
Abstract— In this paper the effects of radiation, magnetic 
field, variable viscosity and variable thermal conductivity on 
similarity solutions of mixed convection at a vertical flat plate 
embedded in a porous medium are studied numerically. 
Temperature of the plate  as well as the free stream velocity are 
assumed to vary as  power  functions of  x , where x  is the 
distance measured vertically along the plate.  The flow and 

heat transfer quantities are found to be functions of  C, ,  , 

k , RP and Rd  where C is  magnetic field parameter,   is  

power of index of the plate temperature,   is  viscosity 

variation coefficient, k  is thermal conductivity variation 

coefficient,  RP,  mixed convection parameter  is ratio of the 

Rayleigh number to the cleteP   number and Rd is  radiation 
parameter. The cases of assisting and opposing flow are 
considered and in the  opposing flow case dual solutions are 
found for certain values of the parameters. Ranges of values of 
the parameters for which there exist no solution or dual 
solutions or a unique solution  are also obtained.                                                                                                                                                                                                                                                                                                                                                                           

The influences of magnetic field, thermal radiation, 
variable viscosity, variable thermal conductivity and varying 
wall temperature on the velocity and temperature fields are 
studied and discussed with the help of graphs.

Key Words: Magnetic field, Mixed Convection, Radiation, Variable 
Fluid properties, varying wall temperature.

I.INTRODUCTION

Over the last four decades much insightful work has been 
done on mixed convection boundary-layer flows in porous 
media. The analogous problems have important applications 
in fields such as geothermal energy extraction, oil reservoir 
modeling, and the dispersion of chemical contaminants in 
different industrial processes in the environment. References 
[8] and [11] stand evident to the fact that convective flows in 
porous media are of vital importance to such processes. 

As pointed out in reference [1], in mixed convection flows, 
similarity exists only if the free stream velocity and 
temperature of the plate vary as the same power functions of 
distance along the plate. Also, in mixed convection flows, 
there arise four cases (ref. [11]), of which two correspond to 
assisting flow and two to opposing flow. They are (i) hot plate-
assisting flow (ii) hot plate- opposing flow (iii) cold plate-
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 assisting flow and (iv) cold plate- opposing flow. Of these 
four cases, only two, namely (i), (iv) are taken into 
consideration in this study.  

Reference [6] discussed the effect of variable viscosity on 
convective heat transfer in three different cases of natural 
convection, mixed convection and forced convection, taking 
fluid viscosity to vary inversely with temperature. However, 
the authors have confined their attention to the assisting flow 
case only. Reference [1] studied mixed convection boundary 
layer flow on a vertical surface in a porous medium, when both 
the temperature of the plate and the free stream velocity vary 
as the same power function of distance along the plate. 
Similarity solutions are found as functions of two parameters 

  and   where   represents the power of index of the 

plate temperature and   represents the mixed convection 
parameter which is the ratio of the Rayleigh number to the 

cleteP  number. Both assisting flow and opposing flow were 

discussed. Ranges of values of   for different values of 
were presented for which either a unique solution, dual 
solutions or no solution exist. The effects of  and   on the 

flow and heat transfer characteristics were discussed.
The effect of radiation on free convection flow of fluid with 

variable viscosity from a porous plate is discussed in reference 
[2]. The fluid considered in that paper is an optically dense 
viscous incompressible fluid of linearly varying temperature 
dependent viscosity. Reference [9] discussed coupled heat and 
mass transfer in Darcy-Forchheimer Mixed convection from a 
vertical flat plate embedded in a fluid saturated porous 
medium under the effects of radiation and viscous dissipation.

 Reference [4] discussed mixed convection boundary layer 
flow over a vertical surface for the Darcy model when 
viscosity varies inversely as a linear function of temperature. 
Results of both assisting flow and opposing flow were 
discussed as functions of the mixed convection parameter 
and variable viscosity parameter

e . In the opposing flow 

case, the existence of dual solutions and boundary layer 
separation were noticed.  Mixed convection boundary layer 
flow on a vertical surface in a saturated porous medium is 
studied in reference [7]. In that paper the flow of a uniform 
stream past an impermeable vertical surface embedded in a 
saturated porous medium and which is supplying heat to the 
porous medium at a constant rate is considered.

