
 
 

 

  
Abstract— An efficient and optimized Automated Guided 

Vehicles (AGVs) operation plays a critical role in improving the 
performance of a Flexible Manufacturing System (FMS). 
Among the main elements in the implementation of AGV is task 
scheduling. This is due to the fact that efficient scheduling 
would enable the increment of productivity and reducing 
delivery cost whilst optimally utilizes the entire fleet. In this 
research, Binary Particle Swarm Optimization (BPSO) is used 
to optimize simultaneous machines and AGVs scheduling 
process with makespan minimization function. It is proven that 
the method is capable to provide better solution compared to 
others. 
 

Index Terms— Flexible Manufacturing System, Automated 
Guided Vehicle, Particle Swarm Optimization  
 

I. INTRODUCTION 
  Rapid development of information technology has made the 
competition in manufacturing industry becoming more 
complex and stiff. Manufacturers are able to deliver product 
in relatively shorter time than ever. Thus, to win market 
share, managing information of a manufacturing company is 
very crucial in order to ensure that the information could be 
use when the company needs them. 

Over the last few years, researchers had been intensely 
discussing about the implementation of Flexible 
Manufacturing System (FMS). While there are certain 
scientific advancements made, it is obvious that for the 
implementation to be a success, there are many problems 
need to be resolved. One of them is regarding simultaneous 
scheduling of machines and AGV operation.  

There are many elements of FMS scheduling. However, 
the more important factor that should be considered is 
scheduling of multiple AGV. This is due to the fact that in 
typical shop floor environment, AGV is shared by more than 
one machine. Assigning a non-optimal delivery would put 
other machines in longer idle time than it should be. On the 
other hand, delaying a delivery means delaying the 
processing chain of the material. Furthermore, efficient AGV 
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task allocation method would be able to increase productivity 
and reduce delivery cost whilst optimally utilizes the entire 
fleet. It is especially important when dealing with large fleet 
of AGVs.  

Among the researches conducted on AGV scheduling 
discipline are on hybrid approach to address scheduling and 
routing of AGV [1-3], multi-attribute dispatching rules [4-6] 
and deadlock-resolution [7, 8]. 

II. MACHINES AND AGV SCHEDULING FOR 
RESOURCE-CONSTRAINED FMS 

A. Introduction to FMS 
FMS is a highly automated machine cell, consisting of a 
group of processing workstations (usually CNC machine 
tools), interconnected by an automated material handling, 
automated storage system and controlled by a distributed 
computer system (Groover, 2004). FMS is the key to an 
automated factory.  

Since the term FMS was coined, various numbers of 
researches had been done in order to increase the capability 
and to explore the potential it could bring. Although there are 
significant advancement had been achieved, there are still 
plenty rooms for improvement to ensure that the benefit 
could be fully gained.  

B. Resource-Constraint FMS 
Resource-constrained FMS scheduling problem inherits 

the characteristics of combinatorial problem. Utilizing 
limited number of machines and automated vehicles, the 
main goal is to search for the best solution to solve a given set 
of problems. Over the years, it has attracted attentions from 
worldwide researchers. Typically mathematical optimization 
or heuristic methods had been applied to solve the problem 
rather than theoretical method. This is due to the reason that 
they are more applicable to be applied in actual environment. 
One of the approaches normally used to solve the problem is 
constrained optimization technique.  

This study is based on single objective function where total 
operation completion time is the parameters that need to be 
minimized. Total operation completion time,  

Oij = Tij + Pij,                 (1) 
where i= job, j= operation, Tij= traveling time, Pij= 

operation processing time. 
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Makespan = Max (C1, C2, C3,…Cn). 
As the scheduling involves combinatorial problem, it is 

important to ensure that a suitable methodology is selected to 
optimize the problem. In addition to the ability of finding 
optimal solution, the method also has to be capable to find the 
solution as quick as possible. Particle Swarm Optimization 
(PSO) possesses both criteria mentioned.  

III. PARTICLE SWARM OPTIMIZATION  

A. Standard PSO 
PSO is categorized as swarm intelligence algorithm. It is a 
population based algorithm that is inspired by the social 
dynamics and emergent behavior that arises in socially 
organized colonies [12-14]. It exploits a population of 
particles to search for promising regions of the search space 
(swarm). While each particle randomly moves within the 
search space with a specified velocity, it stores data of the 
best position it ever encountered.  This is known as personal 
best (Pbest) position.  

