

Abstract—Several researchers have referred to the

capacitated production lot-sizing allocation problems as
NP-Hard. Consequently, it is more difficult to solve the
capacitated production allocation problem considering
practical characteristics, such as allocation problems among
bottleneck machines, photo masks, and products with different
re-entrant layers. In this paper, we proposed a novel variation
of the particle swarm optimization (PSO) model, which is a
binary PSO model with adaptable inertia weight and mutation
mechanism. It is converted to be able to solve the model of
binary decision variables. Moreover, it improves some
weaknesses, including a propensity for obstruction near the
optimal solution regions that hardly improve solution quality by
fine tuning. In order to compare effectiveness, the traditional
PSO, genetic algorithm, and the proposed PSO in this study are
compared by the practical production planning problem in the
TFT Array process. Based on the results of the experiments, it
can be concluded that the proposed PSO is more effective than
the other approaches in terms of superiority of solution and
required CPU time.

Index Terms—TFT Array; production planning; allocation;
particle swarm.

I. INTRODUCTION
The capacitated lot sizing problem (CLSP) is to planning

the lot sizes of multiple items over a planning horizon with
the objective to minimize setup and inventory holding costs
[1]. Berretta & Rodrigues [2] presented heuristic methods
based on evolutionary algorithms in order to address the
complex multi-stage CLSP (MSCLSP), including setup costs
and setup times. In the work of Ozdamar & Bozyel [1], the
CLSP is extended to include capacity consuming setups and
overtime decisions. The objective function consists of
minimizing inventory holding and overtime costs. The
different approaches including the hierarchical production
planning (HPP) approach, the iterative relaxation approach,
the genetic algorithm (GA), and a simulated annealing (SA)
approach, are proposed to compare among them. Song &
Chan [3] proposed a dynamic programming algorithm to
solve a single-stage CLSP (SSCLSP) with backlogging. The
objective is to minimize the total cost of setup, stockholding,
and backlogging to satisfy demands. Al-Fawzan [4]
considered the problem of determining lot size and
production sequence when production rate, setup cost, and

Manuscript received December 25, 2009. This work was supported in part

by the National Science Council, Taiwan, R.O.C., under contract No. NSC
97-2221-E-150-080-MY2.

Yin-Yann Chen is with the Industrial Management Department, National
Formosa University, Yunlin 632, Taiwan, R.O.C. (phone: +886-5-6315716;
fax: +886-5-6311548; e-mail: yyc@nfu.edu.tw).

unit processing cost are sequence-dependent. Using a
standard CLSP model with backorder, a tabu search
algorithm is proposed.

The capacitated lot sizing and loading problem (CLSLP)
deals with the issue of determining the lot sizes of product
families/end items, and loading them on parallel facilities to
satisfy dynamic demand over a given planning horizon.
Ozdamar & Birbil [5] dealt with the CLSLP that is a synthesis
of three problems, namely, the CLSP with overtime decisions
and setup times, minimizing total tardiness on unrelated
parallel processors, and the class scheduling problem, each of
which is NP in the feasibility and optimality problems. In
addition, hybrid heuristics involving SA, tabu search (TS),
and GA are developed to solve the CLSLP. In relation to this,
Sambasivan & Yahya [6] developed a Lagrangian-based
approach to solve a multi-plant, multi-item, multi-period
CLSLP. A real problem in a company manufacturing steel
rolled products is provided.

The capacitated plant location problem (CPLP) is for
finding the subset of plants that will minimize the total fixed
and transportation costs such that the demand of all
customers can be satisfied [7]. In the CPLP, there are a set of
potential locations for plants with fixed costs and capacities,
and a set of customers, with demands for goods supplied
from these plants. First, a choice is made of the subset of the
plants to be opened, and second, the assignment of the
customers to these plants is made. When each customer must
be served only from a single plant, the problem is called
CPLP with single source constraints (CPLPSS). When the
capacities are unrestricted, the problem is known as the
simple or uncapacitated plant location problem (SPLP).

