
 
 

 

  
Abstract—Transcription is the central process of gene 

regulation. In higher eukaryotes, the transcription of a gene is 
usually regulated by multiple cis-regulatory regions (CRRs). In 
different tissues, different transcription factors bind to their 
cis-regulatory motifs in these CRRs to drive tissue-specific 
expression patterns of their target genes. By combining the 
genome-wide gene expression data with the genomic sequence 
data, we proposed multiple-instance scoring (MIS) method to 
predict the tissue-specific motifs and the corresponding CRRs. 
The method is mainly based on the assumption that only a 
subset of CRRs of the expressed gene should function in the 
studied tissue. By testing on the simulated datasets and the fly 
muscle dataset, MIS can identify true motifs when noise is high 
and shows higher specificity for predicting the tissue-specific 
functions of CRRs. 
 

Index Terms—Multiple-instance learning, cis-regulatory 
region(s), cis-regulatory motif(s) 
 

I. INTRODUCTION 
  In higher eukaryotes, the transcription of a gene is usually 

regulated by multiple cis-regulatory regions (CRRs). 
Different transcription factors bind to the cis-regulatory 
motifs (hereinafter referred as motifs for short) in these CRRs 
and lead to specific expression patterns of the gene in 
different tissues. The lengths of motifs vary from several to 
more than twenty nucleotides and usually within six to 
twelve, while CRRs commonly cover several hundred 
nucleotides. Identifications of the tissue-specific motifs and 
corresponding CRRs are essential for understanding the 
complex gene transcriptional regulations. Now genome-wide 
experimental identifications of the tissue-specific CRRs and 
motifs remain time-consuming and expensive. So many 
computational methods have been developed to solve this 
problem [1-5]. One popular approach is to find the enriched 
motifs in the candidate CRRs of the co-expressed genes or 
highly expressed genes. Given the following inputs: 1) in the 
studied tissue, the genes are labeled as positive or negative 
according to whether they are expressed (or highly 
expressed); 2) each gene has one or more candidate CRRs 
and the functional CRRs should be enriched for the positive 
genes but it is unknown which CRRs are functional; and 3) 
the enrichments of motifs have been calculated in each CRR, 
the proposed method should identify the enriched 
tissue-specific motifs and CRRs by analyzing the motifs’ 
enrichments in the CRRs of positive genes. Most previous 
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methods assume that the motifs are enriched in all candidate 
CRRs of the positive (highly expressed or co-expressed) 
genes [6-9]. But this assumption may not be correct [10]. For 
example, eve, an important gene for fly embryo development, 
has four CRRs, which function in different segments of the 
embryo to drive eve’s stripe expression pattern [1, 3]. It is a 
better assumption that only a subset of the candidate CRRs of 
the positive genes are functional and the tissue-specific 
motifs are enriched in these functional CRRs in the studied 
tissue. 

In recent years, multiple-instance learning proposes a new 
machine learning framework to deal with the labeling 
incomplete data [11-13]. Above problem can be formulated 
in a multiple-instance learning framework: 1) each bag (gene) 
is labeled as positive or negative according to the 
genome-wide expression data; 2) each bag (gene) has 
multiple instances (CRRs) which are unlabeled, but positive 
instances (CRRs) are enriched in the positive bags (genes) 
than in the negative bags; 3) the features of each instance 
(CRR) are the motifs’ enrichments (counts or scores) in that 
CRR. Zhang et al. proposed a multiple-instance learning 
method, named multiple-instance learning via embedded 
instance selection (MILES) method to identify motifs [14]. 
They regarded the motifs directly as instances but the method 
did not consider the problem of multiple CRRs for each gene. 
Actually, their method is largely similar to the maximum 
scoring approach proposed by Andrew et al., which used the 
maximum matched score to represent each motif’s feature for 
each gene [15]. Here, we proposed a more proper 
multiple-instance learning description of above problem: 1) 
define the genes as bags, and labels of genes are given as 
supervised information in the studied tissue; 2) define the 
candidate CRRs as instances and each instance is assigned to 
a unique bag (gene); and 3) define the feature space of 
instances as the vector consisting of the scores or 
enrichments of candidate motifs. 