Upon finishing each iteration, the Pbest position obtained 
by all individuals of the swarm is communicated to all of the 
particles in the population. The best value of Pbest will be 
selected as the global best position (Gbest) to represent the 
best position within the population. Each particle will search 
for best solution until it find stopping criteria. The movement 
of the particles towards the optimum is governed by 
equations similar to the following: 
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Where W is inertial weight, c1 and c2 are constants (usually 
c1 = c2 = 2), r1 and r2 are uniform random numbers in [0,1], Pi 
is the best position vector of particle ith until iteration t, Pbest is 
the best position vector of all particles so far, xid is the current 
position vector of particle ith, and vid is the current velocity 
parameter assigned for particle ith.  

For Eq. (2), the first part represents the inertial weight of 
the previous velocity. The second part corresponds to the 
cognition part, which represents the personal achievement of 
the particle. The third part is for the social part, which 
represents the cooperation among particles.  

B. Binary PSO (BPSO) 
In solving binary/ discrete problems, Kennedy and 

Eberhart [12] have deployed the PSO to search in binary 
spaces by applying a sigmoid transformation to the velocity 
component Eq. (5). It employs the concept of velocity as a 
probability that a bit (position) takes on one or zero. In the 
BPSO, Eq. (3) for updating the velocity remains unchanged, 
but Eq. (4) for updating the position is replaced by Eq. (6). 
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C. Utilizing BPSO to Solve Scheduling Problem 
This section describes how BPSO is implemented to solve 

the simultaneous machines and AGVs scheduling problem. 
Among the most important matters of contention when 
designing any PSO algorithm lies on how to represent the 
solutions, of which particles bear the necessary information 
related to the problem-to-be solved. In order to map the 
relationship between the PSO particles and the problem 
domain, each particle will corresponds to a candidate 
solution of the scheduling problem.  

In the proposed method each particle represents a feasible 
solution for task assignment using a vector of r elements, and 
each element is an integer value between 1 to n. Fig. 1 shows 
an illustrative example where each row represents the 
particles which correspond to a task assignment that assigns 
five tasks to three processors, and Particleparticle3,T4=P2 means 
that in particle 3 the Task 4 is assigned to Processor 2.  

Differences between the current position of the kth particle, 
Xt

k; and the position with global best value Pt
k (or Pt

g) can be 
presented by an array of n element. Each element shows that 
whether the content of the resulting element in Xt

k is different 
from the desired one (best global value) or not.  

If yes, the element gets its value from Pt
k (or Pt

g). For those 
elements that have the same content in Xt

k and Pt
k (or Pt

g), their 
corresponding jobs are listed based on specified rules and are 
assigned to machines successively, whenever a machine 
becomes free. For this research, the well-known longest 
processing time (LPT) was utilized as the main rule. It is due 
to the reason that in term of minimizing makespan, LPT 
proved to perform better than other conventional method [3, 
4 and 13]. Apart from LPT, precedence and machine 
assignment constraints had also been considered during the 
scheduling process. Fig. 1 illustrates the operation’s working 
principle.  

 
Particle Number T1  T2 T3 T4 Tn  

Particle 1 P1 P2 P3 P4 P5 

Particle 2 P3 P2 P2 P3 P5 

Particle 3 P1 P1 P1 P2 P5 

Particle 4 P2 P2 P3 P3 P1 

Particle n Pn1 Pn2 Pn3 Pn4 Pn5 

 
Fig. 1 Mapping representation of BPSO – FMS scheduling 

 

 
 Job1 Job2 Job3 Job4 

A (Pt
g) 1 2 3 4 

 
 Job1 Job2 Job3 Job4 

B (Xt
k) 1 3 3 5 

 
 
Subtract Job1 Job2 Job3 Job4 

A - B 0 2 0 4 



 
 

 

Let the number of tasks be T and number of machines and 
AGVs available be M. The proposed BPSO algorithm for the 
task allocation process is summarized as the following: 

 
Let M be the number of machines and AGVs. 
Let T be the number of tasks. 
Let P be the size of BPSO population. 
Let PSO[i] be the position of the ith particle in the entire 
population with T-dimensional vector, whose entries’ 
values belong to the set {1,…, M} 
Then PSO[i][j] be the processor number to which the jth 
task in the ith particle is assigned. 
Let fitness[i] be the objective function of the ith particle 
according to (1) 
Let V[i] be the traveled distance (or velocity) of a ith 
particle represented as an M-dimensional real-coded 
vector. 
Let Gbest be an index to global-best position. 
Let Pbest[i] be the position of the local-best position. 
Let Pbest_fitness[i] be the local-best fitness for the best 
position visited by the ith particle. 
 
