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An Analysis of Inverse Heat Conduction
Problem on Irregular Shape Fins

J. C. Li, David T. W. Lin, C. C. Wang, C. Y. Yang

Abstract—This study is proposed an inverse method to
estimate the unknown heat flux boundary conditionson the
irregular shape fins. An inverse algorithm based onthe
sequential method and the concept of future time cobined with
the finite element method is used to determine th@-D heat
conduction problems.The estimated results are considered with
the different future time, the sensor location, thesensor’s
number and the measured errors. The estimated resdtare
agreed with the exact solution, even in the irregar shape fin.
The results of the study show that the proposed metil is an
accurate, stable, and efficient method for solvinghe complex
heat conduction problems.

Keywords: irregular shape fins, sequential method, future tine,
finite element method

I. INTRODUCTION

[5], direct sensitivity coefficient method [6], dogate
gradient method [7], and regularization method [8].

During the past several decades, more researckes ha
been investigated the thermal phenomenon in filblpros
[9-12]. Al-Sanea and Mujahid [9] used a finite vk
method to analyze the time dependent boundarysf fang
[10] derived the analytic solution for convectivesfunder a
periodic heat transfer condition. In Chung andriggi’s [11]
paper, it is used a finite element method to saleenvective
and radiative fin. Yang [12] proposed a numericathod to
estimate the periodic boundary conditions on theRourier
fin problem.

Besides, some studies have been considered tlot @fffe
variable shape fins in heat transfer problem. Beganal
Almogbel [13] reports the geometric optimizationTeghape
fin in their paper. Lorenzini and Moretti [14] ayat the
optimal problem in thermal system characterize fshaped
fins through a numerical method which is based &DC

The direct heat conduction problems are concerrittd wsoftware. Other paper [15] is also showed the ssoftevare

the value of heat flux on unknown boundary in iiteregion
when the initial and boundary conditions, thermiaygical
properties and heat generation are acquired ed&ilythe
contrary, the inverse heat conduction problem weslthe
determination of the surface boundary conditionsgrgy
generation and thermo-properties from the knowleafghe
temperature measurements are obtained within tlsiqath
model. In our study, it is not difficult to use sento measure
boundary condition and utilize a simple transfoioratof
matrix with no iteration process for solving inverbeat
problem of fins. Even for irregular shape fins, greposed
method in this paper also can combine with someeniaad

to investigate the heat transfer problem of finazétos and
Satyaprakash [16] presented an analysis of tragalzpiofile
convective pin fins.

To overcome the instability of the inverse problem,
different methods have been developed. Severaliestud
investigated the inverse heat transfer phenomeatedeto
this topic [17-20]. However, the above approaclastsome
limits in the application, for example, an iteratiprocess, an
essential pre-select function, used in the nontideanain, or
only specialized in the simple shape. From the apdhis
paper proposes a sequential inverse algorithmd@tibined
with finite element method to solve the heat protdén order

manner to estimate the unknown boundary conditioio release the above limitation.

accurately.

This paper is intended as an investigation of itevith

Several methods have been used to solve the ineate irregular shape. Then, the proposed method is aericah
conduction problem (IHCP), these include the aimlytmethod that can estimate unknown heat flux boundary

methods or the numerical approaches, such as pulgho
method [1], graphical method [2], finite differenogethod
and finite element method [3,4], Laplace transfon@thod
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condition sequentially without the sensitivity aysas. In the
process of the derivation, a finite element metboghbined
with the concept of future time [22] is used toidethe result
of simulation. This matter will be proved numerlgah the

section of discussions. Then, the boundary condii®
determined along with the temporal coordinate btegtep. It
can prove that the heat flux boundary can estifiesgtsible in
this paper. Furthermore, the results of this sakdyw that the
estimation of heat flux boundary in irregular shdims by

inverse method is effective.

Il. SYSTEM DESCRIPTION

2.1 Linear least-squares error method

Linear least-squares error method [23] utilizes the
inverse matrix method to deal with inverse problEirst, the
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inverse problem is discreted to construct a line&erse
model. Then, linear least-squares error methodséd uo
solve linear the inverse model directly. Accordittg the
rearrangement of the matrix of the direct probldra,form of
the unknown condition can be shown identically, dhe
iteration and initial guess are unnecessary. i employs a
simple matrix algorithm to solve the optimal sabutiat one
time. The unique of the solution can be proofedlyas

2.2 Problem statement

In general, the inverse method is used in the aisabf
simple shape. Nevertheless, the proposed methaithisn
paper based on the linear least-squares error thetlith
finite element method will solve the stiffness matof
irregular shape in the spatial discrete processcanstruct a
general solving process. Consider a two-dimensitioaly
with irregular shape which is subjected to thedwihg three
boundary types: (1) the specified temperaflire T, on I,