Due to the imbalances of the numbers of positive and 
negative genes and the high noises for screening the 
conserved candidate regulatory regions, classical two-class 
multiple-instance learning algorithm cannot achieve a 
bearable performance (mi-SVM & MI-SVM, provided in 
MILL package http://www.cs.cmu.edu/~juny/MILL/, were 
tested). In this study, we proposed a new multiple-instance 
learning method, named multiple-instance scoring (MIS), to 
alleviate the imbalances. By testing on the simulated data and 
the real data in fly, MIS shows higher power for identifying 
motifs and can achieve higher specificity for predicting the 
tissue-specific CRRs. 
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II. MATERIALS AND METHODS 

A. Prepare the labeled bags (genes) 
The expression data were extracted from the BDGP in situ 

database (http://www.fruitfly.org/cgi-bin/ex/insitu.pl). The 
list of detected genes in fly embryonic muscle (with ontology 
“embryonic/larval muscle system”) was downloaded from 
the database. To reduce the bias caused by the incomplete 
experiment and house-keeping genes, the genes with less 
than 10 images and the genes detected in more than 20 tissues 
were filtered. In the studied tissue, the detected genes were 
labeled as positive bags and the genes not detected were 
labeled as negative bags. 

B. Assign instances (CRRs) to bags (genes) 
In this study, all the coordination, gene annotations and 

genomic sequences were downloaded from FlyBase (v4.2.1) 
(http://www.flybase.org). The PhastCons conservation 
scores were downloaded from UCSC Genome Browser ftp 
site (http://genome.ucsc.edu). According to the gene 
annotations, the noncoding regions, including intergenic 
regions, introns, and un-translated regions (UTRs), were 
extracted. A 100bp sliding window with 50bp step was used 
to scan across the noncoding regions and average PhastCons 
score was computed in each window. According to the 
average scores in the sliding windows, the genomic regions 
with average scores > 0.6 and length 200bp~2,000bp were 
extracted. 

These extracted conserved regions were assigned to the 
nearby gene if they are located in the -3k~+1k flanking 
regions around the transcription start site (TSS) or 
transcriptional terminal site (TTS) of the gene (another 
dataset with -5k~+1k flanking regions was also constructed. 
Due to the limitation of space, the results were not shown in 
the article). The conservation in different genomic regions 
varies significantly. To lower the bias, the regions were 
sorted according to the products of their lengths and the 
average scores, and then only the top four regions were kept 
as instances (CRRs) for each bag (gene). The core promoter 
regions (-300bp~+100bp around TSS) were also added as 
CRRs. This procedure is similar to [7]. 

C. Calculate the features (motifs’ enrichments) for 
instances (CRRs) in positive bags (genes) 

Sixty-nine PWMs related to fly were extracted from 
TRANSFAC (v11.2) [16]. The nucleotide contents in each 
position were normalized as percentage in the matrices. 

In the studied tissue, the CRRs of the negative bags (genes) 
were combined as the background sequences. Then the 
features (motifs’ enrichment, one by one) for each instance 
(CRR) of the positive bags (genes) were computed against 
the background sequence using CLOVER program [17]. The 
times of random sampling (parameter –r) were set to 100,000 
to estimate the p-value. Then the p-value was 
log-transformed as enrichment score D for k-th feature (motif) 
in the j-th instance (CRR) of the i-th bag (gene): 