Initialization: For each particle i in the population: 
i) For each task j, initialize PSO[i][j] randomly from 

the set {1,…,N} 
ii) Initialize V[i] randomly 

iii) Evaluate fitness[i] 
iv) Initialize Gbest with the index of the particle with the 

best fitness (lowest cost) among the population. 
v) Initialize Pbest[i] with a copy of PSO[i] ≤ P 
 
Optimization Process: Repeat until a number of 
generations, equal to twice the total number of tasks, are 
passed: 
i) Find Gbest such that fitness[Gbest] ≥ fitness[i] ≤ P 

ii) For each particle i:  
• Pbest[i] = PSO[i] if fitness[i] ˃ Pbest_fitness [i] ≤ 

P 
• Update V[i] according to (3) 
• Update PSO[i] according to (5) and (6) 

iii) Evaluate fitness[i] ≤ P 

IV. EXPERIMENTAL SETUP 
The FMS selected as the case in this work has the 

configuration as shown in Fig. 2. The case and data set is 
adopted from [11] was originated by [9]. In the case study, 
there are 10 job sets with each possessing four to eight 
different job sequences, dedicated machines and numbers 
were specified within the parenthesis is the processing time 
of a particular job (refer Table V). Based on the job sets and 
four different layouts, 82 problems are generated.  

The problems are grouped into two categories. The first 
category contain problem sets which ti/pi ratios are greater 
than 0.25 while second category consists problems whose 
ti/pi ratios are lesser than 0.25. A code is used to represent the 
example problems. The digits succeeding EX indicate the job 
set and the layout respectively. Meanwhile, for second 
category, another digit is appended to the code. In this case, 
having a 0 or 1 as the last digit implies that the process times 
had been doubled or tripled, respectively. Furthermore, travel 

times are halved. 
There are four machines consist of computer numerical 

machines (CNCs) and two AGVs for material delivery 
purpose. While the types and number of machines is fixed, 
the speed of the vehicles is constant at 40 m/min. 
Furthermore, loading and unloading times are constant at 0.5 
min each.  

  
Fig. 2 Layouts for the case study 

 
It is assumed that there is sufficient buffer space for 

input/output operations at each machine. Loading/ unloading 
equipments such as pallets are sufficiently allocated. 
Furthermore, the machine-to-machine distance and the 
distance between loading/ unloading machines are known.  

The distance matrix of load/unload stations to machines 
and machine-to-machine distances for all layouts are shown 
in Appendix (Table IV). The load/unload (L/U) station acts 
as the distribution center for incoming raw materials and as 
the collection center for outgoing finished parts. All vehicles 
start from the L/U station initially though it does not need to 
return to L/U station in between delivery job. 

V. SIMULATION RESULTS AND DISCUSSION 
Analysis had been conducted using MATLAB software. 

For the BPSO algorithm, Vmax = 4, Vmin = -4, c1 = 2, c2 = 2, 
swarm size is set to be 70 and the maximum of iterative 
generations Imax is set to be 400. For the reason that PSO and 
it variants inherit heuristic attributes, 10 runs had been 
conducted for every set of problem in the study. Average 
completion time of all the run had been taken as the 
completion time for the set.  

Optimized task assignment of machine and AGV has been 
conducted. The research possesses offline scheduling 
behavior where complete set of task, number of machines and 
number of vehicles are established prior to the task 
assignment process. This is different to the online scheduling 
that is based on real-time scheduling where task assignment 
is mainly based on the delivery attributes. The outcomes 
discussed in this paper are compared to STW [9], UGA [10] 
and AGA [11]. While detailed result obtained based on the 
proposed methodology for the described FMS environment is 
given in Appendix (Table VI and Table VII), the contribution 
of BPSO in minimizing average makespan is depicted in 
Table I and Table II.  

For ti/pi ratio >0.25 category, BPSO managed to improve 
the makespan for Layout 2 and Layout 3 as depicted in Table 

Layout 1 Layout 2

Layout 3 Layout 4 



 
 

 

I. Meanwhile, for ti/pi ratio <0.25, although BPSO couldn’t 
improved average makespan for any layout, results from 
other cases as shown in Table I and Table II proved that 
BPSO is able to provide optimal solution in minimizing 
scheduling makespan particularly for FMS. 