(2) the specified heat flux), =q, on I',, and (3) the
specified convection, =h(T -T;) on I',. The interior of

the body is denoted a6, and the boundary is denotedlas
U r, U r,. The transient heat conduction problem

listed as below:

oT _0(,0T), 0, 0T
pCE—aX(k 6xj+6y(k 6yJ+Q'(X’y)DV (2.1)
T(xy.t)=T,(x y.t), (x y)Ory (1.2)
g, =a(x. y,t) . (x y)Or, (1.3)

(1.4)
(1.5)

q =h(T(x y.0)-T.). (x y)Or,
T(x y0)=To(xy), (x y)O{r; OF, Or} OV

where T represents the temperature fididx,y,t) ,

k is the thermal conductivitypC is the heat capacity per

unit volume andQ is the heat source generation.

The inverse problem is to estimate the unknown

boundary conditions when the temperature field éasured
at the known boundary. Hsu et al. [24] mentioneat this
difficult to have an algorithm with the ability &stimate the
heat flux and the surface temperature through #maes
technique in the multi-dimensional inverse heatdemtion
problem. The first step of process uses a matrigxjaress

equation (1.1) and uses a vector to express boyndar

conditions (1.2) - (1.5) separately. In the secplate, it is
more stable for estimated solution by add the conhoé
future time. Finally, we can make a process ofiaglinverse
problem.

[B] is the transient matrix of the problem with)

dimensions
{R.} is the boundary condition vector wit,

components
{T.} is the temperature vector wit), components

The time index is mA is the time step weight. The
equation (2) is called Explicit Scheme whér= 0. And then,
it is called Implicit Scheme and Crank-Nicolson Scile as
A is equal to 1 and 1/2 respectively. In general,ghror of
discrete time is increased fro@(At) to O(At?) when
A=1/2. Therefore, all of calculation in this study ist se
A=1/2.

Whent =t_, the temperature distributid, } can be
derived from equation (2) as follows:

_(IBl] (1Bl
{Tm}-(Eu[A]j (E @ A)[A]}«Tm-l}
[B] N
o[ Bloia) (r (3.)
=[CH T} +[D{ R}
is
where the time index imm=m-1+ A
[D]=(B]/At + ALA])™ (3.2)
[C]=[D](B]/At-@-A)[A) (33)

Similarly, the temperature distribution att,,, and
t=t,,, can be represented as follows:

{Tm+1} = [C]{Tm} + [D]{Rﬁm} (4.1)
=[cl{T,..}+[CIDfR.} + [DKRy..} |
{Tm+2} = [C]{Tm+1} + [D]{ Rﬁﬂ} (4.2)

=[cP{T,..} +[cF[D{R.} +[CIDKR:..} + [DRs..}

Therefore, we have the

(m+n)-temporal grid

{Tmm}:[c]"ﬂ{m.lhio[c]'[D]{Rm+n-|}

= [C]n+l{T —1} +

>lelfol({R:

temperature vector

(%)

T

J+R;

m+n-1

beiRe R} )
where n is an integer and n =0, 1, 2,.. 1
{R ={R} +{R"} +{R} +{R%}

{R% is the vector of known boundary condition.

m+n-1

The proposed method uses a finite-element methdd an

with linear triangular element to discretize theatsgd
coordinate and time domain. By
finite-element procedure witm, grids at t=t; [25],
equations (1.1) - (1.5) can be converted to théoviehg
discrete form:

et s Z R [ AHT3 + @ ANT. )

At (2)

Where[A] is the space stiffness matrix of the proble
with n, dimensions
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the conventional

{R"} is the vector of unknown temperature boundary.
{R% is the vector of unknown heat flux boundary.
{R°} is the vector of unknown convection boundary.

After the measured temperatuT¢ (measured at =t
and x = x ) is substituted into vectc{e] , the components of

vector[d)] can be found through a linear least-squares error
method [23]. Therefore, the result is:

"lo.)= (el o)) [oI [e] )
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Known boundary
Therefore, the unknown boundary conditi%ﬁi,}, {Rﬂ} ,  h(r)=0.01" exp((r- 20)/6) 8

andiR¢; can be solved at successive time steps along with . N i
{R"‘} P 9 In addition, the unknown heat flux distributions fofs

the temporal coordinate. In other words, equation (@re assumed to be a function to examine the aocofae

provides a sequential algorithm that can be used to estimalginaeq results. These heat flux distributioning are
the boundary conditions through increasing the valueof |iciaq as below

by one for each time step because the estimated conditions ~ase: unknown heat flux boundary
depend on the measured temperature, the known boundq.re() —100+10* (t/1502* sin(ft /30)%* 7) )
condition {R,?,} and the previous sta{'é _1} .