Capacitated production lot-sizing allocation problems
pose challenges due to its combinational nature [6]. When
capacity constraints and setup costs are considered, this
problem is NP-Hard. Bitran & Yanasse [8] showed that
several cases of a single item can be solved with a
polynomial-time algorithm, and that the problem turns to be
NP-Hard when a second item with an independent setup is
introduced. When we consider non-zero setup times, the
feasibility decision problem becomes NP-Complete.

Due to the computational complexity of solving the
capacitated lot-sizing allocation problem in an exact way,
researchers have chosen to use heuristics. These heuristic
methods on production planning issues include the GA [1][9]
[10][11], TS [4][12], SA [1], and ant colony optimization
(ACO).

The PSO approach is an evolutionary computation
technique developed by Kennedy & Eberhart [13]. It is a
stochastic global optimization method which is based on the
simulation of social behavior. Similar to the GA, the PSO

A Production Planning Problem Solved by the
Particle Swarm Optimization

Yin-Yann Chen

approach exploits a population of potential solutions to
explore the search space.

Compared with the GA method, there are no operators
involved in the PSO; instead, natural evolution is applied to
extract a new generation of candidate solutions. In contrast
with the mutation mechanism, PSO rests on the exchange of
information between individuals (named particles), and of
the population (named swarm). Each particle adjusts its
flying trajectory according to its own previous best position
and the best previous position obtained by all members of its
neighborhood. Furthermore in PSO, the whole swarm is
considered as the neighborhood. Thus, there occurs global
sharing of information and particles profit from the
discoveries and previous experience of all other members
during the searching process.

Initially, assuming that the search space is D-dimensional,
the i-th particle of the swarm is represented by a
D-dimensional vector Xi = (xi1, xi2, …, xiD) and the position
change (velocity) of the i-th particle is Vi = (vi1, vi2, …, viD).
The best particle of the swarm, that is, the particle with the
best objective function value, is denoted by gBest. The best
previous position of the i-th particle in its own searching
trajectory is recorded and represented as pBest.

The velocities and positions of the particles are
manipulated according to the following equations (the
superscript k denotes the iteration):

()
()k

i
kk

i

k
i

k
i

k
i

k
i

k
i

XgBestrc

XpBestrc

VwV

−××+

−××+

×=+

22

11

1

 (1)

11 ++ += k

i
k
i

k
i VXX

(2)

where i = 1, 2, …, N, and N is the size of the population; w

is the inertia weight which was developed to better control
exploration and exploitation; c1 and c2 are two positive
constants, called the cognitive and social parameters
respectively; and ri1 and ri2 are random numbers uniformly
distributed within the range [0, 1]. Eq.(1) is used to determine
the i-th particle's new velocity, at each iteration, while Eq.(2)
provides the new position of the i-th particle, adding its new
velocity to its current position. The performance of each
particle is measured according to a given fitness function,
which is problem dependent. In the optimization problems in
general, the fitness function is the objective function under
consideration.

The role of w is considered important for the PSO's
convergence behavior. It is employed to control the impact of
the previous history of velocities on the current velocity.
Therefore, the parameter w regulates the trade-off between
the global (wide-ranging) and the local (nearby) exploration
abilities of the whole swarm. Usually, a larger inertia weight
facilitates exploration for searching new regions; while a
small one tends to facilitate exploitation; that is, it fine-tunes
the current search space. An appropriate value for the inertia
weight w thereby provides the balance between the global
and local exploration ability of the swarm, resulting in better
quality of solutions. Experimental results show that it is

preferable to initially set the inertia to a large value in order to
induce global exploration of the search space, and then
gradually decrease it to obtain refined solutions.