Furthermore, comparison of actual makespan among all of 
the methodologies had also been analysed. Based on Table 
VI, out of 40 sets of problem, BPSO proved to be better in 15 
cases when compared to the other methods while the results 
were on par for the other 12 problems. On the other hand, 
referring to the problem category with ti/pi ratio <0.25 as 
shown in Table VII, BPSO improved three results and equals 
the solution of 31 problems.  

The comparison of improvements made is listed shown in 
Table III. The numbers represent total number of problem 
sets either categorized as I –Improved makespan, E – Equal 
to existing best makespan or Y – yet to be improved. From 
the results obtained, it is clear that BPSO successfully 
contributed to the minimization of makespan time.  

It is found that BPSO is able to outperform other 
optimization methods for ti/pi ratio > 0.25. However, for ti/pi 

ratio < 0.25, BPSO only managed to improve solution of 
three cases. There is possibility that the algorithm might be 
trapped in local minima. This is corresponding to the 
searching mechanism of BPSO where upon having a Pt

g 
value; particles tend to move surrounding the position due to 
the social element characteristics. This will be one of the 
aspects for future improvement. In general, BPSO still 
bettered other methodologies noticeably.  

In order to ensure the results obtained are statistically 
acceptable, analysis on makespan minimization characteristic 
over iteration had been conducted. To further explain about 
the minimization characteristic, two graphs are included as in 
Fig. 3 and Fig. 4. As it will be tedious to represent makespan 
minimization behavior for all of the 82 problem sets, we had 
normalized makespan minimization data into percentage 
value.  

 
TABLE I COMPARISON OF AVERAGE MAKESPAN FOR TI/PI RATIO >0.25 

  STW UGA AGA BPSO 
Layout 1 118.6 116.6 115.5 116.2 
Layout 2 99.6 96.4 96.8 93.6 
Layout 3 102.8 100.5 100.9 99.9 
Layout 4 128.0 125.3 123.5 125.4 

 
TABLE II COMPARISON FOR AVERAGE MAKESPAN FOR TI/PI RATIO <0.25 

  STW UGA AGA BPSO 
Layout 1 167.6 164.9 167.4 166.2 
Layout 2 164.6 162.1 163.8 162.2 
Layout 3 165.4 163.1 164.5 164.7 
Layout 4 194.2 187.4 188.8 189.3 

 
TABLE III COMPARISON OF IMPROVEMENTS MADE BY BPSO 
Method  ti/pi ratio > 0.25 ti/pi ratio < 0.25 
 I E Y I E Y 
BPSO 15 12 13 3 31 8 
AGA 11 13 16 0 33 9 
UGA 0 9 31 5 31 6 
STW 0 6 34 0 21 21 

 

This is to enable the calculation of mean average for all of 
the cases. The makespan value after first generation is used as 
the maximum value while the final accepted makespan value 
is used to represent 100% convergence. First quartile and 
third quartile values are used to represent the convergence 
variation between problem cases.  

Referring to Fig. 3 and Fig. 4, both graphs illustrate BPSO 
convergence rate (ti/pi > 0.25) and (ti/pi < 0.25) respectively. 
It is shown that convergence variation for ti/pi ratio < 0.25 is 
smaller than ti/pi ratio > 0.25. According to [15], the variation 
is a normal outcome for any BPSO utilizing static topology. 
Since BPSO is more suitable for large search space, it 
becomes more stable for ti/pi < 0.25 category. However, both 
graphs also indicate that on average, 100% convergence 
could be achieved after 200 iterations for most of the cases. 

VI. CONCLUSION 
Based on the analysis conducted, it is found that BPSO 

managed to provide a better optimization solution 
particularly for simultaneous scheduling of machines and 
automated vehicles in production environment. For future 
study, more consideration would be given on establishing 
unique BPSO optimization method. Other BPSO variations 
would be considered not only to shorten the tasks completion 
time but also to shorten calculation time. Another limitation 
of the work is that it deals with single objective problem. 
Future work would consider multiple objectives so as to 
reflect actual industrial applications. 