( )logijk ijkD p= −  

Larger D means that the instance (CRR) is more relevant to 
the positive bag and more distant to the negative under the 
k-th feature. The detail for CLOVER algorithm can be 

referred to [17]. For ranking the instances according to a set 
of m motifs, simple linear sum was used to transform the 
feature vector to a single score: 
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D. Multiple-instance scoring (MIS) method 
After calculating the motifs’ enrichment scores for all 

instances (CRRs) in positive bags (genes) against the 
instances in negative bags, the multiple-instance scoring 
(MIS) method takes the instance with the maximum 

enrichment score ( )max ijj
D  to represent i-th positive bag: 

1) All the instances (CRRs) of positive bags (genes) were 
decreasingly sorted according to their features (enrichment 
scores) ijD  for all i and j. The ranked instances are 

re-denoted as single subscript l; 
2) Calculate MIS, a running statistic, by going through the 

sorted instance (CRR) list: 
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C is defined as the percentage of positive bags (genes) 
whose instances (CRRs) are ranked before k. C is a key 
variable, which links the instances (CRRs) with bags (genes): 
single CRR is assumed to be strong enough to drive the 
expression of the corresponding gene; 

3) When going through the decreasingly sorted instance 

(CRR) list, the first part of MIS 
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increasing. So MIS will reach its maximum MIS* 
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when running through the sorted instance list. MIS* was used 
to evaluate the motifs’ relevance to the studied bags (genes) 
and the instances (CRRs) with rank before k* are classified as 
positive for this motif or motif combination. 

Given a motif or a motif combination, we can calculate its 
MIS* and k* according to above procedure in the studied 
tissue. But the raw scores cannot be directly used to evaluate 
the statistical significance. False discovery rates (FDRs) were 
calculated as the method in GSEA: first, the labels of genes 
were randomly shuffling; second, compute the global FDR 
by comparing the distribution of the MIS* in the original 
dataset and the distribution of the MIS* in the shuffled 
datasets (see detail in [18]). 
E. Evaluation of MIS method’s performance 

Experimentally identified tissue-specific CRRs. REDfly 
(v2.1) database have collected 665 experimentally identified 
CRRs (http://redfly.ccr.buffalo.edu/) [19]. To validate the 
genome-wide predictions, a testing dataset was constructed 
based REDfly. The 665 collected CRRs were clustered by 
genomic location and filtered by length (200bp~1,500bp) to 



 
 

 

251 non-overlapped reference CRRs. Then the 
tissue-specific functions of these CRRs were manually 
processed according to the database annotations. No further 
filters, such as evolutionary conservation was used to process 
the CRRs. 

Comparison with other methods. 1) Traditional scoring 
(TS) method: label all CRRs (instances) of the positive genes 
(bags) as positive, and construct the new positive bags each 
containing single positive instance. Then the same procedure 
was run as MIS method. 2) The tissue-specific motifs 
reported by CLOVER are also compared. Because the 
previous studies do not provide stand-alone software and 
their used testing datasets are largely different, the 
comparisons with the Bayesian network method [6] and 
Enhancer Index [9] were not included in this study. 

 

III. RESULTS AND DISCCUSIONS 

A. Results on simulated datasets 
  Firstly, simulated data were used to test the performances 

of the multiple-instance scoring (MIS) method. The positive 
dataset contained 100 bags (genes) and the negative dataset 
contained 400 bags (genes). Each bag was assigned four 
instances (cis-regulatory regions, CRRs) with equal length 
500bp. For positive bags (genes), 1~4 positive instances 
(CRRs) were assigned according to a pre-defined probability. 
The positive instances (CRRs) were generated by implanting 
known transcription factor binding sites (five motifs’ PWMs 
were used: BCD, MEF2, STAT, TWI and UBX) into a 
random sequence. 