Therefore, it is even more difficult to solve the capacitated
production allocation problem considering practical
characteristics. In this paper, we involve the production
planning problem in the TFT (thin film transistor) Array
process. First, the TFT Array process is a re-entrant flow in
which a similar sequence of processing step is repeated for
five times. Further, the photolithography stage, the
bottleneck in the TFT Array process, requires a second
resource in addition to machines. Photo masks and scanners
are both indispensable while executing exposure operation in
the photolithography stage. Every product with a different
re-entrant layer requires a unique mask, and consequently,
each has a set of mask with five different pieces. Moreover,
there is a tool eligibility issue between the masks and
scanners. Masks are approved to be used in specific scanners
for quality considerations. The TFT Array process is
characterized as reentry and mask constraints, so it is
regarded as a complicated scheduling problem and is more
difficult to solve than the classical ones.

II. A PRODUCTION PLANNING PROBLEM
We formulate the programming model for the production

planning problem in this paper. The symbols are defined as
follows.

Indexes:
t = period index (day), t=1,2,…,T.
p = product index, p=1,2,..,P.
s = re-entrant layer index, s=1,2,…,S.
c = bottleneck machine index, c=1,2,…,C.

Parameters:
ft = the fixed charge incurred whenever a product is

produced in period t.
scp = the setup cost for product p.
hpt = unit cost of inventory for product p in period t.
yd = the yield rate in the TFT Array process.
unitp= the converted production unit for product p,

transferring from a “lot” to large glass substrates (sheets).
That is, the release production unit in the TFT Array process
is a “cassette (or lot)” including about 20 glass substrates.
Then, unitp equals 20 for a certain product p.

dpt = the processing quantity demanded for product p in
period t.

vpt = the capacity consumed for making a unit of product p
in period t.

stpt = the setup time for product p in period t.
bt = available capacity for production in period t.
muc = the utilization rate for bottleneck machine c.
PTps = the processing time for the s-th re-entrant layer of

product p.
epsc = the matching constraints for re-entrant layers,

products, and machines. If the s-th re-entrant layer of product
p can be processed in machine c, epsc=1; and otherwise,
epsc=0.

TDps = the processing quantity demanded for the s-th
re-entrant layer of product p.

α = the penalty cost due to setup times, which is
equivalent to the total machines allocated.

β= the penalty cost due to the discrepancy between the
processing quantity demanded and the allocated production
amounts.

Decision variables:
Xpt = production amounts of product p in period t.
Ipt = amounts of end of period inventory for product p in

period t.
Ypt = binary variable, Ypt=1, if product p is produced in

period t ; Ypt=0, otherwise.
Spt = binary variable, Spt=1, if a setup is performed for

product p in period t ; Spt=0, otherwise.
Apsc = the total production amounts in machine c for the

s-th re-entrant layer of product p.
Zpsc = binary variables, Zpsc=1, if the s-th re-entrant layer of

product p is processed in machine c ; Zpsc=0, otherwise.
Lc = capacity loading in machine c. Here

() cPTAZL
p s

pspscpscc ∀××= ∑∑ , .

AQps = the total allocated production amounts for the s-th
re-entrant layer of product p. That is,

spAAQ
C

c
pscps ,,

1

∀= ∑
=

.

VQps = the discrepancy between the processing quantity
demanded and the allocated production amounts for the s-th
re-entrant layer of product p. Here,

spAQTDVQ pspsps ,,∀−= .

After the declarations of indexes, parameters, and decision
variables, the programming constraints for production
planning in the TFT Array process are described as follows:

In constraint (3) is shown the balance equations for the
inventory of products.

ptppttppt dunitydXII −××+= −1, (3)

Constraint (4) is the available capacity constraint for the

production in every period t. Both setup time and process
time consume the capacity.

() tbSstXv t
p

ptptptpt ∀≤×+×∑ (4)

In constraint (5) is shown whether the plant makes product

p in period t. The symbol, M, is defined as a big enough
number larger than the maximum quantities of releasing the
production in period t for product p.

tpYMX ptpt ,∀×≤ ,

and M is a big enough number.
(5)

In constraint (6) is shown whether the plant has a setup for

product p in period t.
tpYYS tpptpt ,1, ∀−≥ − (6)

In constraint (7) the matching constraints for re-entrant

layers, products, and machines are shown.
cspeZ pscpsc ,,∀≤ (7)

In constraint (8) is shown whether the re-entrant layer s for
product p is processed in the bottleneck machine c.

cspZMA pscpsc ,,∀×≤ ,

and M is a big enough number.
(8)

Constraint (9) is the capacity constraints for machine c.

