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Abstract—Recently, the importance of odors and
methods for their evaluation have seen increased em-
phasis, especially in the fragrance and food industries.
Although odors can be characterized by their odor-
ant components, their chemical information cannot
be directly related to odor qualities. Biological re-
search has revealed that neural activity evoked on the
glomeruli (which form part of the olfactory system)
is closely connected to odor qualities. In this paper,
we report on a neural network model of the olfactory
system that can predict glomerular activity and odor
qualities from odorant molecule structures. We also
report on the learning and prediction abilities of the
proposed model.

Keywords: glomerular activity prediction, odor quali-
ties, olfactory system, neural network model

1 Introduction

Recent research has revealed that odors affect human
memory and emotion [1] in addition to enriching our
lives. This places increased importance on the process
of odor sensory evaluation employed in the fragrance,
food and beverage industries. As odors are complex mix-
tures composed of hundreds of odorants, the main pur-
pose of the sensory evaluation process is to find key odor-
ant molecules in the target odor. The approach proposed
by Grosch [2] allows efficient performance of this task by
introducing a gas-chromatography system in the sensory
evaluation process. This system decomposes the odor-
ants in an odor into time space and sends the decom-
posed results in real time to a human panel, which then
judges the odor qualities of each odorant as well as its
impact. However, any sensory evaluation method carries
problems related not only to consistency across human
panels but also to unstable factors within such panels,
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including sensory fatigue or variations in health condi-
tion. These factors make the sensory evaluation protocol
complex and time-consuming. A prospective solution for
this problem would be to build a model of the olfactory
system based on biological insight to serve as a tool for
the simulation of information processing in the olfactory
system that allows the prediction of odor qualities.

The most important information directly related to odor
qualities is considered to be neural activity on glomeruli
that are distributed over the surface of the olfactory bulb,
which forms part of the olfactory system [3]. Because the
evoked activity is odor-specific, it is considered that odor
qualities can be predicted from glomerular activity [4].

In this paper, we report on a neural network model
of the olfactory system designed to enable prediction
of glomerular activity from the structure of odorant
molecules. The model consists of two parts: the glomeru-
lar activity prediction part predicts neural activity evoked
on the glomeruli, while the olfactory bulb part predicts
the perceptual characteristics of odors by simulating the
function of the olfactory bulb. Since glomerular activ-
ity data on humans are not available, the model de-
scribed in this paper focused on predicting those of rats.
The database used can be found online [5], and provides
glomerular activity patterns measured from more than
300 different odorants. Although glomerular activity in
humans and rats is different, the structure of the pro-
posed model is irrelevant to such differences. Accordingly,
it can be applied to the prediction of human activity once
a dataset is provided.

To validate the model, we compared the simulation re-
sults with those of odor discrimination experimentation
involving mice. Although the measurement results re-
vealed differences in glomerular activity patterns between
mice and rats [6], it is expected that these differences can
be absorbed by the parameter settings of the model.

2 Biological Facts

This section briefly explains basic biological facts regard-
ing the olfactory system, and outlines the odor discrimi-
nation experiment involving mice.
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Figure 1: The olfactory system.

2.1

Figure 1 shows the basic structure of the olfactory system
of mice, which consists of three parts: receptor neurons,
the olfactory bulb and the piriform cortex. Receptor neu-
rons are distributed on the surface of the nasal chamber,
expressing single receptor protein from among thousands
of different varieties [7]; each neuron is activated by a spe-
cific group of odorants and send signals to the olfactory
bulb.

The olfactory bulb mainly consists of glomeruli, mitral
cells and granular cells. The glomerulus, which is dis-
tributed over the surface of the olfactory bulb, is a round
cluster of axon terminals accumulated from receptor neu-
rons. The activity patterns evoked on glomeruli are odor-
specific [3] and related to odor qualities [4]. These ac-
tivity patterns have been revealed only recently, and a
database on them is provided online [5].

Olfactory System

A mitral cell is an excitatory neuron that receives the out-
put from a glomerulus. These cells are interconnected by
excitatory synapses and also excite granular cells, which
are inhibitory neurons that then send inhibitory signals
back to the mitral cells. Although mitral cells and gran-
ular cells appear to form complex connections, recent re-
search has suggested that they form a center on-off sur-
round circuit in which neighboring mitral cells excite each
other but distant ones inhibit each other [8].

2.2 Odor Discrimination Experiment on
Mice

Nakamura et al. conducted a series of odor discrimination

experiments involving mice [9]. Since similarities between

target odors raise the difficulty of discrimination, the dis-

crimination rate obtained from this experiment can be

used as a metric for perception characteristics.

