
 
 

 

  
Abstract— This work presents a novel Cumulative Sum 

(CUSUM) median control chart. Based on experience, some 
processes occasionally have outliers. The mean control charts 
are sensitive to outliers, and the median control charts are 
outliers-resistant. In this paper, several mean control charts, 
the proposed CUSUM median control chart, and two median 
control charts are used for comparison. With various shifts of 
the process sample mean, the average run lengths of control 
charts are evaluated under some contaminated normal 
distributions. The simulation result reveals that the 
outlier-resistance of the CUSUM median chart performs best, 
and the shifts-detecting ability of the CUSUM median chart is 
similar to those of the EWMA median chart and the mean 
charts.  
 

Index Terms— control chart, cumulative sum, median, 
outliers.  
 

I. INTRODUCTION 
  Based on experience, some processes occasionally have 
outliers. In monitoring the process mean, the mean ( X ) 
control charts, namely the Shewhart- X  chart, cumulative 
sum (CUSUM)- X  chart [8], exponentially weighted 
moving average (EWMA)- X  chart [3], and generally 
weighted moving average (GWMA)- X  chart [13], have 
been investigated extensively. Because the sample average, 
X , is sensitive to outliers, using the X  chart for monitoring 

the process mean will lead to high level false alarms. The 
sample median, X

~ , is a robust estimator of location for 
samples. Recently, there are some X

~  control charts, such as 
the X

~
-EWMA  chart [2], X

~
-Shewhart  chart [6], and 

GWMA- X
~  chart [14], were developed in succession.  

In general, the desirable properties expected from control 
charts are fast detection of assignable causes, robustness to 
underlying assumptions and economical usefulness. Samples 
containing outliers are said to be contaminated. In [14], under 
various contaminated normal distributions, the average run 
lengths (ARLs) of the Shewhart- , EWMA-, and GWMA-, 
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X  and X
~  charts were evaluated by simulation. Their study 

revealed that the in-control ARLs (ARL0s) of X
~  charts are 

significantly higher than that of the X  charts, and the 
out-of-control ARLs (ARL1s) of X

~  charts are smaller than 
that of the X  charts. It means that the CUSUM- X

~  chart is 
outliers-resistant and the X  charts can detect the process 
shifts faster. 

 
The CUSUM control charts were first proposed by [10] 

and had been studied by many authors: such as [11], [4], [7], 
[5] and [15], etc. The CUSUM control charts had been 
demonstrated that can detect the small shifts of the process 
quickly when the process has no outlier. However, to the best 
of our knowledge, the CUSUM technique is still not applied 
in the design of X

~  control chart in the literature.  
In this paper, a CUSUM- X

~  control chart is developed for 
monitoring the process sample mean with outliers. We 
assume that the process characteristic follows the normal 
distribution. To compare the statistical usefulness of the 
CUSUM-, Shewhart-, EWMA-, X

~  and X  charts, the 
simulation [12] is used to evaluate the ARLs of various 
process sample mean shifts under various contaminated 
normal distributions. Finally, some conclusions are included 
in the last section. 

 

II. DESCRIPTIONS OF SOME CONTROL CHARTS 
Suppose that the quality characteristic is a variable and 

samples were collected at each point in time (the size of 
rational subgroups is n). Let iX  and iX

~
 be sample average 

and sample median of ith subgroup respectively, which are 
composed of n independent normal ) ,( 2σμi  random 

variables i,ni, XX  , ,1 L , where iμ  is the process mean (and 

the process median), and 2σ  is the common process variance. 

That is, 

nXX
n

j
jii /

1
,∑

=
= ,   

odd) is  if(,
~

]2/)1(,[ nXX nii +=     

where ],[ jiX  is the jth order statistic for the ith sample. When 

the process is in control, let 0μμ =i  (the target value of 
process mean).  

A. The CUSUM- X  control chart  
In Montgomery [8], the plotted statistics of the tabular 
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CUSUM- X  control chart, +
iC  and −

iC , are computed as 
follows:  
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where the starting values are 000 == −+ CC . K is the reference 
value and often chosen about halfway between the target 
value ( 0μ ) and the out-of-control value of the mean ( 1μ ) 
that we are interested in detecting the process shift quickly, 
i.e., 
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where Xσ  denotes the standard deviation of the sample 

mean, 0δ  denotes the magnitude of the process mean shift 
(multiple of σ ) that we are interested, and 

2/0 nk δ=   (4) 

Let H be the decision interval. Define 

nhhH X /σσ ==   (5) 

If either +
iC  or −

iC  exceeds H, the process is considered 
to be out of control. Once k is selected, we should choose h to 
achieve the desired ARL0. For example, in [5], when n = 1, 

0δ =1/2, k = 1/2, and ARL0 = 370, the value of h is 4.77. 