(assume: 24 working hours per day)
cmuSPL cc ∀××≤ 24 ,

where ()∑∑ ×=
p s

pspscc PTAL

(9)

In constraint (10) is shown the total allocated production

amounts for the s-th re-entrant layer of product p, which
equals the summation of the production amounts for the s-th
re-entrant layer of product p in every machine c.

spAAQ
C

c
pscps ,

1
∀= ∑

=
(10)

In constraint (11) is shown the discrepancy between the

processing quantity demanded and the allocated production
amounts for the s-th re-entrant layer of product p. Here, SP is
defined as the planning horizon for pre-allocating the
matching problems of the re-entrant layers, products, and
machines. Moreover, we assume that every re-entrant layer
of product p has the same processing quantity demanded.

spAQTDVQ pspsps ,∀−= ,

where ∑
∈

=
SPt

ptps XTD

(11)

Constraint (12)-(16) are the basic restrictions on the

decision variables.
tpIX ptpt ,0, ∀≥ (12)

cspApsc ,,0 ∀≥
 (13)

spVQAQ psps ,0, ∀≥
 (14)

{ } cspZ psc ,,1,0 ∀∈
 (15)

{ } tpSY ptpt ,1,0, ∀∈ (16)

The objective function [Eq.(17)] is for minimizing the total

costs including inventory holding costs, setup costs, fixed
charge production costs, the penalty cost due to changeover
times among machines for the re-entrant layers of products,
and the penalty cost due to the discrepancy between the
processing quantity demanded and the allocated production
amounts.

()

∑∑

∑∑∑

∑∑

×+

×+

++

p s
ps

p s c
psc

p t
pttptpptpt

VQ

Z

YfSscRhMin

β

α
'

'''''

(17)

III. A VARIANT OF PSO
The PSO algorithm has been successfully applied to many

kinds of optimization problems. However, though the
approach has shown some important advantages by
providing high-speed convergence in specific problems,
studies are shown that the algorithm has a propensity for
obstruction near the optimal solution regions and find it
difficult to improve solution quality by fine tuning. In
addition, the original updating process of positions and
velocities must be modified when engaging in the binary
decision variables. Consequently, this paper proposes a new
variation of the PSO model. It is a binary PSO with the
adaptable inertia weight and mutation mechanism.
Meanwhile, we have kept the inherent property of the PSO,
that is, the advantage of fast convergence.

With the introduction of the concept of inertia weight, the
aim is to balance and adjust the global search and local search.
Furthermore, better performance would be obtained if the
inertia weight were chosen a time varying, linearly
decreasing quantity, rather than being a constant value.
Consequently, a higher inertia weight implies larger
incremental changes in velocity per iteration, and thus the
exploration of new search areas for better solution. However,
a smaller inertia weight signifies less variation in velocity,
providing slower change in terms of fine tuning a local search.
Therefore, it would be better that the searching process
should start with a high inertia weight for global exploration,
with the inertia weight linearly decreasing to facilitate finer
local explorations in later iterations.

A novel nonlinear function which regulates the inertia
weight with variation in time is proposed in this study. This
PSO version with adaptable inertia weight, as well as the
mutation mechanism, improves the efficiency of
performance once applied to problems with binary variables.
The proposed inertia weight w is given as follows:

()
α

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×−−=

max
minmaxmax iter

iterwwww (18)

where wmax is set as the maximum of inertia weight; wmin is

set as the minimum of inertia weight; iter is the iteration
number at the current time step; itermax is the maximum
number of iterations in a given run; and α is the nonlinear
adaptable coefficient during the iterations.