TABLE I.  THE TOP FIVE MOTIFS REPORTED BY CLOVER, MIS AND TS 

Noise CLOVER MIS TS 

0% 
STAT, MEF2, 

TWI, BCD, 
UBX 

STAT, MEF2, 
BCD, TWI, 

UBX 

STAT, MEF2, 
BCD, TWI, 

UBX 

20% 
STAT, MEF2, 

TWI, BCD, 
UBX 

STAT, MEF2, 
BCD, UBX, 

TWI 

MEF2,STAT, 
UBX, BCD, 

TWI

40% STAT, TWI, 
BCD, UBX, SN 

STAT, TWI, 
BCD, UBX, 

ABDB 

STAT, TWI, 
UBX, BCD, DL

60% 
TWI, TATA, 

STAT, MEF2, 
BYN 

STAT, TATA, 
TWI, MEF2, 

BYN 

STAT, TATA, 
TWI, MEF2, 

BCD

80% 
AP1, DEAF1, 
CROC, ADF1, 

SRYBETA 

STAT, TWI, 
BCD, ADF1, 

CROC 

AP1 ADF1, FTZ, 
SRYBETA, 

CROC

100% EVE, TCF, BRK, 
AP1, SD 

TCF, HSF, EVE, 
SD, AP1 

TCF, EVE, HSF, 
SD, BRK 

The motifs denoted by bold font mean these motifs are in the five 
motifs which are used to generate the positive regions. 

 
When only one motif’s PWM is used to calculate the 

enrichment score   for the i-th gene (bag) and j-th CRR 
(instance), the resulting scores computed by MIS can be used 
to rank the enriched motifs in the CRRs of the positive genes. 
The top five motifs reported by CLOVER, MIS and TS are 
listed in (Table I). The three methods show competitive 

performances when the noise is lower than 60%, but MIS is 
much more stable when the noise is up to 80%. 

To identify the positive CRRs, the top five motifs were 
used to compute the combined enrichment score D. The 
results show that the sensitivity of MIS is lower than TS, but 
the specificity is much higher: if the noise is no more than 
60%, the classifier can achieve ~90% specificity for 
identifying the positive regions of the positive genes (Table 
II). For genome-wide predictions, specificity is relatively 
more important than sensitivity due to large background 
sequences. MIS would provide more stable predictions under 
high noises. 

TABLE II.  SUMMARY OF THE RESULTS FOR CLASSIFYING THE 
INSTANCES (CRRS) ON THE SIMULATED DATASET 

MIS TS Noise
#PR #NR Spec. #PR #NR Spec. 

0% 101 1 99.02% 119 9 92.97%
20% 64 0 100.00% 132 19 87.42%
40% 52 6 89.66% 106 40 72.60%
60% 41 5 89.13% 108 27 80.00%
80% 41 13 75.93% 17 38 30.01%

100% 12 31 27.91% 17 28 37.78%

#PR: the number of positive CRRs of the positive genes which have 
been predicted as positive; #NR: the number of negative CRRs of the 

positive genes which have been predicted as positive. 
 

B. Identifications of muscle-specific motifs and CRRs 
In fly, the transcriptional regulations of muscle are 

relatively well-studied. So the MIS method was further tested 
on the muscle-specific dataset. Because not all the motifs are 
functional in the studied tissues, the motifs which are 
enriched in the candidate CRRs of muscle-specific genes 
were first identified. Three different methods: CLOVER, 
MIS and TS were used to rank the motifs. The motifs with 
FDR < 30% computed by MIS/TS and with p-value < 0.05 
computed by CLOVER were listed in Table III. For 
CLOVER only two of the six significant motifs were related 
to muscle system: twi (I$TWI_Q6) and sna (I$SN_02). For 
TS, three of the four selected motifs were related to muscle: 
twi (I$TWI_Q6), sna (I$SN_02) and mef2 (V$MEF2_02). 
For MIS, five of the seven selected motifs were related to 
muscle: twi (I$TWI_Q6), sna (I$SN_02), mef2 
(V$MEF2_02), ap (I$AP_Q6) and retn (I$DRI_01) 
(According to the annotations of the transcription factors in 
muscle in the Interactive Fly 
http://www.sdbonline.org/fly/aimorph/mesoderm.htm). 
These results indicate that MIS can achieve higher power to 
identify the tissue-specific motifs in muscle. 