B. The Shewhart- X  control chart  

In [8], the plotted statistic of the Shewhart- X  chart is iX . 
The central line (CL), upper control limit (UCL) and lower 
control limit (LCL) of the Shewhart- X  chart are represented 
as 

0μ=CL   (6) 

nLLCLUCL // 0 σμ ±=   (7) 

where L determines the width of control limits. The process is 
considered out of control and some actions should be 
undertaken whenever iX  falls outside the range of control 
limits. 

C. The EWMA- X  control chart 

In [3], the EWMA- X  control statistic, iY , can be 
represented as 

L,2,1for,)1( 1 =−+= − iYXY iii αα   (8) 

where 00 μ=Y , and the smooth parameter, α  ( 10 ≤< α ), is 
determined by the practitioner. The CL, time-varying UCL 

and LCL of the EWMA- X  control chart are represented as 

0μ=CL   (9) 

n
LLCLUCL

i σ

α
ααμ

−
−−

±=
2

))1(1(/
2

0   (10) 

where L determines the width of control limits. When α  = 
1, the EWMA- X  control chart reduces to the Shewhart- X  
control chart. 

D. The EWMA- X
~  and Shewhart- X

~  control charts 
The distribution of sample median ( iX

~ ), derived by [1], is 

very close to the ) ,( 2~
Xi σμ  normal distribution, where 2~ 

X
σ  is 

the variance of iX
~

. If 1 ,0
~ σ  is the standard deviation of 

normal (0, 1) sample median, we have 1 ,0~ ~ σσσ ×=
X

. For the 

values of 1 ,0
~ σ  of various sample size n refer to Castagliola 

(1998) for details. In [2], the EWMA- X
~  control statistic, Zi 

is represented as 

L,2,1for,)1(
~

1 =−+= − iZXZ iii ββ    (11) 

where 00 μ=Z , and the smooth parameter, β  ( 10 ≤< β ), 
is determined by the practitioner. The time-varying control 
limits of the EWMA- X

~  control chart are 

0μ=CL   (12) 
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where L determines the width of control limits. When 1=β , 

the plotted statistic in (11) will be ii XZ
~

= , and the control 
limits are 

0μ=CL   (14) 

.~/ 1,000 σσμ LLCLUCL ±=   (15) 

The EWMA- X
~  control chart reduces to the Shewhart- X

~  
control chart. 

 

III. DESCRIPTION OF THE TABULAR CUSUM- X
~

 CONTROL 
CHART  

From (1) and (2), the CUSUM- X
~  control statistics, +

iη  

and −
iη , can be represented as  
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The starting values are 000 == −+ ηη . From (3), the 
reference value, K, can be presented as 

XdK ~1,0
1,0
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where  
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Let M be the decision interval. From (4), we can define 

1,0~ ~σσσ mmM X ==   (20) 

Under the selected d, we should choose m to achieve the 

desired in-control ARL0. If either +
iη  or −

iη  exceeds M, the 
process is considered to be out of control. 

Without loss of generality, throughout this paper, we 
assume that in the absence of a special cause of variation, 

jiX , , L,3,2,1=i , nj ,,2,1 L= , are independent and have a 

common normal distribution with mean iμ  (the in-control 

00 == μμi ) and variance 12 =σ . For simplicity, we assume 
n = 5 for the performance comparison. Then, we can get 

536.0~
1,0 =σ  [1]. The simulation is used to estimate the 

values of m, h and ARL1. Each simulation runs 100,000 
iterations. Table 1 shows the simulation results of h and m of 
CUSUM-, X and X

~  charts, respectively, under various 
interested mean shifts ∈0δ {0.1, 0.3, 0.5, 0.7, 1.0, 1.5}. 

 
Table 1.  Values of h and m  (n = 5, 5000 ≅ARL ) 

CUSUM 0δ = 0.1 0.3 0.5 0.7 1.0 1.5 

X  chart h=14.271 7.158 4.749 3.495 2.439 1.522

X
~

 chart m=15.457 8.106 5.508 4.129 2.935 1.927
 

IV. THE ARL PERFORMANCE  
In order to evaluate the ARL of different charts in the 

presence of outliers, the contaminated normal distribution 
used in [6] is adopted. A contaminated normal distribution is 
that the observations %)100( θ−  come from (N(0, 1)) 

normal  distribution and %θ  come from (N(0, 2
oσ )) normal 

distribution, where θ  denotes the level of contamination and 
2
oσ  denotes the variance of an outlier. We assumed that the 

outliers occur due to the common causes of variation and lead 
to a temporary shift. We are interested in detecting a 
permanent shift. Two kind of contaminated normal 
distributions, ∈),( θσ o {(2.5, 6), (2.0, 10)}, are used herein 
to evaluate the ARL and AQC of various control charts. 