The effect of magnetic field and varying plate temperature 
on free convection past a vertical plate in porous medium has 
been discussed in ref. [10]. Magneto hydrodynamic mixed 
convection flow in an annular region filled with a fluid 
saturated porous medium has been analyzed in ref. [3]. A 
transverse magnetic field which acts radially is created by a 
stationary electric current that flows through a cylindrical 
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shaped electrical cable present in the annular region. The 
effect of non uniform magnetic field on the flow and heat 
transfer of the Darcy model is discussed. Magneto 
hydrodynamic free convection in a horizontal cavity filled 
with a fluid saturated porous medium with internal heat 
generation has been studied in ref. [5]. Assuming that the 
magnetic field is inclined at angle   with the horizontal 

plane, the flow and heat transfer are discussed as functions of  
inclination angle  , Hartmann number Ha, Rayleigh number 

Ra and aspect ratio a.
For fluids all the properties change with temperature and, in 

particular, changes in viscosity and thermal conductivity are 
quite significant for many fluids. Hence, in this study we 
assume both viscosity and thermal conductivity to vary with 
temperature and make a numerical study of the effect of 
variable viscosity, variable thermal conductivity and radiation 
on mixed convection flow at a vertical plate in a porous 
medium. The plate temperature and the free stream velocity 
are assumed to vary as power functions of distance ( x ) along 
the plate and a magnetic field is assumed to act normal to the 
plate. The fluid considered here is assumed to be gray. In the 
opposing flow case, dual solutions are obtained for certain 
values of the mixed convection parameter RP. Both assisting 
flow and opposing flow are discussed. Ranges of values of RP
are obtained for which either a unique solution, dual solutions 
or no solution exist for the problem. Significant differences are 
noticed between the flow and heat transfer quantities related to 
the two solutions of the dual solution case.

                                        II. FORMULATION

Let a flat plate be embedded vertically in a porous medium 
saturated with a viscous incompressible electrically 
conducting, gray, emitting, absorbing and non scattering fluid. 
The porous medium is assumed to be homogeneous and is in 
thermal equilibrium with the surrounding fluid. Let a magnetic 
field of uniform strength be applied in a direction normal to the 
plate. Let X-axis be taken vertically along the plate and Y-axis 

perpendicular to the plate. The temperature of the plate ( 0T ) is 

assumed to vary as a power function of distance along the 

plate, as xATT  0  where T  is temperature of the 

ambient fluid, A is a constant and   is a real number. Fluid 

viscosity (  ) and effective thermal conductivity ( mk ) are 

assumed to vary with temperature 

as )(tsf   , )(tskk kfm  , where f , fk  are 

viscosity and thermal conductivity evaluated at the film 

temperature. We take )(),( tsts k as
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A viscosity variation coefficient   and a thermal 
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Density of the fluid   is assumed to be a function of 

temperature only in the body force term and other fluid 
properties are assumed to be constant. The ambient fluid is 

assumed to flow vertically upwards with a velocity U
parallel to the vertical plate. 
The equations governing the mixed convection problem for 
the Darcy model are

0







y

v

x

u                                                            (1)                                                                     

        02
0 





 UuBUu

K
g

x

pp
      (2)                                  

0



v
Ky

p                                                               (3)

y

q

y

T
k

yy

T
v

x

T
uc r

mp 





























          (4)                                              

where vu,  are fluid velocity components, T is fluid 

temperature, K is Permeability, mk is effective thermal 

conductivity of the fluid saturated porous medium, 0B  is the 

magnetic flux,   is the electric conductivity and rq   is the 

radiative heat flux.  It is also assumed that there is radiation 
only from the fluid. Further it is assumed that thermal radiation 
is present in the form of a unidirectional flux, transverse to the 
vertical plate. The Rosseland approximation is used in the 
energy equation to describe the thermal radiative heat transfer. 

It may be noted that by the use of the Rosseland 
approximation, the applicability of the present analysis is 
limited to optically thick fluids only.

The appropriate boundary conditions are
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Taking the free stream velocity as xbU   where b is a 

constant, introducing cleteP  number (
xPe ), non 

dimensional functions ,f  ; a similarity variable  and 

radiative flux rq   through the relations
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(where s is the Stefan-Boltzmann’s constant and ek is the 

mean absorption coefficient) & eliminating fluid pressure 
from (2) and (3), the governing equations are obtained as                                                                                 
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is the radiation parameter, and
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The boundary conditions (5) become
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Equation (7) can be integrated once using the 
condition on f   at   to get 
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Evaluating this at 0  we get the slip velocity )0(f  .                                                                            