With α=1, the changes become a special case of linearly
regulative inertia weight with time, as proposed by Shi and
Eberhart [14]. The searching process starts with a larger
inertia weight (wmax), which facilitates aggressive exploration
of new solution areas; this then gradually decreases
according to Eq.(18). It will result in the different decreasing
path for different values of α to reach wmin at the final
iteration (itermax). After repetitive experiments, our model
with α=1.5 has a higher value of w during the early iterations,
which is more aggressive than Shi and Eberharts’ linear
model (α=1). Also, in our model during the later iterations, w
decreased more rapidly than the linear case, which is
beneficial in accelerating the speed of convergence. However,
if α is very large, then it may jump over the optimal areas
during early iterations due to too large searching steps, and

diverge or oscillate excessively during later iterations due to
the rapid decrease in the value of w.

Concerning the release production planning model in the
TFT Array process as illustrated in Section 2, it is mainly to
determine both binary decision variables, Ypt (whether
product p is produced in period t.) and Zpsc (whether the s-th
re-entrant layer of product p is processed in machine c).
Therefore, this paper solves the problem by way of the binary
PSO with the adaptable inertia weight and mutation
mechanism, as well as techniques of constraints handling. Its
steps are stated as follows:

(1). Initialization

The binary version of the PSO algorithm is employed in
this study, so an initial population of particles is randomly
constructed in that each particle’s position is either 0 or 1.
Next, we set the maximum and minimum velocities of
particles, which is limited to the boundary, V=[Vmin,
Vmax]=[-4,4], and the initial velocity is generated by the
following:

V=Vmin + rand*(Vmax－Vmin),
where rand means the random number.

(19)

The fitness value is evaluated by both the objective and

penalty functions due to violation of the constraints of the
programming model.

(2). Updating position and velocity

During the repetitive iterations, the velocity of each
particle is updated by Eq.(20), where c1 and c2 are social and
cognitive parameters; rand1 and rand2 are random numbers
between (0,1); pBest is the current best position of each
particle in its own searching trajectory and gBest is the best
value of the whole swarm.

)(
)(

22

11

old

old

oldnew

XgBestrandc
XpBestrandc

VwV

−××+
−××+

×=
 (20)

Here, the inertia weight is nonlinearly regulated during

iterations according to Eq.(21).

()
α

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×−−=

max
minmaxmax iter

iterwwww (21)

If the particle’s velocity exceeds the maximum, Vmax, it has

to be replaced by Vmax. Similarly, if the particle’s velocity is
smaller than the minimum, it also has to be replaced by Vmin.
Additionally, the sigmoid function [Eq.(22)] is used to scale
the velocities between 0 and 1 because the sigmoid function
value advances to 1 when ε approaches the positive infinity
and to 0 when ε approaches the negative infinity.

εε −+
=

e
Sigmoid

1
1)((22)

Finally, each particle’s position is updated according to

Eq.(23).

⎩
⎨
⎧ <

=
otherwise

VSigmoidUif
X

,0
)()1,0(,1 (23)

(3). Updating particle best (pBset)

The pBest is the best position of each particle in its own
searching process. During the iterations, the particle’s fitness
evaluation is compared with pBest. If the current value is
better than pBest, then set pBest value equal to the current
value.

(4). Updating global best (gBest)

Compare fitness evaluation with the population’s overall
previous best, gBest. If the current value is better than gBest,
then update the current particle’s value to gBest.

(5). Mutation mechanism

With the later iterations, the mutation mechanism is
involved in the proposed PSO approach in order to avoid
falling into the local optimal area. In this study, the mutation
rate is set to 0.03.

(6). Stopping criterion

If the number of iteration exceeds the maximum number of
iterations, then stop.

The GA, which is similar to the PSO, is also an

evolutionary population-based search method that provides
optimal or near-optimal solutions for combinatorial
optimization problems. In the literature, it has been
successfully applied to a number of research fields. The main
factors in developing a GA are chromosome representation,
population initialization, evaluation measure, crossover,
mutation, and selection strategy. The comparison between
PSO and GA had been discussed in a previous investigation
[15]. In our study, relative comparisons are illustrated in the
following section 4.

