring points in the planar setting, a mn×  
matrix n

mM  is constructed where n  is the number of 
points in snakeR  and m  is the number of neighbouring 
snake points such that ( )θπ /2≤m . Given again 

( ) 1/ += φπδ  corresponds to the number of x-y planes, the 
number of points per x-y plane iλ  can be calculated as 
follows: 
 ( )1...0 −=∀ δi , ( )θπδ /210 == −mm  and 5≥δ : 
if δ  is odd: 
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if δ  is even: 
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 ( )( ) ( )2/...12/:5 δδ −=∀= imi  (8.4) 
See Fig. 3 for illustration. 

Given this is 3D active contours, we now refer to the 
three energy terms as surface continuity, surface smoothness, 
and surface attraction. While the surface attraction energy 
term i

imgE  remains the same for each snake point, the 
continuity and smooth surface energy terms have to be 
modified to cater for the 3D snake. To obtain i

imgE , a 
gradient image cube is created after performing; (1) 
Gaussian smoothing at order σ  which starts large and then 
gradually decreases as the algorithm progresses through the 
iterations steps and (2) Sobel edge detection on each image 
slice at each iteration. 

Next, with the surface continuity energy term i
contE  

specified in (7.1), note that the average distance d  does 
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Fig. 3   Sample 3D ROI mesh with πθ 28
1= . For solid red dots and blue hollow dots, the number of neighbouring points 6=m , whereas the green

solid dots are special edge points with 4=m  when (a) δ  is odd, and 5=m  when (b) δ  is even. 



not refer to the overall average distance between all snake 
points and their corresponding neighbouring points as in 
planar active contouring; it only refers to the average 
distance between the current snake point and its 
neighbouring points in a 3D context. That is, the equation 
now becomes: 
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Finally, for the planar smoothness energy term i

curvE  
specified in (7.2), instead of calculating the squared sum of 
the distances between a snake point and its immediate pre- 
or post-neighbouring points, the sum of the squared 
distances between each snake point and all of its 
neighbouring points is calculated for surface smoothness. 
That is, the equation now becomes: 
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Based on the changes above, Equation (7) can be written as: 
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Fig. 4   Bland-Altman graphs of congruency between volumes delineated 
by our method and the known phantom volume of 61,660 voxels for (a) 50 
normal and (b) 90 low-count simulations measured against maximum count 
values. 

Fig. 5   Bland-Altman graphs of congruency between volumes delineated 
by our method and volumes visually delineated by a practitioner for (a) 50 
normal and (b) 35 low-count subjects measured against maximum count 
values. 
 

Note however, in order to correctly implement the greedy 
3D active contours algorithm above, it is crucial to 
normalise the contribution of each energy term. This can be 
achieved by dividing the surface continuity and surface 
smoothness energy terms by corresponding maximum 
values, and the surface attraction energy term by the norm of 
the spatial gradient in the www ××  cubic window in 
which each snake point can move. Based on the findings 
from our previous study, we continue to use the parameter 
settings of 1=α , 1=β  and 75.0=γ  after comparing 
our delineated contours against those visually delineated by 
an experienced practitioner. To prevent the algorithm from 
entering an endless loop, a maximum of 100 iterations has 
been set after evaluating the results obtained from the entire 
dataset. 
 

IV. IMPLEMENTATION AND RESULTS 
To ensure validity and comparability of our results, we 

use the same measure of congruency C  expressed in 
percentages shown below as has been used in our previous 
studies: 

 
bd

bd

VV
VV

C
∪
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=  (10) 

where dV  is the delineated volume and bV  is the base 
volume to which it is compared; 0% means no match 
whereas 100% represents a perfect match. The results are 
then displayed via Bland-Altman graphs. 

Congruency is calculated on four datasets previously used 
to evaluate our dual exponential thresholding method [9] 
and subsequent coupling with planar active contours [10] 
respectively: (1) two sets of 50 randomly selected 
simulations and real subjects with normal maximum and/or 
total count values, and (2) 90 simulations with low 
maximum and/or total count values and 35 real subjects with 
similarly ranged maximum/total count values. 



With the simulations, congruency is calculated with dV  
equal to the volume delineated by our current method and 

bV  as the known phantom volume of 61,660 voxels. An 
average of 94% congruency was achieved for the set of 50 
normal simulations – a 3% decrease from that achieved by 
dual exponential thresholding alone. For the set of 90 
low-count simulations, our current method achieves 85% 
congruency which is also a 3% decrease from that achieved 
by thresholding combined with planar active contours. See 
Fig. 4 for illustration. 

For the real subjects, given we have already verified the 
validity of the volumes visually delineated by the 
practitioners, while dV  remains as the volume delineated 
by 3D active contours, bV  is now represented by 
practitioner delineated volumes. An average of 91% 
congruency was achieved which is a 5% drop from the 96% 
congruency achieved by dual exponential thresholding alone. 
In terms of the set of 35 low-count subjects, mean 
congruency is almost the same as the 95% obtained by the 
thresholding-2D snake combination. See Fig. 5 for 
illustration. 
 

V. DISCUSSION 

A. Main Findings 
In this paper, we have shown that the combination of 

dynamic dual exponential thresholding with 3D active 
contours continue to deliver an overall congruency of 90% 
when comparing the delineated volumes against 
known-volume simulations and subjects visually delineated 
by practitioners. See Fig. 6 for illustration. 

The slight decrease in congruency for normal and 
low-count subjects is due to overall decrease in the 
delineated volumes. Given the basis of comparison is 
thresholding alone, this indicates that the subsequent 3D 
snake has either successfully removed false lung tissues that 
are not visually recognisable, or has aggressively removed 
true lung regions. Examination of the results for normal and 
low-count simulations also shows that the delineated 
volumes are less than the known phantom volume. This 
confirms the cause in performance degradation to be 
over-aggressiveness in 3D snake delineation. 
 

B. Future Work 
Based on the results, it is clear that future work is 

required to identify the cause of the 3D snake’s 

over-aggressiveness in contour delineation. Either existing 
method need to be adjusted and/or additional energy term(s) 
may be introduced to specifically cater for 3D 
implementation. From a dataset perspective, phantoms of 
known volumes with introduced defect(s) that are similar to 
those in subject scans with “hotspots” or irregular contours 
induced by other cardiopulmonary disorders are also 
desirable for direct verification of our methods developed 
thus far. 
 

VI. CONCLUSION 
We have successfully developed a hybrid method of 

dynamic thresholding and 3D active contours in delineating 
SPECT lung contours for PE diagnosis, which is also 
suitable for the detection of other cardiopulmonary disorders. 
While evaluation against our previous methods of dynamic 
thresholding alone and subsequent coupling with planar 
active contours on similar Monte Carlo simulations and real 
subject scans revealed delineation of true lung tissues in 
some cases, overall congruency is still at a very satisfactory 
90%. In general, the method detailed in this report provides 
an accurate and solid foundation for true 3D SPECT lung 
delineation. 
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