  III.a PARAMETERS OF THE PROBLEM AND THEIR EFFECT ON THE   
                 FLOW AND HEAT TRANSFER

The flow and heat transfer depend on the parameters C , 

 ,  , k , RP and  Rd  where C is  magnetic field parameter, 

  is  power of index of the plate temperature,   is  

viscosity variation coefficient, k  is thermal conductivity 

variation coefficient,  RP,  mixed convection parameter  is 
ratio of the Rayleigh number to the cleteP   number and Rd 
is  radiation parameter. Positive and negative values of A

correspond to  TT0  ,  TT0  and in turn to assisting 

flow and opposing flow respectively. The parameters  , k
take positive as well as negative values, the limiting values 

being ‘-2’ and +2. Irrespective of the values of 0T  and T , 

zero values of   and k  correspond to constant viscosity 

and constant thermal conductivity. In this paper, solutions are 

found for the values -1, 0, and 1 of   and k .

The mixed convection parameter RP takes positive values 
for assisting flow and negative values for opposing flow. 
When RP is zero, the results correspond to the forced 
convection case. Enhanced flow can correspond to an increase 
in the positive value of RP, as an increase in its value can be 

due to an increase in the temperature difference ( TT0 ). 

Calculations are done for a wide range of positive and negative 
values of RP.   

To determine certain important values for , the total heat 

convected in the flow, )(xQ at any down stream location x
is considered. 
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This can be seen to be proportional to 2

13 

x . For 

uniform heat flux surface, )(xQ should vary linearly with x
and so 3/1 . For an adiabatic surface, )(xQ should be 

independent of x  and so 3/1 .  Zero value of  
corresponds to the isothermal case.  In this study solutions are 
found for the values 3.0,0,3.0  and 0.5 of . When A

is positive, an increase in the value of   can correspond to an 
increase in the temperature of the plate, and, in a broader 
sense, it can result in enhanced flow.
When there is no magnetic field, the parameter C takes the 
value unity and for increasing intensity of the magnetic field, 
the parameter takes values smaller than unity. In the present 
study, solutions are found for the values  0.5 and 1 of C. 
Reduced flow can be expected for smaller values of C or for 
increased intensity of the magnetic field  as the Lorentz force 
(due to the  magnetic field) obstructs the flow.

When transfer of heat energy through radiation is neglected, 
the parameter Rd takes zero value and for increasing intensity 
of thermal radiation, the parameter takes larger values. 
Solutions are found for the values 0, 0.5, 10 of the parameter 

Rd. Thermal radiation causes thickening  of the thermal 

boundary layer and hence increasing values of the parameter 
Rd can increase thermal boundary layer thickness.

Effects of simultaneous variation of the values of the 
parameters on the flow and heat transfer are presented in the 
discussion.
                          III.b. NUMERICAL SOLUTION

The equations for f  and , i.e., equations 8 & 10 are 

integrated numerically subject to appropriate boundary 
conditions by Runge-Kutta-Gill method together with a 
shooting technique. The accuracy of the method is tested by 
comparing appropriate results of the present analysis with 

available results. Our results for C =1, Rd = 0,  =0, 0k
and appropriate values of   (i.e., no magnetic field, no 
radiation, constant viscosity, constant thermal conductivity) 
are in very good agreement with those in ref. [1]. Also our 

results for C =1, Rd =0,  =0, 0k  and  =0 (i.e., no 

magnetic field, no radiation, constant viscosity, constant 
thermal conductivity and isothermal plate) agree very well 
with those of   ref. [4] and ref. [7].   

                     IV. DISCUSSION OF THE RESULTS

In the following, more attention is paid to the discussion of 
solutions of the opposing flow case. Because of our choice, 

when TT0  the opposing flow case arises in which RP

takes negative values. When TT0 , for fluids like Methyl 

Chloride, 0,0  k  while for fluids like 

Dichlorofluro Methane, 0,0  k  . For a given value of 

the parameter RP, in the dual solution case, the solution 
corresponding to a relatively larger value of )0(f   is 

referred to as the upper solution and the one corresponding to a 
smaller value of  )0(f   as the lower solution. We   know that 

the local drag coefficient is directly proportional to the skin 
friction )0(f   and local Nusselt number is directly 

proportional to the heat transfer coefficient or the wall heat 
transfer rate )'0('   . 

                   ISOTHERMAL CASE ( 0 )   

Qualitatively distinct behaviours of the flow and heat transfer
Characteristics of the isothermal case are presented in figures 
1 -11.                                                           

Variations in Skin friction with negative values of the mixed 
convection parameter RP are shown in figures 1,2. 