IV. AN ILLUSTRATED EXAMPLE
We employed the proposed PSO approach to solve this

problem. The unit cost of inventory for 19-inch XG01 and
19-inch XG02 products for every period are $0.003 and
$0.004, respectively. The setup costs for these two products
are $0.02 and $0.03, respectively. The fixed charge for the
array plant is $1 every time. The capacity constraint of the
array plant is 30 lots per day.

Generally speaking, every product in the TFT Array
process needs re-entrant manufacturing processes five times,
including the gate layer, an a-silicon layer, the source/drain
layer, the back channel passivation layer, and the indium tin
oxide layer. Photo masks and scanners are both indispensable
in executing exposure operation during the photolithography
stage. Nevertheless, a problem surfaced with the amount
restriction in that even with adequate scanners, with
insufficient or appropriate photo masks, the process cannot
work. This is the reason why scanners and photo masks
closely depend on each other.

Table.1 The available processing machines (M) for products with different
re-entrant layers.

Product: 19 in. XG01 19 in. XG02
Layer 1: Gate M1, M2 M1
Layer 2: a-Silicon M1 M2, M3
Layer 3: Source Drain M1, M3 M2
Layer 4: Back Channel Passivation M3 M2, M3
Layer 5: Indium Tin Oxide M2, M3 M1

Table.1 shows the available processing machines for

products with different re-entrant layers. For example, the
first layer (gate layer) of the 19-inch XG01 product can be
processed on the bottleneck machines M1 and M2. In
contrast, the second layer (a-Silicon layer) of the 19-inch
XG01 product can only be manufactured on machine M1.
Meanwhile, the process time for making one unit of the
product in different re-entrant layers is tabulated in Table.2.

Table.2 The process time for making one unit of product in different

re-entrant layers (unit: minute)
 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5
Process time 0.50 0.65 0.85 0.9 0.55

The minimum total cost solved by the branch and bound

approach is 29.144; TABLE.3 displays the allocation results.

Table.3 The allocation result: machines (M) vs. products for different
re-entrant layers
Product: 19 in. XG01 19 in. XG02

Layer 1: Gate M1 M1
Layer 2: a-Silicon M1 M3
Layer 3: Source Drain M3 M2
Layer 4: Back Channel Passivation M3 M2
Layer 5: Indium Tin Oxide M2 M1

Several researches have referred to the capacitated

production lot-sizing allocation problems as NP-Hard.
Clearly, with its practical characteristics and constraints in
the TFT Array process, the capacitated production allocation
is more difficult to solve. If these kinds of problems, when
solved by optimization techniques, like the branch and bound
approach, cost very efforts and time to acquire the optimal
results. For this reason, we employed the proposed PSO to
solve it and obtained the optimal total cost of 29.566. We
likewise used the GA to solve the same problem; this resulted
in the optimal total cost of 30.164.

Based on the results of experiments, it is apparent that the
proposed PSO is faster for convergence during the early
iterations. Also done is a comparison between branch and
bound (BB), the traditional PSO, GA, and the proposed PSO
in terms of superiority of solution and percentage of
discrepancy as opposed to the optimal value, as tabulated in
TABLE.4. In addition, the CPU time required for the proposed
PSO is only 36.69% of the GA’s solving time. Hence, it can
be concluded that the proposed PSO is more effective than
the other approaches from the perspective of the best
solutions and the CPU time required.