The X
~  charts used for comparison are the Shewhart- X

~  
chart (with L = 3.128), the CUSUM- X

~  chart (with 0δ  = 0.3, 

m = 8.106), and the EWMA- X
~  chart (with β  = 0.1, L = 

2.827). The X  charts used for comparison are the 

Shewhart- X  chart (with L = 3.090), the CUSUM- X  chart 
(with 0δ  = 0.3, h =7.158), and the EWMA- X  chart (with 
α = 0.1, L = 2.835). Vis simulation, the values of L, m and h 
for those control charts are based on the data which 100% 
come from the (N(0, 1)) normal distribution (i.e., 

)0,0(),( =θσo ), with a desired 5000 ≅ARL . 

In Tables 2 to 4, various combinations of ),( θσo  denote 
various contaminated normal distributions. When 

)0,0(),( =θσo , the data 100% come from the normal 

distribution N(0, 1). When )}10,2(),6,5.2{(),( ∈θσ o , the 

ARL0s of X
~  charts are greater than that of the X  charts. For 

instance, when )6,5.2(),( =θσo , the ARL0 of the 

CUSUM- X
~  chart is 430.0 is greater than those of three X  

charts (87.1, 265.4, 186.1, respectively). It means that the X  
charts are sensitive to outliers and the CUSUM- X

~  chart is 
outliers-resistant. This robustness is the strong point of the 
CUSUM- X

~  chart. However, under various process mean 
shifts, all of the ARL1s of X

~  charts are greater than that of 
the corresponding X  charts.  For instance, when 

=),( θσo (2.5, 6) and δ = 0.1, the ARL1 of the CUSUM- X
~  

chart (= 139.4) is greater than that of the CUSUM- X  charts 
(= 97.4). The shift-detecting ability of X

~  charts is worse 
than that of X  charts without respect to outliers. 

 
Table 2.  ARLs of different charts with contaminated data 

(( θσ  ,o
) = (0, 0), desired 5000 ≅ARL ) 

 
 

Table 3.  ARLs of different charts with contaminated data 
(( θσ  ,o

) = (2.5, 6), desired 5000 ≅ARL ) 

control
chart

shift 
(δ ) = 0.0 0.1 0.3 0.5 0.7 1.0 1.5

Shewhart 500.1 439.2 175.3 69.6 28.3 9.7 2.7

CUSUM 502.0 151.4 26.2 13.1 8.7 5.7 3.8X~  

EWMA 499.2 165.4 24.4 10.3 6.4 4.0 2.7

Shewhart 500.2 405.3 128.1 41.5 16.3 5.0 1.7

CUSUM 501.2 130.0 20.2 9.9 6.5 4.5 2.9X  

EWMA 501.0 136.3 19.2 8.5 5.2 3.4 2.4

control
chart

shift 
(δ ) = 0.0 0.1 0.3 0.5 0.7 1.0 1.5

Shewhart 264.5 236.8 126.6 48.6 24.1 9.8 4.0 

CUSUM 430.0 139.4 26.8 12.8 8.6 5.8 3.8 X~

EWMA 343.9 127.4 23.3 10.0 6.2 4.0 2.7 

Shewhart 87.1 78.0 48.2 24.5 13.8 5.7 2.7 

CUSUM 265.4 97.4 19.2 9.9 6.6 4.4 2.9 X  

EWMA 186.1 85.2 17.1 8.0 5.0 3.4 2.4 



 
 

 

 
 
 

Table 4.  ARLs of different charts with contaminated data 
(( θσ  ,o

) = (2.0, 10), desired 5000 ≅ARL ) 

 

V. CONCLUSION  

A novel CUSUM- X
~

 control chart is employed to monitor 
the process mean. Under some contaminated normal 
distributions, the EWMA- X  chart can detect the process 
shifts faster. The shift-detecting ability of the proposed 
CUSUM- X

~
 chart is similar to that of the EWMA- X

~
 chart. 

In outliers-resistance, the CUSUM- X
~

 chart performs best. 
This conclusion is valuable for the practitioner when the 
process presents outliers.  
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control 
chart 

shift 
(δ ) = 0.0 0.1 0.3 0.5 0.7 1.0 1.5

Shewhart 218.8 204.5 119.8 56.3 23.8 10.0 3.9 

CUSUM 395.4 136.2 25.7 13.0 8.6 5.8 3.8 X~  

EWMA 314.3 137.2 22.4 10.1 6.4 4.1 2.6 

Shewhart 106.9 106.5 61.8 27.4 12.4 6.0 2.7 

CUSUM 269.8 98.4 19.7 9.8 6.5 4.4 2.9 X  

EWMA 198.3 104.0 16.6 8.0 5.1 3.3 2.4 