The experiment is started by placing a mouse at point
S and training it to select a reward odor that emanates
either from end E1 or E2 as shown in Fig. 2 (a). Here,
the reward odor was composed of three types of odorants
such as [TA EB Ci]. The trained mice are then required to
discriminate the reward odor from other odors that share
common odorants with it. Figure 2 (b) illustrates the
results of an odor discrimination experiment involving ten
mice; it shows a perceptual characteristic whereby most
of the mice had difficulty in discriminating [IA EB] from
[TA EB Ci], suggesting that both odors are very similar.
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Figure 2: Odor discrimination experiments involving

mice.

3 The Proposed Model

The proposed neural network model consists of a
glomerular activity prediction part and an olfactory bulb
part, as shown in Fig. 3. Input data for the model is pro-
vided by a graphical molecular structure. Each odorant
molecule included in an odor is converted into a glomeru-
lar activity pattern by the glomerular activity prediction
part. The olfactory bulb part then mixes the predicted
activity patterns and performs generalization and feature
extraction. Finally, the differences between the activity
patterns of the olfactory bulb are calculated, and the cal-
culated differences are considered as a metric for the per-
ceptual characteristics. This section describes the struc-
ture of the model and the proposed learning algorithm
for parameter determination.

3.1 Model Structure
3.1.1 The Glomerular Activity Prediction Part

We assumed that glomerular activity could be expressed
by a summation of Gaussian functions whose param-
eters were modulated by molecular structure. Under
this assumption, a Gaussian mixture function model for
glomerular activity prediction is proposed. The glomeru-
lar activity prediction part consists of a receptor layer,
two hidden layers, a Gaussian layer and an activity pat-
tern layer. Here, we describe the processes in each layer.

Receptor layer

The receptor layer consists of M units of receptor models
described by graph kernel functions [10]. The graph ker-
nel method provides metrics of similarity between two la-
beled graphs by calculating the probability of correspon-
dence for partial structures. Because actual receptor neu-
rons are considered to selectively respond to structurally
similar odorants, a representative odorant is defined as a
pseudo receptor. Consequently, the graph kernel function
with a representative odorant assigned serves as a recep-
tor model. The strength of the receptor model’s response
depends on the graph kernel value as calculated using the
following equation:

K(G’man) = Z Z p(hm|ém)p(hq|Gq)
B € Vi hgEhy
Kp(b(hm),b(he)), (1)
where ém and G, are the representative odorant and

the input odorant in the labeled graph representation,
p(hm|Gr) and p(hy|G,) are the probabilities of occur-
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Figure 3: The structure of the proposed olfactory system model.

rence for paths h,, and hy, and Kp(b(hm),b(hy)) is a
function that calculates the correspondence of the label
of h,, and h;.

The output of the receptor unit U}, is a normalized graph
kernel value defined as:

K(Gm,G,)

Uy, = .
VE(Gom, G)K Gy, Gy)

m

(2)

Hidden layers

The hidden layers are a classical feed-forward neural net-
work model that converts the input from the receptor
layer into the strength of the activity at the connected
region on the glomerular layer. Each of the two hidden
layers consists of M N sigmoidal function units. Here, N
is the value of the Gaussian function that is assumed to
approximate the major glomerular activity evoked by the
representative odorant. The outputs of the hidden layers
are given by the following equations:

Uh = !
j h—1
1+ exp{—a(}_,, wm;Um = —0)}
where h is the layer number, and a and 6 are the gain and
threshold constant of the sigmoidal function, respectively.

(h€2,3), (3)

Gaussian and activity pattern layers

The outputs of the hidden layers are input to the Gaus-
sian layer through connective weights wyg;, and generate
glomerular activity strength according to the following
equation:

Uff(z7y) = ZwkiU;f exp{—a(zc; — 33)2 - 5(.%,1,9)2}, (4)
k

where (2., Y1) denotes the center coordinates on the
activity pattern layer to which a Gaussian unit is con-
nected, and the parameters a and /3 control the width of
the Gaussian curve.

The activity pattern layer consists of 1,805 linear function
units allocated at each coordinate (z,y). The units add
up the input from the Gaussian layer according to the
following equation:

Us (e)(Ga) = 3 Ulay)-

l

()
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Consequently, the glomerular layer allows prediction of
glomerular activity U? . 1(Gq) of an input odorant G.
Although the number of linear units is determined based
on the order of the actual number of glomeruli, it should
be noted that each linear unit does not correspond to
actual glomeruli, and we do not intend to predict the

activity of each glomerulus.

3.1.2 The Olfactory Bulb Part

The olfactory bulb part consists of the glomerular layer
and the mitral-granular layer. This part predicts odor
similarities from the activity patterns evoked on the
mitral-granular layer. The predicted odor similarity can
be considered as the counterpart of the discrimination
rate obtained from the odor discrimination experiments.