Then the motifs with FDR < 30% were used to construct 
the classifier to identify the CRRs functional in muscle. The 
selected motifs may have redundant information for 
classifying, so forward selection process was used to find the 
optimal motif combination. Also, because the false negatives 
in the in situ data (such as the important transcription factor 
twi, which is not annotated by the ontology 
“embryonic/larval muscle system”) and the inaccuracies for 
preparing the candidate regions by comparative genomic 



 
 

 

methods, an independent experimentally identified dataset 
derived from REDfly (Table IV) was used to estimate the 
classifier’s performance. 

For MIS, 107 regions (87 genes) were classified as 
positive (three motifs were selected by the forward selection: 
V$MEF2_02, I$AP_Q6 and I$DRI_01). On the REDfly 
dataset, MIS achieved 57.89% (11/19) sensitivity, 25.00% 
specificity (11/44), F-value 0.3492. For TS, 205 regions (138 
genes) were classified as positive (only V$MEF2_02 was 
selected). On the REDfly dataset, TS achieved 63.16% 
(12/19) sensitivity, 15.38% (12/78) specificity, F-value 
0.2474. These results indicate that MIS can achieve much 
higher specificity but not significantly reduce sensitivity 
(Figure 1). 

TABLE III.  THE TOP MOTIFS REPORTED BY CLOVER, MIS, TS AND THE 
CORRESPONDING P-VALUE AND FDR 

CLOVER (p-vaule) MIS (FDR) TS (FDR) 

I$DREF_Q3: 0.0027 

I$CF1_02:0.0093 

I$TWI_Q6: 0.0099 

I$SN_02: 0.0137 

I$CF1_01: 0.0147 

I$ZEN_Q6: 0.0191 

I$AP_Q6: 13.64% 

I$DREF_Q3: 18.18% 

V$MEF2_02: 24.24% 

I$DRI_01: 24.24% 

I$STAT_01: 27.27% 

I$TWI_Q6: 28.57% 

I$SN_02: 29.55% 

V$MEF2_02: 09.09%

I$DREF_Q3: 27.27%

I$TWI_Q6: 29.09%

I$SN_02: 29.55%

 

TABLE IV.  THE SUMMARY ON THE FLY MUSCLE TESTING DATASET 

#PG #PR #PR/#PG #NG #NR #PRED #NRED

215 638 2.97 1631 5450 19 232 

#PG: the number of the positive genes; #PR: the number of the CRRs of 
the positive genes; #NG: the number of the negative genes; #NR: the 

number of the CRRs of the negative genes; #PRED: the number of 
muscle CRRs in REDfly; #NRED: the number of the other CRRs. 
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Figure 1. The performances for identifying the muscle CRRs. 

The genome sequences and global gene expression data 
are quickly accumulating, but the complex relations between 
the genes and the CRRs make the computational predictions 
of the tissue-specific motifs and CRRs still difficult. The 
multiple-instance scoring (MIS) method models the relation 
between CRRs and the genes as that only a subset of CRRs of 
the expressed gene should function in the studied tissue. By 
testing on the simulated and the experimental datasets, the 

MIS method can achieve higher performance. 
Although the MIS method shows better specificity, it 

remains further improvement. Except the false positives of 
the comparative genomic methods for preparing the 
candidate CRRs and the noises in the gene expression data, 
the uncertainties in the interactions between multiple motifs 
worsen the situation. Here a simple forward selection was 
used to select the optimal motif combination by considering 
their “add” effect. Beyond this simple method, more 
sophisticated models can be used to compute the enrichment 
of multiple motifs, such as Hidden-Markov Model [20] and 
TFBS alignment model [3]. These models will be tested 
systematically in the future version of MIS. 
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