Table.4 The comparison of the three approaches

 The optimal value f *

(Branch and Bound)
The traditional

PSO GA The proposed
PSO

The best solution 29.144 30.697 30.164 29.566
Discrepancy (%) 5.06% 3.38% 1.42%

V. CONCLUSION
Numerous researchers have referred to the capacitated

production lot-sizing allocation problems as NP-Hard.
Therefore, it is more difficult to solve the capacitated
production allocation problem considering some practical
characteristics, such as allocation problems among
bottleneck machines, photo masks, and products with
different re-entrant layers. This study proposed a novel
variation of the PSO model, which is a binary PSO model
with adaptable inertia weight and mutation mechanism. It can
be converted to be able to solve the model of binary decision
variables. Moreover, it improves some weaknesses as
opposed to the original version of the PSO, including a
propensity for obstruction near the optimal solution regions
that hardly improve solution quality by fine tuning.
Comparing effectiveness, the traditional PSO, genetic
algorithm, and the proposed PSO in this paper are compared
by the production planning problem in the TFT Array process.
According to the results, it can be concluded that the
proposed PSO is more effective than the other approaches in
terms of superiority of solution and required CPU time.

ACKNOWLEDGMENT
The author gratefully acknowledge the National Science

Council, Taiwan, R.O.C., for support under contract No.
NSC 97-2221-E-150-080-MY2.

REFERENCES
[1] L. Ozdamar and M. A. Bozyel, “The capacitated lot sizing problem

with overtime decisions and setup times,” IIE Transactions, vol. 32, pp.
1043–1057, 2000.

[2] R. Berretta and L. F. Rodrigues, “A memetic algorithm for a multistage
capacitated lot-sizing problem,” International Journal of Production
Economics, vol. 87, pp. 67–81, 2004.

[3] Y. Song and G. H. Chan, “Single item lot-sizing problems with
backlogging on a single machine at a finite production rate,” European
Journal of Operational Research, vol. 161, pp. 191–202, 2005.

[4] M. A. Al-Fawzan, “An algorithm for production planning in a flexible
production system,” Computers & Industrial Engineering, vol. 48, pp.
681–691, 2005.

[5] L. Ozdamar and S. I. Birbil, “Hybrid heuristics for the capacitated lot
sizing and loading problem with setup times and overtime decisions,”
European Journal of Operational Research, vol. 110, pp. 525–547,
1998.

[6] M. Sambasivan and S. Yahya, “A Lagrangean-based heuristic for
multi-plant, multi-item, multi-period capacitated lot-sizing problems
with inter-plant transfers,” Computers & Operations Research, vol. 32,
pp. 537–555, 2005.

[7] R. Sridharan, “The capacitated plant location problem,” European
Journal of Operational Research, vol. 87, pp. 203–213, 1995.

[8] G. R. Bitran and H. H. Yanasse, “Computational complexity of the
capacitated lot size problem,” Management Science, vol. 28(10), pp.
74–86, 1982.

[9] Y. J. Jang, S. Y. Jang, B. M. Chang, and J. Park, “A combined model of
network design and production/ distribution planning for a supply
network,” Computers & Industrial Engineering, vol. 43, pp. 263–281,
2002.

[10] Y. H. Lee, S. H. Kim, and C. Moon, “Production-distribution planning
in supply chain using a hybrid approach,” Production Planning &
Control, vol.13, pp. 35–46, 2002.

[11] C. Moon, J. Kim, and S. Hur, “Integrated process planning and
scheduling with minimizing total tardiness in multi-plants supply
chain,” Computers & Industrial Engineering, vol. 43, pp. 331–349,
2002.

[12] W. C. Chiang and R. A. Russell, “Integrating purchasing and routing in
a propane gas supply chain,” European Journal of Operational
Research, vol. 154, pp. 710–729, 2004.

[13] J. Kennedy and R. C. Eberhart, “Particle Swarm Optimization,” In:
Proceedings of the IEEE International Conference on Neural Networks,
Piscataway, NJ, 1995, pp. 1942–1948.

[14] Y. Shi and R. C. Eberhart, “A modified particle swarm optimizer,” In:
IEEE International Conference on Evolutionary Programming,
Alaska1, 1998, pp. 69–73.

[15] R. C. Eberhart and Y. Shi, “Comparison between genetic algorithms
and particle swarm optimization,” In: Annual Conference on
Evolutionary Programming, San Diego, 1998, pp. 611–616.