Input to the glomerular layer

The input of the glomerular layer is a weighted summa-
tion of the glomerular activities evoked by all odorants
contained in an inputted odor. Each activity is pre-
dicted separately using the glomerular activity prediction
part. Supposing an odor which is composed of odorants
[G1,---,Gy,--,Gq], the input is described as the follow-
ing equation:

up =D wgUp (.4 (Go)s (6)
a

where U? »(Gy) is the activity pattern evoked by the
odorant G .

The glomerular layer

The glomerular layer includes P Grossberg’s neuron mod-
els described by the following equation [11]:

Uy 6 6,6 6 6
—— =10, +((-U,)u, - U, Z Wy, pr Uy 5

7 (7)
p' (p#p')

where 7 is the time constant, { is the saturation con-
stant, and wp ,r < 0 represents the inhibitory connective
weights in the glomerular layer. If the neuron models
are fully connected to each other with the same strength
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Figure 4: Connective weights W, , distribution origi-
nated from (z,y) = (20,70).

(except to themselves), then the output of this layer will
converge to the following state [11]:

6 C“g

_ —.
T+ ZP' (p#p') Wpip' Upr

p (8)
When ( is 1 and 7 is small enough, the output of a neuron
model becomes the division of input to the pth neuron
and the sum of inputs to all neurons, i.e., the input to
each neuron is normalized by the total strength of inputs
to the glomerular layer.

The mitral-granular layer

The mitral-granular layer consists of sigmoidal neuron
models. The neuron models in this layer have mutual
connections in a center on-off surround manner: nearby
neurons connect with excitatory connections (wgy > 0),
and distant ones connect with inhibitory connections
(wgg < 0). The neuron model is defined by:

dug 7 6 7
dt =Tl Up + Z Wag' Uyt 9)
gl
1
Ur (10)

97 T+ exp{—a(u] —0)}

where ug is an internal state, Ug7 is the output of the

neuron model, and Ug is the input from a Grossberg’s
neuron model in the glomerular layer. In this model, wg
is determined based on the following equation proposed
by Osuna et al.[12]:

0,1, d<D.
Wiz,y),(z'y') = [—1,0], D, <d< D; R (11)
0, d> D;

where D, and D, are distance constants and d is the
Euclidean distance.

Figure 4 shows an example of connection strength distri-
bution originated from (z,y) = (20,70). Here, the upper
left side (rostral dorsal part) of the glomeruli in Figure
4 is affected by the inhibitory input, because the neuron
models at the edge of the unrolled map are connected
based on the original location [5] on the olfactory bulb.

The perceptual difference between two arbitrary odors
is then defined using the mean error value between the
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Figure 5: The learning curves.

evoked activities in the mitral-granular layer. The calcu-
lated error is considered to correspond to the discrimina-
tion rate of the odor discrimination experiment described
in Section 2.2. This is because mitral cells send informa-
tion to the piriform cortex for odor recognition in the
actual olfactory system.

3.2 Learning Algorithm

The proposed learning algorithm consists of three steps;
steps 1 and 2 adjust the glomerular activity prediction
part, and step 3 adjusts the olfactory bulb part.

Before learning, an arbitrary odorant dataset that con-
tains L odorants and corresponding glomerular activities
is obtained from the database website [5]. The dataset is
then divided into three parts according to the average
cross correlations between glomerular activities: odor-
ants with average cross correlations lower than C; fall
into learning dataset 1, those larger than C; and lower
than C to learning dataset 2, and those larger than Cs
to the validation dataset.

Step 1

Using learning dataset 1, Step 1 adjusts the connective
weights w; ; and w;, by providing teaching signals to
the second hidden layer of the activity prediction part
shown in the left side of Figure 3. The learning algorithm
employed is a back-propagation algorithm called RPROP
[13]. First, the odorants in learning dataset 1 are assigned
to the receptor units as representative odorants. As the
glomerular activity patterns evoked by the odorants in
dataset 1 have the lowest average cross correlations, we
assume that the activity patterns are close to orthogonal.
Under this assumption, the teaching signal provided to
the k-th sigmoidal function unit in the second hidden
layer t;  is determined by the following equation:

tik = {

where Ty and T}, are constants in the range of (T}, 1]
and (0, Tp).

TH)
TL7

(i—1)N <k<iN

otherwise (12)

Step 2
Step 2 adjusts the connective weights wy,; from the sec-
ond hidden layer to the Gaussian layer shown in the left
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Figure 7: The activities evoked by the odorants in the
validation datasets.

side of Figure 3 as well as the parameters included in each
Gaussian unit in Equation (4) using learning datasets 1
and 2. In this step, the steepest-gradient method is em-
ployed to minimize the sum of mean squared errors be-
tween the outputs of the glomerular layer and the mea-
sured glomerular activities.