Corresponding variations in heat transfer coefficient with 
negative values of RP are shown in figures 3,4. From figures 1 
and 2, when viscosity and thermal conductivity are taken to be 
variable the local drag coefficient can be observed to take 
larger values in the presence of magnetic field (C =0.5) than in 
its absence (C =1). The coefficient of drag is also observed to 
be larger in the absence of radiation than in its presence. The 
range of values of RP over which solutions exist can be seen to 
be considerably larger in the presence of magnetic field than in 
its absence. The range can also be seen to be larger in the 
absence of radiation than in its presence. The drag coefficient 
also assumes larger numerical values in the presence of 
magnetic field, and also in the absence of radiation. The range 
of values of RP as well as the coefficient of drag can be seen to 

be larger when 0  and 0k (for fluids like methyl 

chloride) than when 0  and 0k (for fluids like 

dichloro fluro methane). Local drag coefficient can be seen to 
assume larger values as RP takes increasing negative values up 
to a certain stage (i.e., as RP changes from 0 to -0.1, -0.1 to 
-0.2 and so on), and beyond that again take diminishing values 
till RP assumes a critical value.  No solution exists beyond this 
critical value of RP. As RP increases from this value, up to a 
certain negative value, the drag coefficient further diminishes. 
Thus, a single solution exists for certain values of RP, dual 
solutions exist for another set of values of RP and no solution 
exists beyond the critical value of RP. 

From figures 3 and 4 it may be observed that, unlike 
skin friction, the heat transfer coefficient takes diminishing 
values with increasing negative values of RP up to a critical 
value of RP, and diminishes further with increasing values of 
RP up to a certain negative value. This is because, in the 
opposing flow case the buoyancy forces work against the fluid 
flow, and hence the retardation in the heat transfer process. 
Further, in the presence of magnetic field as well as in the 
absence of radiation, heat transfer coefficient decreases for 
larger numerical values of RP. The heat transfer coefficient 
can also be observed to take larger numerical values 

for 1 , 1k  than for 1 , 1k . Thus, the 

behavior of heat transfer coefficient with k  ,  is also 

different from that of skin friction with these parameters.  
Variations in shear stress for the dual solutions are shown in 

figures 5, 7. Changes in the shear stress of the lower solution 
with the parameter RP are significant than the changes in the 
upper solution. Boundary layer thickness of the lower solution 
is considerably larger than that of the upper solution.

       

Near the plate, the upper solution takes relatively larger 
numerical values than the lower solution, this behaviour being 
quite significant in the absence of magnetic field. The values 
of the shear stress are also larger in the absence of radiation 
than in its presence. Boundary layer thickness can also be 



observed to be more in the presence of radiation than in its 
absence.

Variations in fluid velocity are shown in figures 7,8 and 
variations in fluid temperature are shown in fig. 9. It may be 
noted that, variations in shear stress with different parameters 
are reflected in the fluid velocity. Variations in lower solution 
with the parameters are significant than the variations in the 
upper solution. Boundary layer thickness is more for lower 
solution than for upper solution. Boundary layer thickness is 
more in the presence of radiation than in its absence. From 
fig.9, it may be noted that in the variable fluid property case, in 
the presence of magnetic field, temperature assumes relatively 
larger values in the boundary layer. This may be due to the 
resistance offered by the Lorentz force to the flow, and as a 
result increase in the temperature. Also it may be observed that 
increase in thermal radiation parameter (Rd) produces 
significant increase in the thickness of the thermal boundary 
layer of the fluid and so the temperature profile   

)( increases and tends to zero at the edge of the boundary 

layer. This is due to the fact that the presence of thermal 
radiation causes thickening of the thermal boundary layer. 
Thermal boundary layer thickness can be seen to increase with 
diminishing values of RP.

Variations in skin friction with positive values of the mixed 
convection parameter RP are shown in fig.10. One important
point worth noting is that, for positive values of RP skin 
friction is negative for all values of the other parameters,
indicating boundary layer separation for positive values of RP. 
Absolute values of skin friction can be observed to be larger in 
the absence of magnetic field than in its presence and also in 
the absence of radiation than in its presence. 