The case is assumed the unknown boundary as the
time-varying sinusoid to generate different heatixfl
distribution. Furthermore, the result of the estedaheat flux

This study presents a numerical method to analyze tieediscussed with the different future time, thesse location,
inverse heat conduction problem of fins with irregular shapthe sensor’s number and the measured errors. Tteziata@f
In this research, we use the temperature sensors orathe the fin of heat sink is assumed as alumind@37W/mK ,
surface of the heat sinks to predict the unknown heat flux _ 3 _ L
boundary of the fins as shown in fig.1 by the inverse atkth ,5.-2700kg/m , ©=900J/kg[K ). It is initially at .an.
The accuracy results of this study are discussed with tHBiform temperatureT, =373K . The temporal domain is
different future time, the sensor location, the sensor’s eumkfrom 0 to 100 seconds with 0.05 seconds incremsnttime
and the measured errors. The inverse problem is defimed steps,7 , is 2000) for each problem.
equations (1) to (5) to estimate the variation of heat flux at the To investigate the deviation of the estimated testbm
unknown boundary. The geometry and coordinate systeime error-free solution, the absolute average erfor the
diagram is shown in fig.1. The accuracy of the estimatatl heestimated solutions are defined as follows:

I1l. NUMERICAL RESULTS AND DISCUSSION

flux distribution on the time-varying of the sinusoid heat flux 1 &
boundary conditions are investigated and demonstrate thé—Z“ - fo| (10)
effect of the proposed method. N =
Y where f is the estimated result with measurement
" Unknown Heat Flux errors andf, is the estimated result without measurement
| Sensors location . .
?,53‘%‘, |  Aluminum (inside) errors.n, is the number of the temporal steps. It is cleat &
: g‘fzﬁ’ﬁ%&%&'ﬂ% h (known) Il | fe indi b ; ; d vi
%I%i%li'ﬁ‘é‘lqﬁig‘l@l%é'&m e smaller value ofe indicates a better estimation and vice
AR ISAREK RIS versa.
o KBRS S . . .
g%’iﬁ%’” h<k\mwn) Sensors location The transient temperature is estimated when the
temperature measurement is available in the differe
N measured locations. The measured locations armed lias

below and shown in fig.2 (a)-2 (c).
2 sensors: (23.597, 0.14951), (24.0309, 0.1025)
(23.597, 0.14951), (24.0309, 0.1025)
The simulated temperature is generated from the exact 6 sensors: (21.8735, 0.4258), (22.302, 0.34235),

temperature in each problem and it is presumed to have (22.7323, 0.26903), (23.164, 0.20494),
measured errors. In other words, the random errors of (23.597, 0.14951), (24.0309, 0.1025)
measurement are added to the exact temperature. It can be (11)
shown in the following equation: v s

Orea = O e (1+ 00) (7)

where 0., and 0_, in equation (7) is the exact

temperature and measured temperature respectivel/the - . I
standard deviation of the measurement ergois a random ’ '
variable of normal distribution with zero mean and unit
standard deviation. The value ef is calculated by the IMSL
subroutine DRNNOR [26] and chosen over the range. ,
which represent the 99% confidence bound for the meésure
temperature.

We consider a function of heat flux distribution which is
assumed for unknown boundary to illustrate the advantage of L
the proposed method and defined the heat transfer coefficie !
of fins as equation (8).

(c) 6 sensors
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Fig. 2 The schematic diagrams of sensor’s loca@)r2
sensors (b) 4 sensors (c) 6 sensors.

In the fig.3 (a)-3 (c), we will begin our discussiby
consider the effect of measured errors betweematsd
results and exact results in case temperatureibdigon.
From fig.3 (a), the value of measured errors isagkd from
0.2 to 0.05, the absolute average errors becomakesrian
before and reduces 74% error. This message means
measured errors have big ability to affect and ghathe
estimated results. The more clearly, we can fotloafig.3 (b)
and fig.3 (c) to realize that the sensor numbeals® an
important parameter. In the fig.3 (c), absoluterage errors
are 0.02568 when the measured errors are equéd @nd it
compares better witlr = 005 in fig.3 (a). This means the
variation of sensor number is affect directly trstiraated
result very much. We will devote table 1 to thecdission of
the sensor number on the fins surface that musaken to
prevent the promotion of absolute average errorgase
temperature profile. From table 1, it is clear tiha&t measured
error reduces from 0.2 to 0.05 and the sensor numatiee
from 2 to 4, the absolute average errors decreztgeciickly.
For the reasons mentioned above, it can be corntlind¢ the
sensor number is a key factor for the inverse tesul
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observe this profile to obtain the influence arel gkensitivity
of future time for absolute average errors. In fipe4, the
estimated value curve is more close to the exaapéeature
curve when the future time changes from 15 to 2%r&fore,
we will now examine the ability of future time mockearly.
Absolute average errors in this profile reduce f62914 to
0.00818 and the final result decreases 71.9% evitbrthe
exact one. The table 2 presents that the variati@bsolute
average errors relate to the future time, sensorbeu and
tieasured error. In this table, we can find the mneakerror
decreases, the future time and sensor number Besrélae
error will reduce observably.