Step 3

This step adjusts the weights w, included in the Equation
(6). First, parts of the odors used in the odor discrimina-
tion experiment are chosen as teaching odors. wy is then
manually adjusted to maximize the correlation between
the discrimination rates of the teaching odors and the
mean error value of the activity patterns evoked on the
mitral-granular layer. Other parameters such as D, and
D; which determines the bounds of the excitatory and
inhibitory connection as shown in Figure 4 and Equation
11 are preliminary set as constants.

4 Simulation

This section reports on verification of the learning al-
gorithm and the prediction ability of the model for the
glomerular activity prediction part and the olfactory bulb
part, respectively. The simulation described here is im-
plemented using Matlab numerical computing software.
4.1 Glomerular Activity Prediction Part

L = 68 odorants among the 365 provided online with
the structure of methyl were chosen as a dataset for the
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simulation. As the structure of methyl has a minimal
influence on odor qualities, this choice is equivalent to
a random selection, but facilitates data handling. As a
result of learning dataset division, 17 odorants were de-
termined as dataset 1, another 17 as dataset 2, and the
rest as the validation dataset.

Considering the comparison of the predicted perceptual
characteristics with those obtained from odor discrimi-
nation experiments involving mice, isoamyl acetate and
ethyl butyrate were added to learning dataset 1. Citral is
also an odorant that was used in the experiment involving
mice, but its glomerular activity was not provided. Ac-
cordingly, we added geraniol instead to learning dataset
1 because it has the largest kernel value for citral among
the 365 odorants. This process can minimize errors gen-
erated by the glomerular activity prediction part.

In this simulation, the parameter N was set as 15, and
Ty and Tp, were set as 1.0 and 0.1 respectively. Learning
steps 1 and 2 were applied until the average percentage
error per linear unit in the activity pattern layer fell be-
low 7%. Figure 5 (a) and (b) show the learning curves of
steps 1 and 2, respectively. Figure 6 shows the learned
glomerular activity along with its average percentage er-
ror with the standard deviation. These figures confirmed
that the error of the glomerular activity layer successfully
converged to the desired value.

The prediction ability of the model was then tested by
inputting the odorants in the validation dataset. Figure
7 shows the predicted glomerular activity with the typical
error, and Figure 7 (c) shows the average prediction error
and its standard deviation. These figures confirm that
the model provides a certain level of prediction ability.

4.2 The Olfactory Bulb Part

Using the olfactory bulb part, we attempted to predict
the perceptual characteristics obtained from the odor dis-
crimination experiment involving mice. As mentioned in
Section 3.1, the mean error value between the activity
patterns on the mitral-granular layer is defined as the
metric corresponding to the discrimination rate. In the
simulation, we used the discrimination rates of isoamyl
acetate, ethyl butyrate and citral for parameter adjust-
ment.

The parameters of inhibitory and excitatory distance in
the mitral-glomerular layer were preset as D, = 3 and
D; = 7. Following learning step 3, the connective weights
w; were then manually adjusted to maximize the corre-
lation of the discrimination rates with the mean error
value of the activity patterns evoked by the three odors
described above against odor [IA EB Ci]. As a result,
connective weights wry = 1.6, wgp = 2.3, we; = 0.9 were
found to be the best parameters, with a maximum corre-
lation of 0.92.
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Figure 8: The simulation results.

Using these parameters, odors [IA Ci], [IA EB] and [Ci
EB] were input to the model, and the correlation was
calculated in the same manner. Figure 8 shows the sim-
ulation results. The upper row shows the discrimination
rates of mice and the error between activity patterns,
the second and third row respectively show the activity
patterns on the mitral-granular layer and the glomerular
layer, and the lower row shows the activity patterns on
the activity prediction layer. The figure shows that the
predicted error poses the same tendency as the discrimi-
nation rate for mice with a correlation of 0.79. This result
confirmed the ability of the model to predict perceptual
characteristics.

5 Conclusions and Future Work

In this paper, we proposed an olfactory model consisting
of two parts. The simulation results confirmed that the
glomerular activity prediction part enables glomerular ac-
tivity prediction when provided with graphical molecular
input, and the olfactory bulb part enables prediction of
the tendency of error rate obtained from the results of
the odor discrimination experiment involving mice.

Since the data set used in the simulation is small com-
pared to the whole odorant space, we intend to expand
the range of target odorants and odors in future work.
We also plan to establish a parameter-setting algorithm
especially for the olfactory bulb part. Odorant concentra-
tion is also a critical parameter that we aim to introduce
in the near future.
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