Variations in the heat transfer coefficient, )'0('    with 

positive values of RP are shown in fig.11. We may note that 
heat transfer coefficient assumes positive values for all values 
of the parameters. Heat transfer coefficient assumes larger 
values in the absence of magnetic field (C=1) and in the 
absence of radiation (Rd=0). It diminishes with diminishing 
values of C as well as with increasing values of Rd (i.e., with 
increasing intensity of the magnetic field and with increasing 
effect of radiation).
VARYING WALL TEMPERATURE CASE )0( 

Some qualitatively interesting behaviours of the flow and 
heat transfer characteristics of this case are presented in 
figures 12-20.

Variations in skin friction with negative values of the 
mixed convection parameter RP are presented in fig.12 for a
negative value of    ( 3.0 ) and in fig.13 for a positive 

values of     ( 5.0 ). For negative values of , we may 
notice that there arise two cases either a single solution exists 
or no solution exists depending on the value of RP. As RP 
takes increasing negative values, )0(f   is seen to increase, 

indicating that the drag coefficient increases. In some cases, 
)0(f   diminishes as RP takes further increasing negative 

values. Changes in the range of values of RP over which 
solution exist can also be observed with changes in magnetic 
field, radiation, the working fluid and the temperatures of the 
fluid and the ambient. In the presence of the magnetic field as 
well as the presence of radiation, skin friction can be seen to 
take diminishing values. For fluids for 

which 0,0  k  , in the presence of magnetic field 

and in the absence of radiation, )0(f   assumes larger 

numerical values than for fluids for which 0,0  k  . 

However, in the presence of both magnetic field and radiation, 
)0(f   assumes smaller numerical values for fluids for which 

0,0  k   than for fluids for which 0,0  k  . 

From fig.13, we may notice that for 5.0  and in the 

presence of radiation, )0(f   assumes both positive and 

negative values. Solutions exist over a wider range of values of 
the mixed convection parameter for 5.0  than 
for 3.0 . Unlike for 3.0 , in this case, dual solutions 
also exist. In the presence of magnetic field the range of 
existence of solutions will be larger than the one in the absence 
of magnetic field. In the presence of magnetic field, the range 
also increases with increase in the radiation parameter. The 
drag coefficient assumes maximum value in the absence of 
magnetic field and in the presence of radiation for fluids for 

which 0,0  k  . Either in the presence or absence of 

magnetic field, for fluids for which, 0,0  k   skin 

friction is more in the variable fluid property case than in the 
constant fluid property case(compare curves 7, 6 or curves 3,

2).But for fluids for which 0,0  k   opposite is the 

behaviour of skin friction (compare curves 5, 6 or curves 1, 2).
Variations in wall heat transfer rate ‘ )0(  ’ with 

negative values of RP are presented in fig.14 for a negative 
value of  ( 3.0 ) and in fig.15 for a positive value of 

 ( 5.0 ). For negative values of  , as RP takes 
increasing negative values, the wall heat transfer rate
diminishes up to a certain stage. For positive values of  , 
similar is the behaviour except that the values corresponding
to the lower solution diminish as RP takes increasing values. 
From fig.14, for negative values of , we may note that, in 
general, the effect of the magnetic field is to increase the wall 
heat transfer rate and the effect of radiation is to diminish it. 
However this nature varies from one working fluid to another. 

Variations in shear stress pertaining to the dual solutions in 
the constant fluid property case are shown in fig. 16 for smaller
negative values of RP and in fig.17 for larger negative values 
of RP. On a comparison of figures 16, 17 we may note that 
there is significant difference in the behaviour of shear stress 
for smaller and relatively larger numerical values of RP. For 
smaller numerical values of RP, the upper solution starts with a 
positive value at the plate and the lower solution starts with a 
negative value at the plate. For relatively larger values of RP, 
boundary layer thickness of upper solution is seen to increase 
while that of the lower solution decreases as compared to 
boundary layer thickness for smaller values of RP (compare 
figures 16 and 17). Thermal boundary layer thickness of the 
lower solution is more than that of the upper solution and it 
increases with diminishing numerical values of RP.

Velocity profiles pertaining to the dual solutions of the 
constant fluid property case are presented in fig.18 for smaller
absolute values of RP and in fig.19 for relatively larger
absolute values of RP. The behaviours of the shear stress 
presented in the figures 16 and 17 are reflected in the velocity 
profiles of figures 18 and 19. Temperature profiles in one of 
the variable fluid property cases are presented in fig.20. One 
important 



observation is that the temperature of the fluid can exceed that 
of the plate temperature in the lower solution case. Variations 
in the lower solutions are significant with changing values of 
RP. Thermal boundary layer thickness of the lower solution is 
more than that of the upper solution and it increases with 
diminishing numerical values of RP.
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