 
BPSO Convergence Rate (t/p >0.25)
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Fig. 3 BPSO Convergence Rate (t/p > 0.25) 

 
BPSO Convergence Rate (t/p <0.25)

0.0

20.0

40.0

60.0

80.0

100.0

120.0

0 50 100 150 200 250 300 350 400
Iteration

C
on

ve
rg

en
ce

 P
er

ce
nt

ag
e

Mean Average Mean 1st Quartile Mean 3rd Quartile

 
Fig. 4 BPSO Convergence Rate (t/p < 0.25) 

 
 
 



 
 

 

 

 

APPENDIX 
TABLE IV MACHINE-TO-MACHINE DISTANCE CHART  

 Layout 1 Layout 2 Layout 3 Layout 4 
From
- To LU M1 M2 M3 M4 LU M1 M2 M3 M4 LU M1 M2 M3 M4 LU M1 M2 M3 M4 
L/U 0 6 8 10 12 0 4 6 8 6 0 2 4 10 12 0 4 8 10 14 
M1 12 0 6 8 10 6 0 2 4 2 12 0 2 8 10 18 0 4 6 10 
M2 10 6 0 6 8 8 12 0 2 4 10 12 0 6 8 20 14 0 8 6 
M3 8 8 6 0 6 6 10 12 0 2 4 6 8 0 2 12 8 6 0 6 
M4 6 10 8 6 0 4 8 10 12 0 2 4 6 12 0 14 14 12 6 0 

 
TABLE V PROBLEM SETS (JOB SEQUENCE WITH MACHINE PROCESSING TIME DETAIL) 

Job Set 1  Job Set 4  Job Set 7  Job Set 9  
Job 1: M1(8); M2(16); M4(12)  Job 1: M4(11); M1(10);  M2(7)  Job 1: M1(6); M4(6)  Job 1: M3(9); M1(12); M2(9); M4(6)  
Job 2: M1(20); M3(10); M2(18)  Job 2: M3(12); M2(10); M4(8)  Job 2: M2(11); M4(9)  Job 2: M3(16); M2(11); M4(9)  
Job 3: M3(12); M4(8); M1(15)  Job3:M2(7);M3(10); M1(9); M3(8)  Job 3: M2(9); M4(7)  Job 3: M1(21);  M2(18);  M4(7)  
Job 4: M4(14); M2(18)  Job4:M2(7);M4(8); M1(12); M2(6)  Job 4: M3(16); M4(7)  Job 4: M2(20);  M3(22);  M4(11)  
Job 5: M3(10); M1(15)  
 

Job 5: M1(9); M2(7); M4(8); 
M2(10); M3(8)  

Job 5: M1(9); M3(18)  
Job 6: M2(13); M3(19); M4(6) 

Job 5: M3(14); M1(16); M2(13); 
M4(9)  

Job Set 2    Job 7: M1(10);  M2(9); M3(13)   
Job 1: M1(10); M4(18) Job Set 5  Job 8: M1(11); M2(9); M4(8) Job Set 10  
Job 2: M2(10);  M4(18) 
Job 3: M1(10);  M3(20); 

Job 1: M1(6); M2(12); M4(9)  
Job 2: M1(18); M3(6); M2(15)  

Job 1: M1(11); M3(19); M2(16); 
M4(13)  

Job 4: M2(10);  M3(15); M4(12)  Job 3: M3(9); M4(3); M1(12) Job Set 8 Job 2: M2(21); M3(16); M4(14)  
Job 5: M1(10);  M2(15); M4(12)  
Job 6: M1(10);  M2(15); M3(12) 

Job 4: M4(6); M2(15) 
Job 5: M3(3); M1(9) 

Job 1: M2(12); M3(21); M4(11) 
Job 2: M2(12); M3(21); M4(11)  

Job 3: M3(8); M2(10);  M1(14);  
M4(9)  

  Job 3: M2(12); M3(21); M4(11) Job 4: M2(13); M3(20); M4(10)  
Job Set 3  Job Set 6 Job 4: M2(12); M3(21); M4(11)  Job 5: M1(9); M3(16);  M4(18)  
Job 1: M1(16); M3(15)  
Job 2: M2(18); M4(15) 

Job 1: M1(9); M2(11); M4(7) 
Job 2: M1(19); M2(20); M4(13) 

Job 5: M1(10);  M2(14); M3(18); 
M4(9)  

Job 6: M2(19);  M1(21);  M3(11);  
M4(15) 