W T T T T T T T T T T T T T T T T
103
102

101

Temperature (2" )

100

Fig. 4 Comparison of exact result and inverse tgsul
(r =15, 18, 21 and 24) for Case temperature profile.
(c=04)

Table 2: The absolute average errors with the traniaf
sensor number, the measured errors and the fuegetin

K]
1 (see)

(a) 2 sensors

Case.
case Future time
r=15 r=17 r=19 r=21
4 sensorss =02 | 0.5277| 0.2874| 0.1703| 0. 1080
=01 | 0.2639( 0.1438| 0. 0852 0. 0541
6 sensors =02 | 0.0582| 0.0386| 0.0274| 0. 0203
=01 | 0.0291(0.0193| 0.0138] 0. 0104

E]
r(see)

(c) 6szen

(b) 4 sensors

Fig. 3 Comparison of exact result and inverse tgsul
(6=0.05, 0.1, 0.15, 0.2, 0.4 and 0.6) for Case
temperature profile (a) 2 sensors (b) 4 sensors (c)
6 sensors.(=30)

Table 1: The absolute average errors with different

It compares with the difference type of future tiwtdch
can cause the absolute average errors to decrkageéutly
in fig.5. The result in this profile shows the lémecombination
of future time is better than the other and it alsoreases the
absolute average errors effectively. The reasahddinear
combination of future time can close to the exawuton
approximately but the constant type isn't enoughmemtch.
According to the fig.5, we can understand that tijpe of
future time is also an important parameter.

and sensor number in Case. 101 F n . r B
case Measured error
6=02 | 06=015 | 6=01 | c=005 o
2 sensors| 0.1123 0.0843 0.0563 0.0283 g
4 sensors| 0.0266 0.0203 0.0141 0.0081 E‘
6 sensors| 0.0124 0.0109 0.0094 0.0080
Fig.4 shows that the absolute average errors have a %é-‘ NI S |

sequence variation betwean=15 and r =24 . We can
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Fig. 5 Comparison of exact result and inverse
results with the type of future time (constant and
linear) for Case temperature profiles € 04,
r =25, 6 sensors)

In this investigation, an inverse algorithm of the[g]

proposed method based on the sequential methochticept
of future time and the finite element method isduseanalyze
the time-varying boundary condition of the irregushape
and it can verify that the heat flux boundary cdindi is
estimated possibility in this research. The es@uaesults of
this study are compared with the measured errogssénsor
location, sensor’s number and future time. From twies
been discussed above, we can conclude that theogedp

method can handle the estimation of unknown boyndar

condition in irregular shape by inverse methodaiféely.

IV. CONCLUSION

This investigation shows that an inverse methoddas[14]

upon the sequential method and the finite elemesthod
estimates the time-dependent heat flux distributiche heat
conduction problem of fins with irregular shape. &ltthis

study considered the measurement error, the segluent

method is needed to combine with future time tbitz the
estimation solutions. In the process of the deidvatthe
future time can increase the accuracy of the smisti
apparently. A sequential method is proposed inghfger that

can handle the determination of unknown boundar[)]/

conditions for the inverse heat conduction probédficiently

and obtain a higher exact result. From fig.4, we teke a
conclusion that the estimated heat flux and thetesae are
became closely as the future time from 15 to 24rter to
reduce errors, this paper attempts to add the sensober
and change the type of future time separatelya$ been
shown that the accuracy of the estimated resuftbeaaised

by the measurement error is restrained or by theemo

temperature sensors.

From this paper, we combine the traditional inversgaj

algorithm and the finite element method to deteamihe

excellent results under the irregular shape camitt should
be pointed out that the proposed method is an atestable
and efficient method to determine the unknown Hkat

boundary conditions on fins in inverse heat conduct
problem of irregular shape successfully. Necessatilio

dimension and three dimension inverse problemsatsmbe
applied by the proposed method in the same way.
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