Job 3: M1(20); M2(10)  Job 3: M2(14); M3(20); M4(9) Job 6: M1(10);  M2(14); M3(18);   
Job 4: M3(15); M4(10)  
Job 5: M1(8); M2(10); M3(15);  

Job 4: M2(14); M3(20); M4(9) 
Job 5: M1(11); M3(16); M4(8) 

M4(9)  
   

4(17) 
Job 6: M2(10); M3(15); M4(8);  

Job 6: M1(1O);  M3(12); M4(10) 
    

M1(15)      
 

TABLE VI RESULT COMPARISON OF JOB MAKESPAN FOR TI/PI RATIO >0.25 
Problem  ti/pi ratio  STW  UGA  AGA BPSO 
EX11  0.59 96 96 96 96 
EX21  0.61 105 104 102 101 
EX31  0.59 105 105 99 105 
EX41  0.91 118 116 112 118 
EX51  0.85 89 87 87 87 
EX61  0.78 120 121 118 120 
EX71  0.78 119 118 115 125 
EX81  0.58 161 152 161 142 
EX91  0.61 120 117 118 115 
EX101  0.55 153 150 147 153 
EX12  0.47 82 82 82 82 
EX22  0.49 80 76 76 76 
EX32 0.47 88 85 85 80 
EX42 0.73 93 88 88 88 
EX52 0.68 69 69 69 72 
EX62 0.54 100 98 98 90 
EX72 0.62 90 85 79 75 
EX82 0.46 151 142 151 137 
EX92 0.49 104 102 104 100 

EX102 0.44 139 137 136 136 
EX13 0.52 84 84 84 84 
EX23  0.54 86 86 86 86 
EX33 0.51 86 86 86 84 
EX43 0.8 95 91 89 91 
EX53 0.74 76 75 74 76 
EX63 0.54 104 104 104 101 
EX73 0.68 91 88 86 94 
EX83 0.5 153 143 153 141 
EX93 0.53 110 105 106 102 
EX103 0.49 143 143 141 140 
EX14 0.74 108 103 103 103 
EX24 0.77 116 113 108 113 
EX34 0.74 116 113 111 119 
EX44 1.14 126 126 126 126 
EX54 1.06 99 97 96 96 
EX64 0.78 120 123 120 120 
EX74 0.97 136 128 127 126 
EX84 0.72 163 163 163 158 
EX94 0.76 125 123 122 122 
EX104 0.69 171 164 159 171 



 
 

 

TABLE VII RESULT COMPARISON OF JOB MAKESPAN FOR TI/PI RATIO <0.25 

Problem ti/pi ratio STW UGA AGA BPSO 
EX110  0.15 126 126 126 126 
EX210  0.15 148 148 148 136 
EX310  0.15 150 148 150 150 
EX410  0.15 121 119 119 119 
EX510  0.21 102 102 102 102 
EX610  0.16 186 186 186 186 
EX710  0.19 137 137 137 137 
EX810  0.14 292 271 292 292 
EX910  0.15 176 176 176 176 
EX1010  0.14 238 236 238 238 
EX120  0.12 123 123 123 123 
EX220  0.12 143 143 143 143 
EX320  0.12 148 145 145 132 
EX420  0.12 116 114 114 114 
EX520  0.17 100 100 100 100 
EX620  0.12 183 181 181 181 
EX720  0.15 136 136 136 136 
EX820  0.11 287 268 287 287 
EX920  0.12 174 173 173 170 
EX1020  0.11 236 238 236 236 
EX130  0.13 122 122 122 122 
EX230  0.13 146 146 146 146 
EX330  0.13 149 146 146 146 
EX430  0.13 116 114 114 114 
EX530  0.18 99 99 99 99 
EX630  0.14 184 182 182 182 
EX730  0.17 137 137 137 137 
EX830  0.13 288 270 288 288 
EX930  0.13 176 174 174 176 
EX1030  0.12 237 241 237 237 
EX140  0.18 124 124 124 124 
EX241  0.13 217 217 217 217 
EX340  0.18 151 151 151 151 
EX341  0.12 222 221 221 221 
EX441  0.19 179 172 172 179 
EX541  0.18 154 148 148 148 
EX640  0.19 185 184 184 184 
EX740  0.24 138 137 137 137 
EX741  0.16 203 203 203 203 
EX840  0.18 293 273 293 293 
EX940  0.19 177 175 175 175 
EX1040  0.17 240 244 240 240 
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